

Quality of Service Driven
Workflows within the Microsoft

.NET Environment

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Alexander Schindler, Bakk.techn.
Matrikelnummer 9926045

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.Ass. Dr. Florian Rosenberg

Wien, 19.10.2009 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

3

Abstract

Service-oriented architecture (SOA) is gaining more and more momentum
in todays software engineering, for its ease of integrating heterogeneous sys-
tems. Web services allow for building complex and dynamic systems where
single components can be discovered at run-time by means of certain criteria
like Quality of Service (QoS) information. QoS-aware service management
and composition highly depends on this valuable data, but most of the cur-
rently proposed solutions assume that this information is readily available.

This master thesis addresses this fundamental issue by providing two meth-
ods to monitor the performance of WCF Web services and composite Web
services - also called workflows. One is based on Windows Performance
Counters (WPC) provided by the Windows Communication Foundation
(WCF). These counters provide a highly accurate way to measure QoS data.
The retrieved information is aggregated and attached as valuable metadata
to the revision datasets which are stored in the VRESCo registry. The sec-
ond method monitors Windows Workflow Foundation (WWF) workflows.
By taking also complementary activities of workflow into account, a more
difficile view of its actual performance is being retrieved. Such information
is invaluable for QoS aggregation algorithms. The thesis also introduces the
current state of the art of service-oriented architecture and related technol-
ogy and gives an overview of relevant related work in this field.

4

Zusammenfassung

Das Interesse an Service-orientierte Architecturen (SOA) im Bereich Soft-
ware Entwicklung nimmt stetig zu - vor allem durch die erleichterte Inte-
gration von heterogenen Systemen. Web services ermöglichen es komplexe
und dynamische Systeme zu implementieren, in denen einzelne Komponen-
ten zur Laufzeit, anhand bestimmter Kriterien, wie z.B. Quality of Service
(QoS), ausgewählt werden. QoS-bezogenes Service Management und Ser-
vice Komposition hängen im großen Maße von diesen wichtigen Daten ab.
Viele aktuell publizierte Ansätze gehen jedoch davon aus, dass diese Infor-
mationen bereits vorhanden sind.

Diese Diplomarbeit widmet sich diesem fundamentalen Problem und stellt
zwei Methoden zur Leistungsüberwachung von WCF basierten Web ser-
vices, sowie zusammengesetzten Web services, sogenannte Workflows, vor.
Die erste Methode basiert auf Windows Performance Counters (WPC),
welche von der Windows Communication Foundation (WCF) zur Verfügung
gestellt werden. Diese Zähler ermöglichen sehr genaue QoS-Messungen. Die
Ergebnisse werden aufgearbeitet und als Metadata in der VRESCo Registry
Datenbank gespeichert. Die zweite Methode überwacht Windows Work-
flow Foundation (WWF) Workflows. Durch das Miteinbeziehen der komple-
mentären Aktivitäten eines Workflows, bekommt man ein differenzierteres
Bild über dessen Leistung. Solche Informationen sind ausschlaggebend für
QoS Aggregations Algorithmen. Diese Diplomarbeit führt des Weiteren in
den State-of-the-Art von Service oriented Architecture ein und gibt einen
Überblick über aktuelle Arbeiten in diesem Gebiet.

6

Contents

1 Introduction 11
1.1 Motivation . 14
1.2 Problem Definition . 17
1.3 Contribution . 21
1.4 Organization of this thesis . 21

2 State of the Art Review 23
2.1 Service-oriented Architecture 23

2.1.1 Web Services . 24
2.1.2 Service Orchestration and Choreography 26

2.2 Tools and Technologies . 28
2.2.1 WSDL . 28
2.2.2 SOAP . 29
2.2.3 UDDI . 30
2.2.4 ebXML . 31
2.2.5 WS-CDL . 32
2.2.6 WWF . 32
2.2.7 BPEL . 33
2.2.8 OWL . 33

2.3 VRESCo . 35
2.3.1 VRESCo Architecture 36

3 Related Work 40

4 Design and Implementation 44
4.1 WPC-based QoS Monitoring of Web Services 46

4.1.1 Overview . 46
4.1.2 Architecture . 48
4.1.3 Quality of Service Model 49
4.1.4 Implementation . 53
4.1.5 Installation and Configuration 56

4.2 VRESCo Integration into WWF Designer 59
4.2.1 Overview . 59
4.2.2 VRESCoWebserviceActivity Implementation 61
4.2.3 Using the VRESCoWebserviceActivity 62

7

4.2.4 VRESCoRebindingActivity Implementation 65
4.2.5 Using the VRESCoRebindingActivity 65

4.3 WWF Workflow Monitoring 69
4.3.1 Overview . 69
4.3.2 Architecture . 70
4.3.3 VRESCo Tracking Service 72
4.3.4 Installation and Configuration 74

4.4 Workflow Monitoring Evaluation 76
4.4.1 Overview . 76
4.4.2 Evaluation Tool . 77
4.4.3 Evaluation API . 78

5 Evaluation 81
5.1 Case Study . 81
5.2 Example Implementation . 82

5.2.1 Evaluation Case Study Architecture 84
5.2.2 Evaluation System . 85

5.3 Eval 1: WPC Monitoring versus Hard Coded Measuring . . . 85
5.3.1 Evaluation Method . 86
5.3.2 Results . 87

5.4 Eval 2: Workflow Tracking versus WPC Monitoring 89
5.4.1 Evaluation Method . 89
5.4.2 Results . 90
5.4.3 Discussion . 92

5.5 Eval 3: QoS Aggregation versus Workflow Tracking 93
5.5.1 Evaluation Method . 94
5.5.2 Results . 95

6 Conclusion and Future Work 97
6.1 Future Work . 97

A List of Abbreviations 100

B WCF Performance Counters 102

C VRESCo Client Library - Example Invocation 104

References 110

8

List of Figures

1 Classical Enterprise Application Architecture 12
2 Enterprise Application with SOA 15
3 SOA Triangle . 16
4 Relationship Between Web Service Technologies [9] 26
5 Orchestration [6] . 27
6 Choreography [6] . 28
7 Web Service Standards Stack 29
8 General Structure of WSDL 1.1 and 2.0 [15] 30
9 VRESCo Architecture Overview [22] 37
10 Service Model to Metadata Mapping [20] 37
11 The Daios Framework Architecture [16] 38
12 Solution Overview . 44
13 Windows Performance Monitor 47
14 QoS Monitoring Service Architecture 49
15 QoS Calculation by Subtracting Overlapping Intervals 51
16 WPC QoS Monitor Class Diagram 53
17 QoS Monitoring Service SequenceDiagram 55
18 Example Workflow - Simplified Online Shop 59
19 Visual Studio Workflow Designer 60
20 VRESCo Activities in Toolbox 62
21 VRESCoWebserviceActivity - Properties Dialog 63
22 VRESCoWebserviceActivity - Choose Revision 65
23 VRESCoRebindingActivity - Properties 66
24 VRESCoRebindingActivity - Query Builder 67
25 Windows Workflow Tracking - Architecture 71
26 VRESCo Tracking Channel - Tracking Sequence 72
27 Workflow Evaluation Tool . 78
28 Evaluation Workflow . 84
29 Eval 2 - Distribution of Execution Times of DebitAmount . . 92
30 QoS Aggregation Formula . 93

9

List of Tables

1 VRESCo Rebinding Strategies 39
2 QoS Monitoring - Mapping of Performance Counters to VRESCo

QoS Parameters . 50
3 QoS Monitoring - Configuration Options 57
4 VRESCoWebserviceActivity - Properties 64
5 Evaluation API - Methods and Parameter 80
6 WPC Results . 88
7 WWF Tracking Results - Web Service Calls 90
8 Eval 2 - Ranges of Web Service Invocations 91
9 Eval 3 - Comparing Aggregation Algorithms 95
10 WWF Tracking Results - Auxiliary Activities 96

LISTINGS 10

Listings

1 QoS Monitoring - Enable performance counters 58
2 QoS Monitoring - Configuration Section 58
3 QoS Monitoring - Example configuration 58
4 Workflow Monitoring - Example configuration for Self-Hosted

Workflows . 73
5 Workflow Monitoring - Example Web.config configuration . . 74
6 Eval 1 - Example of Hard Coded Performance Measurement . 86
7 Eval 1 - Extraction of WPC-based QoS Monitor Data 87
8 ServiceModelService 3.0.0.0 102
9 ServiceModelEndpoint 3.0.0.0 103
10 ServiceModelOperation 3.0.0.0 103
11 Example - VRESCo Web service Invocation 104

11

1 Introduction

Information Technology (IT) systems have become key business value en-
abler. Over the last four decades great efforts have been made to provide
the technology and methodology to implement IT systems for small to ma-
jor companies. Disregarding the size of a company the requirements to its
IT infrastructure are almost equal: provide an easy to use and inexpensive
mean to master all present and prospective business processes.

One of the latest approaches in this regard is service-oriented architecture
(SOA) which represents a new paradigm for the realization and mainte-
nance of business processes. SOA is not just another software development
process to implement systems more cost effectively and more efficiently - it
aims at providing a maximum of business flexibility. But why is business
process flexibility so important? Because flexibility enables a business to
respond quickly to a changing competitive environment or to create new
business opportunities, thus providing a shorter time to market. Business
Process Integration (BPI) is a commonly accepted approach to achieve such
flexibility and to improve organizational efficiency. BPI or Business Process
Management (BPM) focuses on the effectiveness of end-to-end processes and
their desired outcomes. Business Process Management Systems (BPMS) are
used to precisely model the enterprise components and possibly change their
contexts in which they are used. Processes are defined as a sequential set
of activities over their business entities, performed by actors or initiated
by events. The complete business structure can be documented, constantly
reviewed and improved.

These documented business processes also served and still serve as specifi-
cation for software implementations. Historical approaches would base their
realization on a well designed and highly optimized database schemes. Such
a design implicates already the monolithic nature of its resulting applica-
tion. Changes concerning the database implicated major changes in the
entire solution. Thus, former software engineering processes demanded that
requirements are known, well defined and fixed at design time. Once the
implementation has begun, changes or additional requirements were hardly
to accomplish and dedicated project risks. As a consequence changes should

12

Figure 1: Classical Enterprise Application Architecture

have been avoided or scheduled for the next release. This circumstance cer-
tainly degrades business flexibility.
The most serious drawback of such designs is the proceeding divergence of
the business process model and its implementation. As a consequence exist-
ing software remains in the application infrastructure and is complemented
by new systems components.

Example 1. Figure 1 depicts a traditional enterprise application architec-
ture, consisting of multiple monolithic applications. Each of them serves a
special purpose: Account Management is used to manage the customer rela-
tionships. It stores customer information and can check their credit. On the
other hand this application is also accessible to the customer to administer
his personal data or to check the status of his order. Another application
used in this enterprise is responsible for Order Processing. Several depart-

13

ments may use this program to receive informations about order processing
or to update the order status. As can be seen by now, the functionality
Order Status is redundantly implemented in two applications. In order to
transfer information from one application to the other, they both have ac-
cess to the same data repository (i.e. Sales, CRM and External Partner).
In this example, if a new business process requires an adoption of the func-
tionality Order Status, two application have to be changed, tested and rolled
out to the enterprise. Apart from the additional expenditure of redundantly
implemented functionality, this also degrades the flexibility of the IT infras-
tructure of this enterprise and consequently the business flexibility of the
enterprise itself.

Another problem software engineering has been constantly concerned with,
was the disconnect between business users and the IT specialists, which
are considered not to speak the same language as their users. Optimized
database schemes are difficult to read and understand - even if you are skilled
in Entity Relationship (ER) modeling - and system specifications are aimed
at aiding the developer in implementing the required functionality. On the
other hand, IT professionals often have hardly any knowledge of economics
or the domain the software is used in.
By covering several aspects of business process management, service-oriented
architecture aims at bridging the gap between software engineers and busi-
ness analysts. Similar to BPM, SOA decomposes a system into single compo-
nents and designs them to be reusable in different contexts. XML based tech-
nologies like the Business Process Execution Language (BPEL) can be used
to define and execute business processes which are an assembly of these com-
ponents [5]. Therefore software components are published as Web services.
This loosely coupled, platform-independent and self-describing components
can be composed and orchestrated [27] to implement specified business pro-
cesses which in turn can be again published as services, called composite
services. Accordingly, once published the services can be localized and ac-
cessed through XML-based standards (i.e. SOAP [31], WSDL [29], UDDI
[7]).

Example 2. Example 1 explained a traditional enterprise application which
is depicted in Figure 1. Figure 2 shows the same enterprise built as a service-
oriented architecture. All business processes remain the same, but they are

1.1 Motivation 14

realized as Web services. The service layer is depicted as the layer between
the Data Repository and the Composite Applications. Web services have
direct access to the Data Repository and perform simple and isolated tasks
of business processes. These services/tasks are used to compose runnable
business processes, which is depicted as the layer beneath the Composite
Applications.
As the enterprises business processes remain, consequently the needs to its
IT infrastructure do not change. Thus, applications like Account Manage-
ment and Order Processing are still required. But in a SOA they are built
by composing business process from Web services. As depicted in Figure
2 the composite application Order Processing contains the business process
Order Processing. This process requires to execute several tasks in a certain
order. By arranging selected Web services - also called Web service compo-
sition - this business process is declared and added as executable workflow
to the composite application order processing.
The mentioned business process Order Processing may require to execute
the Web service Check Order Status, which is also required by the process
Service Schedule from the composite Application Service Schedule. To im-
plement this business process it only needs to call Check Order Status too.
No redundant implementation of this functionality is required.

1.1 Motivation

The introduction already exemplified service-oriented architecture and its
reliance on Web services. Hence, a service-oriented design requires the de-
composition of business requirements into its mere activities in order to
provide loosely coupled and context free components. By providing these
attributes Web services can be shared among other software parts, projects
or even companies. It is comprehensible that multiple SOA based imple-
mentations for enterprises in the same business domain provide many Web
services with overlapping or identical functionality.
Thus, SOA’s ambition is to reuse existing functionality even if it crosses the
enterprises boundaries. Therefore, available Web services should be pub-
lished using a publicly available service registry. Composite applications are
considered to choose among these available Web services the best appropri-

1.1 Motivation 15

Figure 2: Enterprise Application with SOA

ate one and invoke it. Services should be queried from a registry, bound to
it and invoked according to the functional and non-functional requirements
of the underlying business process. This is depicted by the SOA triangle
(Figure 3).

Nevertheless, as stated by Michlmayr et al. [23] this triangle is broken in
certain ways. One major drawback is the inability of dynamic Web service
invocation. Currently available solutions (i.e., Apache AXIS [12], Windows
Communication Foundation (WCF)), use pre-generated service stubs which
are statically compiled and linked to the application. This renders a dy-
namic invocation impossible since this compiled code is tightly coupled to a
certain Web service. Leitner [16] provided a framework to overcome this bot-
tleneck (see Chapter 2.3). Another problem concerning the SOA-Triangle

1.1 Motivation 16

Figure 3: SOA Triangle

are the shortfalls of currently available service registries - mainly the two
major solutions UDDI [7] and ebXML [8]. Again, this problem has already
been tackled and different solutions have been proposed (see Related Work
Chapter 3).
Quality of Service (QoS) is one of the main aspects to differentiate certain
Web services among a set of semantically equal candidates. The availability
of metadata-aware service repositories enables the attachment of QoS data
to Web services, which has been extracted i.e., by monitoring and evaluating
the performance of a Web service.

One of these QoS monitoring approaches is described in [34] which is part of
the Vienna Runtime Environment for Service-Oriented Computing (VRESCo)
which is described in more detail in Chapter 2.3. This QoS monitor pro-
vides a rich set of well evaluated QoS attributes allowing to independently
evaluate and monitor these attributes of Web services. This information is
obtained without the knowledge of the service implementation by using low
level evaluation of TCP-packets as well as Aspect Oriented Programming
(AOP) techniques to invoke the services and extract the QoS values. A part
of this thesis can be seen as a direct extension of this work, for submitting
its evaluated QoS information to the same QoS management Service, which
aggregates it to properly attach it to the external evaluated data.
One drawback of this approach is, that the collected data only represents
a client-side view of Web services. Although network delays and commu-
nication overhead can be measured, some performance aspects can only be
estimated. This QoS monitor could achieve a more accurate result by com-

1.2 Problem Definition 17

plementing the the client-side evaluated QoS data with values monitored
directly at their hosting system.
The contributions provided by this thesis focus on monitoring Windows
Communication Foundation (WCF) Web services as well as Windows Work-
flow Foundation (WWF) workflows.

From what is known today, no work has been published on observing the
Quality of Service of WCF Web services or WWF workflows.

1.2 Problem Definition

In a service-oriented architecture business processes are composed and or-
chestrated (see Chapter 2.1.2) by the use of diverse tools (see Chapter 2.2).
Such a composition can also be referred to as workflow and if the discrete
activities of this workflow are Web services with additional QoS related
metadata, it can be considered QoS-aware.
The main objective of a QoS-aware workflow is to select services accordingly
to fulfill its functional or non-functional requirements. For example, if the
workflow ought to be returning a result as fast as possible, Web services
with the shortest execution time have to be chosen.

Rosenberg et al. [34] presented an approach to monitoring the QoS of Web
services, which has already been introduced as well as its constraints. Fur-
ther explanations on VRESCo’s QoS management can be found in Chapter
2.3.

Chapter 3 will present work related to this thesis, respectively related to
QoS-aware service composition as well as QoS monitoring of Web services.
The selected papers in this chapter will point out, that most of the currently
available literature focuses on new and more efficient QoS aggregation algo-
rithms based on the assumption that accurate QoS data has already been
provided.
Approaches which actually focus on the problem of monitoring the perfor-
mance of Web services can be categorized into server side and client side
monitoring. No work so far, has evaluated the monitoring results of both -

1.2 Problem Definition 18

client and server side. In the context of QoS-aware service composition such
an evaluation could benefit to the efficiency of aggregation algorithms.

This thesis tackles several problems and contributes to this QoS management
of the VRESCo runtime by working through the following four steps:

Step 1: Evaluation and Extraction of QoS Information on the Ser-
vice Host: Solutions presented in [2, 10, 28, 42] monitor the performance
of Web services on the provisioning host. But these approaches have to be
applied to an application server and can not monitor Web services provided
by standalone applications. Further, these prototypes are implemented in
the Java programming language. Consequently, they do not integrate prop-
erly into the VRESCo runtime which is built upon the Microsoft .Net Frame-
work.

To integrate server side QoS monitoring into the VRESCo environment,
Windows Communication Foundation (WCF)1 based Web services should
be constantly monitored on the provisioning host.
Like the client side QoS monitor presented in [34], the server side moni-
toring should not affect existing or future implementations of the observed
services. A solution which has to be integrated into the Web service’s source
code would require to recompile all services every time, the implementation
of the monitor changes. Such an approach is not desirable, considering that
in some cases, the provider does not even have access to the source code.
Performance data should be measured constantly and reported to VRESCo
in predefined intervals. Some QoS values of a service can be observed pas-
sively by listening on events triggered by the Web service during execution.
Other parameters have to be actively pulled from the service or sequentially
evaluated.
The VRESCo QoS management component has to be extended to aggregate
the provided data and associate it directly with services that are managed
by the VRESCo environment. This QoS data associated with the corre-
sponding services should be used to calculate the QoS of a workflow by

1The Windows Communication Foundation (WCF), provides an API in the .NET

Framework for building connected, service-oriented applications.

1.2 Problem Definition 19

aggregating the QoS of each atomic Web service.

The QoS data evaluated by this step describes the performance of the server
side monitored Web services as well as of the provisioning host. Dynamic
service composition based on this data ignores many crucial factors of dis-
tributed systems. Thus, also the performance of the client side, which in-
vokes these services, has to be considered. Such a client side monitoring
approach is presented in step 3.

Step 2: Using VRESCo Managed Services in Visual Studio Work-
flow Designer: Since VRESCo provides all concepts needed to dynami-
cally bind to services according to their QoS parameters, it is desirable to
use it directly in Visual Studio’s Workflow designer. This designer provides
tools which allow for creating workflows by dragging several activities onto a
worksheet and defining some properties like input/output parameters (work-
flows and the Visual Studio workflow designer will be explained in detail in
Chapter 4.2.1).

Currently, VRESCo services have to be queried an bound to by implement-
ing the required code in the execution-block of a standard CodeActivity.
This implies a lot of redundant code as well as a precise knowledge of
VRESCo’s API.

In order to properly evaluate step 1 and 3, an integration of VRESCo man-
aged services is required. The solution should provide the possibility to
drag-and-drop activities onto the workflow as well as query for services in
the VRESCo registry. When executing a workflow, the activity should bind
to the specified service and invoke it dynamically.

Step 3: Evaluating the QoS of Windows Workflow Foundation
Workflows: Step 1 provides performance data of Web services which is
directly observed on the server. These QoS values are primarily biased by the
performance of the server (i.e. hardware, current load conditions, etc.). For
effective QoS-aware service composition further QoS parameters have to be
taken into account which cannot be gained from measuring the performance

1.2 Problem Definition 20

on the server side. Monitoring Web services on the invoking host provides
more aspects of the underlying distributed system (i.e. network delays, etc.).
In order to evaluate the performance of the workflow QoS aggregation, which
is based on data gathered from Step 1, the performance of the executing
workflow itself has to be observed.

Two aspects have to be considered when evaluating the performance of a
workflow. The first is related to the performance of the invoked Web services.
This performance is considered to be directly related to the performance ob-
served on the server side. The second value is retrieved by measuring the
performance of the workflow activity, that invokes the Web service on the
client side. The difference of these two values represents the overhead of
invoking the service (i.e. communication delays, client workload, etc.).
In regard to evaluating dynamic service composition algorithms based on
QoS data, it has to be considered that a workflow does not entirely consist of
Web service calls. Workflows contain auxiliary activities like CodeActivities.
Adding such activities to a workflow certainly invalidates a dynamic com-
position algorithm, which takes only Web service invocations into account.

Therefore an observation method is required, which monitors the QoS of
the workflow as well as its distinct activities. The focus of this obser-
vation is on monitoring all activities, including peripheral activities like
CodeActivities, etc.
Again, the monitoring of the workflow should be independent of the work-
flow’s implementation. The observed data should be stored accordingly and
made accessible through an API which could be subsequently exposed as
Web service in order to integrate into the VRESCo environment.

Step 4: Evaluating the Performance of the QoS Observation Meth-
ods: This step performs the evaluation. QoS data gathered from step 1,
the server side QoS monitor, is compared to data retrieved from observing
WWF workflows. This comparison should be divided into two general eval-
uations.
The first one should directly compare the server side values with the client
side. This could offer valuable clues about interrelationship and predictabil-
ity of these values.

1.3 Contribution 21

The second evaluation should compare the estimated QoS of a workflow,
based on server side measured performance data, with real performance val-
ues, monitored while executing the workflow. This evaluation should also
take all peripheral activities into account and determine their deviations.

1.3 Contribution

This thesis contributes basically to the VRESCo environment by introducing
the following new components.

WPC-based QoS Monitoring. Step 1 of the problem definition is im-
plemented by using Windows Performance Counters (WPC) of the .Net
Framework 3.5. These allow measuring the performance of Windows Com-
munication Foundation (WCF) Web services and provide pretty accurate
view on their QoS data.
The monitor is realized as Windows service which can be installed on the
service host to enable a loosely coupled integration.

WF-Tracking-based QoS Monitoring. Step 3 is implemented by using
the Windows Workflow Foundation (WWF) tracking service. This service
can be appended to the workflow runtime and tracks every event initiated by
a specified workflow. An evaluation API provides highly accurate execution
data, which can be used for workflow composition.

Evaluation Tool. The evaluation tool enables to visualize the perfor-
mance of of workflow. This performance data can be compared with the
values based on the aggregation algorithm. Thus, it aides in algorithm se-
lection and fine tuning.

1.4 Organization of this thesis

The remainder of this thesis is organized as follows:

1.4 Organization of this thesis 22

Chapter 2 details the current state of the art in service-oriented architecture
as well as technologies and tools which can be used for its realization. The
second part of the chapter will describe the Vienna Runtime Environment
for Service Oriented Computing (VRESCo) which this thesis contributes to.

Chapter 3 will give a review of relevant related work in the field of Web
service QoS evaluation and QoS-aware Service selection. Additionally these
contributions will be evaluated for their applicability within the VRESCo
environment and the Windows Workflow Foundation (WWF).

Chapter 4 will explain the realization and implementation of the QoS Mon-
itoring service, the Workflow Tracking and the integration of VRESCo ser-
vices into Microsoft Visual Studio’s Workflow Designer. Furthermore, it will
provide some code examples of how to configure and use these services in
practice.

Chapter 5 will provide an evaluation of described observation methods. It
will compare the QoS data, which is observed by the server side QoS mon-
itor and further aggregated by the VRESCo QoS manager with the data
measured by the WF workflow monitor.

Chapter 6 will conclude this thesis with some final remarks and discuss some
suggestions for future work.

23

2 State of the Art Review

This Chapter introduces the concepts and technologies that constitute the
state-of-the-art for implementing Service-oriented architectures.

2.1 Service-oriented Architecture

Though SOA is gaining constantly momentum, a global definition is still
missing. Currently, the most commonly used definition is stated by the Or-
ganization for the Advance of Structured Information Standards (OASIS)2

as follows:

Service-oriented Architecture (SOA) is a paradigm for
organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. [11]

This very poorly defined and somehow unsatisfying definition led to a vari-
ety of misconceptions. Hence, SOA is often reduced to just another software
engineering process, which is currently over-hyped. Another misinterpreta-
tion is that Web services and SOA are the same thing. A common disbelieve
is also that SOA is just adding a Web service wrapper to legacy systems and
integrate them into new software - mostly built the same fashion as the old
ones.

Service-oriented architecture is not a software engineering process, like the
waterfall process model or the unified process, nor is it a concrete tool or
framework. It is a new paradigm which provides more flexibility in build-
ing business-aligned enterprise applications. By talking of “services” and
“processes” it provides a language that is understood by IT specialists as
well as business analysts, thus reducing the risk of misconception during
analyzing system requirements. Further it is not tied to specific technology,
though it highly associated with Web service standards (especially the WS-*
standards of the OASIS group).

2http://www.oasis-open.org

2.1 Service-oriented Architecture 24

SOA tackles many traditional problems of software engineering at once. By
providing functionality as coarse grained, loosely coupled and especially con-
text free Web services, it makes this functionality interchangeable, reusable
and extensible. Therefore SOA defines three distinct roles:

• Service Provider: provides Web services and publishes them in in
service registries

• Service Registry: provides the functionality to register Web services.
It acts as broker between the provider and the requesting consumer.

• Service Requestor: queries the service registry for Web services,
binds to and executes them.

Applied business processes (i.e., by the use of BPEL) use these published
Web services to design the business logic accordingly by composing the busi-
ness inherent processes. Such a composition is also referred to as Web service
orchestration (see Chapter 2.1.2). If the business requirements change the
affected software is adopted by rearranging the Web services of an orches-
trated process. New functionality is once more introduced as Web service,
which can be added to a composition.

2.1.1 Web Services

Web services are software components which are made accessible over the
Internet.

According to [15] and [33] Web services have to provide the following at-
tributes or characteristics:

• Self-Contained/Autonomous - Web services have to be autonomous,
so that they can be modified and maintained independently from each
other.

2.1 Service-oriented Architecture 25

• Coarse-Grained - Granularity describes the functional richness of
a component. Coarse grained Web services provide a higher level of
functionality within a single service operation, thus reducing complex-
ity and the number of required service calls.

• Visible/Discoverable - Services should be discoverable by the use
of a service registry.

• Stateless - Service operations do not have a state, nor do they depend
on the state or context of any other service.

• Reusable - Reusability is intrinsically enabled by applying several
other attributes - especially self-containment, loose coupling, coarse
granularity, etc. Services can be shared and reused in multiple contexts
of different business processes.

• Composable - Services can be composed of other services. Complex
business processes can be split into several smaller processes which are
themselves provided as services.

• Loose coupling - Coupling describes the grade of dependability of
a component. Loosely coupled Web services have few dependencies
which makes them more flexible and maintainable.

• Self-describing - The complete description of the Web service is de-
fined by a service contract containing an interface description (opera-
tions, input/output parameters, schema, etc.)

Several standards emerged according to Web services: services are described
by the Web Service Description Language (WSDL), are published by Uni-
versal Description, Discovery and Integration (UDDI), communicate with
SOAP and are composed with the Business Process Execution Language
(BPEL). Figure 4 depicts the relationship between these technologies. All
these standards are XML based and therefore independent from program-
ming languages or providing platforms.

2.1 Service-oriented Architecture 26

Figure 4: Relationship Between Web Service Technologies [9]

2.1.2 Service Orchestration and Choreography

The arrangement of services to build service-oriented applications can be
grouped into two categories: Orchestration and Choreography.

Orchestration. It describes the composition of executable business pro-
cesses (see Figure 5) which can interact with internal or widely distributed
Web services. By defining a workflow, its execution order and behavior is
exactly described. The sequentially execution of these processes is managed
by a single controller. BPEL is an example for an orchestration language
which can be used for service composition. It provides an orchestration en-
gine that handles the execution of the composed processes as well as the
invocation of Web services.

2.1 Service-oriented Architecture 27

ner. A public process consists of virtual activities which represent a subset of the cooperative pro-
cess activities. Virtual activities are not supposed to produce or consume output/input. Neverthe-
less, they are supposed to transfer output/input data to/from other workflows. Similarly they are
not meant to be executed by local role.
In the following we present how public processes can be deduced from the cooperative ones

using the notion of cooperation policy. The cooperation policy establishment process we propose
in this paper integrates the participants� roles during cooperation, the dataflow that will be passed
from one partner to another and the participant�s public processes that will be exposed and ac-
cessed by external organizations. Given a set of organizations with complementary competencies,
we describe their interactions in terms of a cooperation policy, which is a set of rules between par-
ticipants defined in terms of dataflow and access contracts, and workflows public process
definition.
In order to establish a cooperation policy, we propose a three phases process: a dataflow con-

tract establishment to express dataflows to be exchanged between partners, an access contract
establishment to express allowed activities one partner can execute on its behalf by an external
partner and workflow public process definitions.
After determining the different activities participants� workflow can be executed on its behalf

within an external workflow, each partner specifies the different dataflows to exchange with the
other partners. The result of this step is a set of rules associating, in a peer to peer manner, the
partners with the data they can send to each other. We call this set of rules a dataflow contract.
In our example, the dataflow contracts are illustrated by Fig. 9.

send
order

receive
notification

receive
delivery

receive
invoice

start

stop

pay

receive
order

send
order_b

notify

receive_del_b

send
delivery

send
invoice

receive
payment

receive_order

produce order

check
order

OK_order

start

send
order_c

receive_del_c

stop

send
delivery

NOK
order

start

stop

receive_order

produce order

check
order

OK_order

send
delivery

NOK
order

start

stop

Customer Producer Supplier 1 Supplier 2

Fig. 7. Customer, producer and suppliers�s internal processes.

I. Chebbi et al. / Data & Knowledge Engineering 56 (2006) 139–173 155

Figure 5: Orchestration [6]

Choreography. It focuses on describing the observable behavior of the
system from a global point of view. It is intended for long-running multi-
party collaborations. It provides a decentralized solution where each party
has knowledge of their part of the process and which also accepts that con-
trol can be distributed among the different parties.
Figure 6 depicts an example choreography with four different participants.
Each party represents a separate company providing services which are con-
sumed by others.

Choreography techniques are more complex to model but offer a decen-
tralized alternative to classic orchestration models, where all data passes
through a centralized orchestration engine, which results in unnecessary
data transfer and wasted bandwidth. Thus, the engine becoming a bot-
tleneck to the execution of an orchestrated workflow, choreography permits
a peer-to-peer approach.

A commonly used analogy compares orchestration and choreography with a
dancing couple. Thus, orchestration describes a single dancer, which knows
the dancing steps (which are predefined rules), whereas choreography de-
scribes how the two dancers act as a pair and how the dance is performed.

2.2 Tools and Technologies 28

announcing that the product has been taken into account by the producer. When the product is
ready, the customer receives the delivery and then the invoice. Finally, he pays for the product he
has ordered. The producer, waits for an order request. Then he searches for two suppliers to pro-
vide him with needed components in order to satisfy the received order. After that, he notifies the
customer that his order is taken into account and waits for the suppliers� response. When he re-
ceives the requested components, he assembles them and delivers the product to the customer. Fi-
nally, he sends the invoice and waits for the payment. The last partners are the two suppliers
which, in our example and for simplicity purposes, have exactly the same workflow. When a sup-
plier receives an order, he begins by producing it and then checking it. If the product conforms to
the specification, it will be sent to the requester, otherwise another product must be produced and
the process is repeated until the order is satisfied.
As it is modeled, this inter-organizational workflow does not allow any participating workflow

(of a customer, the producer or the supplier) to change its internal control flows even though the
role played by this participating workflow is still the same. Hence, one could argue that the inter-
organizational workflow is hard-wired and public. As a consequence, changing the workflow is
cost-intensive.
For preserving privacy, one of our objectives is to describe the cooperation in an inter-organi-

zational workflow without specifying the internal structure participating workflows.

5.2. Definitions

A cooperation within an inter-organizational workflow is considered to be the exchange be-
tween participating workflows. We use dataflows as the vehicle for providing cooperation. Two

send
order

receive
notification

receive
delivery

receive
invoice

start

stop

pay

receive
order

send
order_b

notify

receive_del_b

send
delivery

send
invoice

receive
payment

receive_order
c

produce order

check
order

OK_order

start

send
order_c

receive_del_c

stop

send
delivery

c

NOK
order

start

stop

Customer Producer Supplier 1

receive_order
b

produce order

check
order

OK_order

send
delivery

b

NOK
order

start

stop

Supplier 2

Fig. 3. An inter-organizational workflow.

150 I. Chebbi et al. / Data & Knowledge Engineering 56 (2006) 139–173

Figure 6: Choreography [6]

2.2 Tools and Technologies

In accordance with the rise of Web services many technology standards
have populated and further contributed to their success. Figure 7 shows
a Web service standards stack, depicting the relationships between those
technologies.

2.2.1 WSDL

The Web Services Description Language (WSDL) [29] is a XML based doc-
ument format for precisely defining Web services. This important standard
is developed and maintained by the World Wide Web Consortium (W3C)3.
WSDL service descriptions are divided into three layers:

• The interface description of a Web service - declaring all operations
with input and output parameters as well as their types.

3http://www.w3.org

2.2 Tools and Technologies 29

Figure 7: Web Service Standards Stack

• The binding of a Web service - describing the protocol format for which
it is available.

• The location of a Web service - describes the physical location (URL)
where the service is hosted.

The general structure of a WSDL file is depicted by Figure 8.

WSDL is generally useful regarding code generators. JAX-WS4 for example,
generates RPC-Style service Stubs for the Java programming language. Mi-
crosoft Visual Studio also provides simple to use code generators to use Web
services with their programming languages. The other way around, WSDL
files are usually not implemented manually, but created by automated tools.

2.2.2 SOAP

SOAP originally was an acronym for Simple Object Access Protocol, but this
acronym was dropped in Version 1.2 for not being simple and not dealing

4http://jax-ws.dev.java.net/

2.2 Tools and Technologies 30

212 C H A P T E R S I X T E E N

Figure 16-1 shows the general structures for both versions, which are similar, but not the

same.

WSDL files describe services from the bottom up. That is, they start with the data types

used and end with the location (address) of the service. In addition, they have three layers

of description:

• The first layer describes the interface of a service. This interface (called the “port type”

in WSDL 1.1) can consist of one or more operations with input and output parameters

that use types specified in the first section of the WSDL file. In WSDL 1.1 the service

parameters were defined in <message> sections, while in WSDL 2.0 they are defined just

like any other type in the <types> section.

• The second layer defines the “binding” of a Web Service; that is, the protocol and for-

mat for which the Web Service operations are provided.

• The third layer defines the physical location (address, URL) where the Web Service is

available.

Note that due to the different layers inside WSDL files, different teams modify the con-

tents of WSDL files at different times. See Section 16.3.3 for details.

16.2.2 WSDL by Example

Let’s look at a simple example of a WSDL file. This WSDL file defines a service called

CustomerService, which provides one operation called getCustomerAddress(). Its input

parameter is a customer ID of type long, and the output is a structure of three string

attributes: the street, the city, and the zip code.

Here is the WSDL 1.1 version:

1 <?xml version="1.0" encoding="utf-8" ?>
2 <definitions name="CustomerService"

F I G U R E 1 6 - 1 . General structure of WSDL 1.1 and 2.0 files

definitions

types

message

portType
operation
 input
 output

binding

service
port

description

types

interface
operation
 input
 output

binding

service
endpoint

Figure 8: General Structure of WSDL 1.1 and 2.0 [15]

with objects - now it is just a name. It is a XML based communication
protocol for exchanging encoded data over networks. SOAP can utilize a
variety of of protocols (i.e. HTTP, SMTP, MIME) as transport layer but
the binding over HTTP is universally used on the Internet.

SOAP is independent of any programming model and supports one-way
messaging and various request-response type exchanges including RPC. It
has widely been accepted as the De facto standard for Web service com-
munication, which is emphasized by countless implementations in several
programming languages.

2.2.3 UDDI

The Universal Description, Discovery and Integration (UDDI) is like nearly
every Web service standard, a XML based standard for Web service reg-
istries. It is developed and maintained by OASIS and is intended to expose
information about one or more businesses and its provided Web service in-
terfaces.

2.2 Tools and Technologies 31

Registries can be run on multiple sites and are accessible by everyone or ev-
ery program connected to the Internet, providing information about service
providers, service implementations, and service metadata. UDDI intends,
that service providers register their services in a registry, which can be ac-
cessed by consumers to query for them. The registry acts like the yellow
pages - an application in need of a particular service can search for it by
using the registry, request its location, bind to it and invoke it. This is also
referred to as the SOA triangle (see Figure 3 in Chapter 1.1).

Initially UDDI was intended to be even more than a simple lookup service.
It was dedicated to form a worldwide UDDI Business Registry (UBR) which
should have been an universal central broker for all Web services worldwide.
Unfortunately UDDI did not succeed as intended and Microsoft, SAP, and
IBM have finally shut down their public UDDI registries in January 2006
[24]. But instead of admitting the failure of UBR, its initial motivation of
a global yellow pages for Web services was redefined to always have been
intended a prototype:

This goal was met and far exceeded. The UBR ran for 5
years, demonstrating live, industrial strength UDDI implemen-
tations managing over 50,000 replicated entries. The practical
demonstration provided by the UBR helped in the ratification
of UDDI specifications as OASIS standards... [24]

2.2.4 ebXML

Electronic Business using eXtensible Markup Language (ebXML) is a family
of XML based standards initiated by OASIS providing standard methods
for exchanging business messages or define and register business processes.
This suite of specifications initially intended to provide standards for busi-
ness processes, core data components, collaboration protocol agreements,
messaging, registries and repositories. Finally five specifications were sub-
mitted and approved by the International Organization for Standardization
(ISO), thus representing the legitimate ISO standard 15000:

2.2 Tools and Technologies 32

• ISO 15000-1: ebXML Collaborative Partner Profile Agreement

• ISO 15000-2: ebXML Messaging Service Specification

• ISO 15000-3: ebXML Registry Information Model

• ISO 15000-4: ebXML Registry Services Specification

• ISO 15000-5: ebXML Core Components Technical Specification

2.2.5 WS-CDL

Web Services Choreography Description Language (WS-CDL) [30] is a Web
service specification developed by the W3C WS-CDL Working Group, in
order to provide peer-to-peer collaborations for participants from different
parties. These collaborations between the interacting participants are de-
fined from a global point of view.
WS-CDL offers a fully expressive global description language based on XML.

2.2.6 WWF

The Windows Workflow Foundation (WWF) provides a programming model,
a workflow engine and additional tools for building workflows and workflow-
enabled applications which can be designed in Visual Studio .Net 2005 and
2008, up to now.

A workflow is a set of Activities which are arranged to model a real process
(i.e. business process). This activities are executed sequentially or according
to their states either by system functions or human interaction. The WWF
runtime engine resides in-process and provides the base activity libraries, the
runtime engine as well as runtime services (i.e. Persistence Service, WWF
Tracking service - chapter 4.3.2) and can host multiple Workflows at once.

2.2 Tools and Technologies 33

2.2.7 BPEL

The Business Process Execution Language (BPEL) is a widely adopted in-
dustry standard for orchestrating Web services. BPEL is used to abstract
business logic by assembling Web services to build ”composite” services.
These services are again deployed as Web services and can be integrated
into other orchestrations.
BPEL is a XML based language without a graphical representation, though
several implementations have introduced visual workflow designers. But
the lacking definition of a representational standard lead to inhomogeneous
use of existing standards (i.e. the Business Process Modeling Language
(BPML)).

BPEL was initiated as a joint effort by BEA, Microsoft, and IBM but is
now maintained by the Organization for the Advancement of Structured
Information Standards (OASIS) as an open standard.

Though BPEL was originally also initiated by Microsoft, Windows Workflow
Foundation (WWF) workflows does not adhere to this standard. There is
only an add on WWF in the .NET Framework 3.0 providing import and
export functionalities.

2.2.8 OWL

Web Ontology Language (OWL) developed by the Web Ontology Working
Group5 of W3C an ontology language for the Semantic Web. Ontologies
describe the meaning of terminology used in Web documents by defining a
set of formalized vocabularies of terms and their relationships among each
other.
It enables applications to process and understand the content of information
instead of just representing it. Thus, it makes Web content more readable
and interpretable for machines and replacing simple keyword search by con-
tent based queries.

5http://www.w3.org/2001/sw/WebOnt/

2.2 Tools and Technologies 34

OWL provides three sublanguages. Each of it with increasing expressiveness:

• OWL Lite - supports only a simple classification hierarchy and simple
constraints. It is less complex than OWL DL and is aimed to be simple
to adopt for tool providers.

• OWL DL - supports maximum expressiveness and includes all OWL
language constructs (with some restrictions).

• OWL Full - supports maximum expressiveness and the syntactic free-
dom of the Resource Description Framework (RDF), but is does not
give computational guarantees. It can be seen as an extension of RDF.

2.3 VRESCo 35

2.3 VRESCo

The VRESCo project (Vienna Runtime Environment for Service oriented
Computing) aims at solving some of the major shortcomings in Service Ori-
ented Computing (SOC) [25]. The project was introduced in [23] and ad-
dresses the initial idea of the SOA triangle to publish-find-bind-execute a
service.

VRESCo targets multiple topics among which are the following:

Service Discovery and Metadata. As already stated, a substantial
problem with today’s SOA concerns the shortcomings of current Web service
registries such as Universal Description Discovery and Integration (UDDI)
[7] or ebXML [8]. These two standardized registries only provide keyword-
based query of services and do not attach metadata or non-functional proper-
ties to their records, reducing these commonly as ”the standards” recognized
registries to simple lookup services. Thus, leading to commonly scratching
service registries from service-centric system designs and abandoning the
initial SOA concept. This is underlined by IBM’s, Microsoft’s, and SAP’s
decision to shut their public UDDI registries down underlines this in 2005
[24].
Service metadata gives additionally information about the service’s behav-
ior, which can’t be distinguished by service description languages such as
the Web Services Description Language (WSDL) [29].
Once annotated with additional metadata services cannot simply be looked
up, but be queried by certain attributes such as QoS or pre- and post-
conditions.

Dynamic Binding and Invocation. Referring once again at the basic
principle of SOA, one of the main concepts is to dynamically bind and invoke
services from a pool of relevant candidates. Currently this is only possible if
the service interfaces are identical. Assuming that services should be inter-
changeable irrespective their location or provider, it is optimistic to expect
all of them being designed the same way by different people, respectively to

2.3 VRESCo 36

implement the same interface.
Leitner et al. [16] describes several requirements for Web service invocation
frameworks that support the core SOA ideas. Among these are stubless ser-
vice invocation to decouple services from pre-generated stubs, protocol inde-
pendency to abstract from underlying Web service protocols like SOAP- and
REST. A message driven approach should be emphasized compared to an
RPC style, which leads again to tighter coupling. Asynchronous (nonblock-
ing) communication is required to support processes with long execution
times. And at least an acceptable runtime behaviour is expected.

Service Versioning. Extending or simply changing an interface in an tra-
ditional programming language results in the need to recompile the complete
project - or at least the depending modules. This also represents the cur-
rent state of the art of changing Web service interfaces. For client-side Web
service invocation it is common to use generated client-stubs, which have to
be regenerated every time the Web service’s interface changes. Compiling
and packaging these stubs with the application, binds them as well as the
application, to the Web service’s version being available at design time.
This is again a problem of dynamic binding and invocation. A different
version of a service is equivalent to a different implementation of another
provider.
VRESCo supports service versioning by abstracting services into service
revisions which can define successor-predecessor relationships between dif-
ferent versions, thus mapping a revision-graph similar to conventional ver-
sioning systems like CVS6 or SVN7.

2.3.1 VRESCo Architecture

The overall architecture of VRESCo is shown in Figure 9.
6Concurrent Version System [http://www.cvshome.org/]
7Subversion version control system [http://subversion.tigris.org/]

2.3 VRESCo 37

VRESCo Runtime Environment

Registry
Database

Service
Client

Notification
Engine

SOAP

SOAP

SOAP

Query
Engine

Services

measure

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
ServiceQoS

Monitor

VRESCo Client Library

Daios Client
Factory

invoke

O
R

M

La
ye

r

A
cc

es
s

C
on

tro
l

Certificate
Store

Event
Database

Figure 1. VRESCo Architecture

The organization of this paper is as follows: Section 2
briefly introduces the VRESCO runtime and presents the
access control mechanisms that are the basis for our ap-
proach. Section 3 then introduces our Web service prove-
nance approach, explains how provenance can be queried
and subscribed, and shows how graphs can be used for il-
lustration purposes. Section 4 discusses the usefulness and
performance of our approach and shows an example prove-
nance graph. Section 5 presents related work in this field
and Section 6 finally concludes the paper.

2 Access Control for Services and Events

One of the most important issues in provenance sys-
tems is to build appropriate access control mechanisms for
providing authentication and authorization. This is crucial
since provenance information might be sensitive and access
should often be granted only to specific users. In our ser-
vice runtime it must first be guaranteed that only authorized
parties have access to services and associated service meta-
data. In a second step, it is important to identify which par-
ties performed which tasks since these are the basic building
blocks of provenance information.

In this section, we briefly introduce the VRESCO run-
time which is used as a foundation for our service prove-
nance approach. Then we describe the different access con-
trol mechanisms which have been integrated into our run-
time to be provenance-aware.

2.1 VRESCo Runtime Overview

The VRESCO project (Vienna Runtime Environment
for Service-Oriented Computing) introduced in [14] aims
at addressing some of the current challenges in Service-
oriented Computing [18] with the objective to facilitate the
engineering of SOA applications.

Figure 1 depicts the architecture of the runtime. Services
and associated service metadata [21] are published into the
registry database which is accessed using an ORM layer.
The query engine is used to query all information stored in
this database, whereas the event notification engine is re-
sponsible for publishing events when certain situations oc-
cur (e.g., new service is published, QoS changes, etc.) [13].
The VRESCO core services are accessed either directly us-
ing SOAP or via the client library which provides a sim-
ple API. Furthermore, it offers mechanisms to dynamically
bind and invoke services using the integrated DAIOS frame-
work [11]. Finally, the QoS monitor presented in [22] has
been integrated in order to regularly measure the QoS at-
tributes (e.g., response time, throughput) of the services.

The overall system is implemented in C#/.NET using the
Windows Communication Foundation (WCF) [12], while
the client library is currently provided for C# and Java. The
core services are not described in more detail here; the in-
terested reader is referred to the referenced papers for more
information.

2.2 Client Authentication

Authentication mechanisms generally aim at confirming
the identity of users or objects. The VRESCO runtime is
not targeted at public Web services but focuses on enter-
prise settings. In such settings, security issues often play
a crucial role since only specific clients should be able to
access internal services and resources. Therefore, it is im-
portant to first authenticate these clients before authoriza-
tion mechanisms can be applied successfully (which is de-
scribed in the following section). Furthermore, this authen-
tication mechanism is required to ensure the integrity of the
service provenance information captured by the service run-
time. If clients are not authenticated then bogus provenance
information could be entered into the systems.

Figure 9: VRESCo Architecture Overview [22]

5

4.2 Service Metadata and Mapping

The VRESCO runtime provides a rich service metadata
model capable of storing additional information about
services in the registry. This is needed to capture the
purpose of services to enable querying and mediating
between services that perform the same task.

4.2.1 Service Metadata Model
The VRESCo metadata model introduced in [32] is de-
picted in Figure 4. The main building blocks of this
model are concepts, which represent the definition of an
entity in the domain model. We distinguish between
three different types of concepts:
• Features represent concrete actions in one domain

that perform the same task (e.g., Check_Status
and Port_Number). Features are associated with
categories which express the purpose of a service
(e.g., PhoneNumberPorting).

• Data concepts represent concrete entities in the do-
main (e.g., customer or invoice) which are de-
fined using other data concepts and atomic elements
such as strings or numbers.

• Predicates represent domain-specific statements
that either return true or false. Each
predicate can have a number of arguments
(e.g., for feature Port_Number a predicate
Portability_Status_Ok(Number) may express
the portability status of a given phone number).

Category

Feature

Concept

Precondition

Postcondition

Predicate

Argument

Data Concept

State
Predicate

Flow
Predicate

isSubCategory

1..*

1

1
1

11 *0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Fig. 4: Service Metadata Model

Furthermore, features can have pre- and postconditions
expressing logical statements that have to hold before
and after its execution. Both types of conditions are
composed of multiple predicates, each having a number
of optional arguments that refer to a concept in the domain
model. There are two different types of predicates:
• Flow predicates describe the data flow required

or produced by features. For instance, the feature
Check_Status from our CPO case study could

have the flow predicate requires(Customer)
as pre- and produces(PortabilityStatus) as
postcondition.

• State predicates express some global behavior that is
valid either before or after invoking a feature. For
instance, the state predicate notified(Customer)
can be added as postcondition to the feature
Notify_Customer.

4.2.2 Service Model

The VRESCO service model constitutes the basic in-
formation of concrete services that are managed by
VRESCO and can be invoked using the DAIOS dynamic
invocation framework. The service model depicted on
the lower half of Figure 5 basically follows the Web
service notation as introduced by WSDL with extensions
to enable service versioning [37], represent QoS and
enable eventing on a service runtime level.

Service Operation

Category Feature

Parameter

*

1

*1

Data Concept

*

1

**

1..*
Mapping Function

*

Service Model

Service Metadata Model

Revision

1

1..*

1

*

QoS

QoS

1

1

*

*

Fig. 5: Service Model to Metadata Model Mapping

A concrete service (Service) defines the basic informa-
tion of a service (e.g., name, description, owner, etc.) and
consists of a least one service revision. A service revision
(Revision) contains all technical information that is neces-
sary to invoke it (e.g., a reference to the WSDL file) and
represents a collection of operations (Operation). Every
operation may have a number of input parameters, and
may return one or more output parameters (Parameter).
Revisions can have parent and child revisions that rep-
resent a complete versioning graph of a concrete service
(for details see [37]). Both, revisions and operations can
have a number of QoS attributes (QoS) representing all
service-level attributes as described below. The distinc-
tion in revision- and operation-specific QoS is necessary,
because attributes such as response time depend on the
execution duration of an operation, whereas availability
is typically given for the revision itself (if a service is not
available, all operations are generally also unavailable).
In addition, services, revisions, operations and metadata
can have a number of associated events (not shown in
Figure 5 for brevity). These events are raised whenever
an action is performed, e.g., invoking a service, publish-
ing a new service or creating a new category [35].

Figure 10: Service Model to Metadata Mapping [20]

Publishing & Metadata Interface. This service is used to publish ser-
vices with its interface description and associated metadata into the registry.
This can be invoked dynamically at runtime or statically using a Web-GUI.
Figure 10 depicts how services and metadata are mapped accordingly.

Querying Interface. The querying service allows to query for available
services that have been published to the registry. A special querying lan-
guage - the VRESCo Query Language (VQL) - provides the functionality
to query generically and type-safe all information stored in the database.

2.3 VRESCo 38

MAY/JUNE 2009 75

Efficient Dynamic Web Service Invocation

sages. Daios messages are potent enough to en-
capsulate XML Schema complex types but are
still simpler to use than straight XML. Mes-
sages are unordered lists of name-value pairs,
referred to as message fields. Every field has a
unique name, a type, and a value. Valid types
are either built-in types (simple field), arrays
of built-in types (array field), complex types
(complex field), or arrays of complex types
(complex array field). Such complex types can
be constructed by nesting messages. Users can
therefore easily build arbitrary data structures
without needing a static type system.

Invoking Services with Daios
Using Daios is generally a three-step procedure:

First, clients find a service they want to in-
voke (service discovery phase). The service dis-
covery problem is mostly a registry issue and is
handled outside of Daios.2

Next, the service must be bound (prepro-
cessing phase). During this phase, the frame-
work collects all necessary internal service
information. For example, for a SOAP/WSDL-
based service, the service’s WSDL interface is
compiled to obtain endpoint, operation, and
type information.

The final step is the actual service invocation
(dynamic invocation phase). During this phase,
Daios converts the user input message into the
encoding expected by the service (for instance,
a SOAP operation for a WSDL/SOAP-based ser-
vice, or an HTTP get request for REST), and
launches the invocation using a SOAP or REST
service stack. When the service stack receives
the invocation response (if any), it converts it
back into an output message and returns it to
the client.

Once a service is successfully bound, clients
can issue any number of invocations without hav-
ing to rebind. Service bindings must be renewed
only if the service’s interface contract changes or
the client explicitly releases the binding.

Most of Daios’s important processing occurs
in the dynamic invocation phase. For a SOAP in-
vocation, the framework analyzes the given in-
put and determines which WSDL input message
the provided data best matches. For this, Daios
relies on a similarity algorithm. This algorithm
calculates a structural distance metric for the
WSDL message and the user input — that is, how
many parts in a given WSDL message have no
corresponding field in the Daios message, where

lower values represent a better match. For fields
in the user message with no corresponding field
in the WSDL message, the similarity is ∞. Daios
invokes the operation whose input message has
the best (that is, lowest) structural distance met-
ric to the provided data. If two or more input
messages are equally similar to the input, the
user must specify which operation to use. If no
input message is suitable — that is, if all input
messages have a similarity metric of ∞ to the
input — an error is thrown. Here, the provided
input is simply not suitable for the chosen Web
service. Otherwise, the framework converts the
input into an invocation of the chosen opera-
tion, issues the invocation, receives the result
from the service, and converts the result back
into a message.

The back end used to conduct the actual
invocation is replaceable. The Daios research
prototype offers two invocation back ends. One
uses the Apache Axis 2 stack, the other uses
a custom-built (native) SOAP and REST stack.
Daios emphasizes client-side asynchrony. All
invocations can be issued in a blocking or non-
blocking fashion.

This procedure abstracts most of the RPC-
like internals of SOAP and WSDL. The client-
side application doesn’t need to know about
WSDL operations, messages, end points, or
encoding. Even whether the target service is
implemented as a SOAP- or REST-based ser-
vice is somewhat transparent to the client, al-
though for REST services, clients need to know

Service
registry

Interface
(WSDL) parser

XSD parser

SOAP stack
REST stack

Daios system

<<uses>>

<<wraps>>

<<uses>>

Framework/
front end

Service invoker

Find Publish

Bind

HTTP,
SOAP,

and so on

Daios
message

Service
consumer

Service
provider

Figure 1. The Dynamic and Asynchronous Invocation of Services
(Daios) framework’s overall architecture. The framework supports
the service-oriented architecture publish, find, and bind paradigm.

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 3, 2009 at 12:56 from IEEE Xplore. Restrictions apply.

Figure 11: The Daios Framework Architecture [16]

VQL’s API is similar to Hibernate Criteria API [32], but does not provide
a declarative querying language like SQL.

Binding & Invocation Interface. Binding to services is managed through
the Daios framework [16, 17]. This framework supports all requirements ini-
tially explained in the preceding chapter. Figure 11 shows the Daios frame-
work’s general architecture and its accordance with the SOA triangle (see
Figure 3 on page 16).

Table 1 summarizes the currently supported rebinding strategies.

QoS Monitor. The QoS Monitor evaluates and monitors performance re-
lated QoS attributes of Web services. This is achieved independently of the
service implementation and the providing platform, thus it can be applied
to every running Web service without interfering or even knowing its im-
plementation. The QoS Monitor uses object-oriented and aspect-oriented
programming as well as low level TCP-Packet evaluation methods to re-

2.3 VRESCo 39

Strategy Description Cost
Fixed Rebinding is not needed. none
Periodic Proxy verifies rebinding

periodically.
Constant overhead

OnDemand Proxy rebinds on request
of the client.

low overhead; binding
not always accurate

OnInvocation Proxy rebinds in advance
of every service invoca-
tion.

accurate bindings; de-
grades service invocation
time

OnEvent Uses VRESCo notifica-
tion engine to rebind
on event notifications de-
fined by users.

related to defined situa-
tions.

Table 1: VRESCo Rebinding Strategies

trieve the QoS values. Services are constantly monitored and the resulting
information is stored as metadata in the VRESCo Metatdata Registry. The
observed data represents a client side view of a monitored Web service.

Composition Service. The composition service [35] aims at providing an
end-to-end system for QoS-aware service composition. A a domain-specific
language - the Vienna Composition Language (VCL) - based on the Mi-
crosoft Oslo Framework8 is provided, which is able to specify constraints
describing functional and non-functional aspects of a composition. It also
enables Composition as a Service (CaaS)

Notification Interface. The Event Notification Interface [21] publishes
notifications within the runtime on the occurrence of certain events (i.e.
service removed, user added, etc.). Additionally to standard notification, the
VRESCo interface also publishes QoS related events, as well as information
about binding, invocation or runtime. Clients can subscribe to the interface
and get notified about events according to their predefined rulesets.

8http://www.microsoft.com/NET/Oslo.aspx

40

3 Related Work

Huang et al. [14] presented a related framework for dynamically invoking
Web services in a workflow by using a proxy service. An optimization service
selects, according to QoS data provided by a data collection service, an
appropriate Web service from a set of semantically similar services. This
approach mainly focuses on dynamic invocation. The QoS aggregation is
merely reduced to sequential samples of CPU-load averages. These averages
are set in relation to the CPU-speed according the formula:

CPUspeed

LoadAverage + 1

The use of proxy services provides flexibility and enables dynamic invocation
of Web services, but also adds an additional layer to the invocation chain,
which impacts the overall performance.
The QoS model used by this work is not very significant. On the contrary,
this thesis aims more distinctly at the extraction of several QoS attributes
and contributes to the VRESCo runtime. WPC-based QoS monitoring and
the WWF tracking service, as proposed in this thesis, are executed sepa-
rately (on different host, if desired) to the Web service execution and at a
very low level of either the operating system or the Web server. Thus, the
additional overhead is minimal.

Zhang et al. [40] extend OWL-S [36] with a lightweight QoS model and pro-
vide QoS driven service selection in dynamic composition of Web services.
The focus of this work is on the optimization of service selection algorithms
by categorizing the QoS constraints. For acquiring the necessary QoS infor-
mation the authors refer to [38], which a middleware platform that enables
quality-driven composition of Web services.
The QoS model is similar to the model used in VRESCo. This work mainly
concentrates on local and global workflow optimization according to QoS
attributes which can be weighted through user defined rules. Nevertheless,
the paper leaves the question, how the QoS data is acquired, unanswered.

Zulkernine and Martin [42] present a framework for monitoring and verifying

41

Service Layer Agreements (SLA) of composite Web services-based processes.
This framework contributes to their Comprehensive Service Management
Middleware (CSMM) [41] which facilitates the collected data to QoS-based
service discovery, SLA negotiations and workflow orchestration and execu-
tion. The performance monitor verifies that a preliminary defined workflow
satisfies a set of negotiated SLAs. It is realized as message interceptor on
the SOAP message processing layer of the server that hosts the Web service.
The presented performance monitor requires an application server to install
the message interceptors. Thus, Web services which are provided by stan-
dalone applications cannot be monitored. WPC-based QoS monitoring, as
introduced by this thesis, can be applied to all Web services, that are based
on the .NET platform.

Fei et al. [10] present a policy-driven monitoring framework for collecting
QoS information and adapting service provisioning for cross-domain service
interaction. The framework is built on their distributed QoS registry Q-
Peer [18], which is a P2P (Peer-to-Peer) QoS registry architecture for Web
services. Services are observed by capturing SOAP messages. The monitor
collects data, generates metrics and gives feedback in case of QoS devia-
tions. Monitoring policies can be submitted at runtime as well as different
monitoring models.
Though, this framework thoroughly prepares evaluated data to be stored in
the QoS registry, the evaluation method itself is similar to [42] and thus,
requires the services to run on an application server.

Raimondi et al. [28] introduced online monitoring of Web service SLAs based
on timed automata [1]. Message handlers are injected into the open-source
AXIS9 engine from Apache. These handlers are installed on the server side
and monitor the hosted services. So called checkers are added to the client
side and provide information about invocation performance. A handler is a
auto-generated Java based timed automata. SLAs are seen as timed words
which can be generated by these automatas. If the handler produces a word,
that is not in accordance with the SLA, a violation has occurred.
Like the tools presented in this thesis, their approach is also non-intrusive
and can be used on existing Web services without altering their implementa-

9http://ws.apache.org/axis/ - Web services - Axis

42

tion. It also uses server and client side monitoring to gather a comprehensive
set of performance data.

Artaiam and Senivongse [2] propose a new QoS model for Web services
which extends the commonly used parameters (e.g. response time, successful
execution rate, availability) by some additional parameters (e.g. security
and regulatory). The paper also provides a metric for each quality attribute
from service providers’ perspective. The implementation of Web service
monitoring is based on Sun’s Java application server Glassfish10. A managed
bean, based on the Java Management Extension (JMX)11, is deployed, which
wraps the access to a Web services and captures QoS data. Additionally the
existing service endpoint AggregateStats is extended, which provides access
to monitored statistical data gathered from managed beans. A security
analyzer discovers relevant vulnerabilities of Microsoft Windows hosts.

Sun et al. [37] present a prototype framework for monitoring BPEL-based
Web service compositions. Aspect Oriented Programming (AOP) is used to
extend the open-source BPEL engine ActiveBPEL12 with monitoring logic.
This logic is derived from Web service policies which are used to generate
the AOP code. Once the logic is added, it produces monitoring information
which is further processed and analyzed using Extended Message Sequence
Charts (EMSC).
The presented solution presents client side workflow monitoring. The meth-
ods used to observe QoS information, are similar to the those used by the
VRESCo QoS monitor [34], which also uses AOP and other techniques to
extract performance data from running Web services. It also provides an an-
alyzing tool. This thesis provides workflow tracking for the .NET platform
and validates the client side observed performance against highly accurate
server side QoS data.

Zeng et al. [39] developed a QoS observation metamodel. The paper states,
that it is not practical to provide a predefined set of QoS metrics due to the
broad concept of QoS and its domain specific contexts. The metamodel can
be used to construct various QoS observation models which fit for the certain

10https://glassfish.dev.java.net/
11http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
12http://www.activebpel.org/

43

domains of the projects. This approach uses service operational events to
calculate the metrics. It also uses model driven techniques for QoS modeling
and hybrid compilation to generate the monitoring code.
This approach also uses operational events which are produced by the sur-
rounding application server during the Web service execution.

Baresi et al. [3] present two methods of monitoring Web services of a BPEL
process. This approach uses annotations to comment designed processes
with contracts on the desired behavior. Contrary to the other presented
approaches it only accounts for timeouts, runtime errors and violations of
the functional contracts. Data is gathered from the BPEL process itself by
adding fault handlers to its implementation. A second approach uses the
xlinkit13 rule and validation engine to verify correct invocations of Web ser-
vices.
By using annotations, the presented approach needs to be part of the imple-
mentation and cannot be applied to existing Web services like the monitors
presented in this thesis. The second approach which uses the xlinkit valida-
tion engine implicates considerably XML-processing. The WPC monitoring
solution, proposed by this thesis, uses the integrated Windows performance
counters, which are built into the operating system and thus, representing
a lightweight solution to performance measuring.

13http://www.systemwire.com

44

4 Design and Implementation

Figure 12: Solution Overview

The following Chapter will detail the architecture of the provided solution
as well as the implementation of each of its components. Figure 12 describes
how these components work together. The implementation is mainly struc-
tured into four parts. Each part realizes a specific step of the problem
definition in Chapter 1.

To efficiently monitor and evaluate the performance of a Windows Work-
flow Foundation workflow two values have to be compared. The first one
is the server side performance of the component Web services. This ser-

45

vices are usually scattered upon several hosts. To monitor the Web service’s
performance, each provisioning host has to run a properly configured WPC
performance monitor (see Chapter 4.1). These monitors evaluate the QoS
of the services and transmit their results sequentially to a VRESCo runtime
environment.
To use VRESCo managed Web services in workflow compositions, the VRESCo-
WebserviceActivity is used, which queries VRESCo for service revisions,
binds to them and invokes them when the workflow is executed. The Web
service provided by VRESCo is queried based on the QoS data retrieved
by the QoS monitor as well as the WPC performance monitor (see Chapter
4.2).
A WWF workflow triggers several events while executing. These events can
be processed by the WWF tracking service. A customized WWF tracking
service is used to track all relevant workflow events and evaluate the client
side QoS of the monitored Web services as well as the performance of the
entire workflow (see Chapter 4.3). The results of this performance evalua-
tion is stored in the tracking store.
Finally an evaluation API and an evaluation tool is provided in Chapter
4.4, which can be used to evaluate the QoS values retrieved by the WPC
performance monitor and the WWF tracking service.

4.1 WPC-based QoS Monitoring of Web Services 46

4.1 WPC-based QoS Monitoring of Web Services

This chapter describes the realization of step 1 - the Windows Performance
Counter (WPC) based QoS Monitoring of WCF Web services as described in
the problem definition (see Chapter 1.2). This implementation contributes
to the VRESCo environment by transmitting evaluated QoS data to the
framework, which is then stored in its metadata repository.

4.1.1 Overview

Dynamic service composition is highly dependent on accurate QoS data of
its component services. Chapter 3 summarized several approaches of moni-
toring the QoS of Web services and discussed their shortcomings. Chapter
1.2 defined several problems and subdivided them into four solvable steps.

WPC-based QoS monitoring tackles the first step - the server side QoS mon-
itoring of Web services. Server side monitoring represents the performance
measurement of Web services on their provisioning host. When realized
properly, this implies very accurate and reliable results, because the number
of sources influencing the QoS of a service are limited. The performance of
the client computer, network delays, communication overhead, etc. have not
to be considered. Furthermore, these QoS parameters are already evaluated
by VRESCo’s QoS monitor [34]. Adding server side QoS evaluation to the
already existing QoS monitoring facilities of the VRESCo environment, pro-
vides a more complete picture of the overall QoS of a SOA. It also allows for
a more difficile dynamic service composition. By knowing exactly the per-
formance of a Web service on the provisioning host, it is possible to derive
other important QoS attributes (i.e. network delays) instead of estimating
them.

Windows Performance Counters. The Microsoft Windows operating
systems provides an extraordinary simple and lightweight tooling for eval-
uating the performance of processes, resources, etc. - the Windows Perfor-
mance Counters (WPC). These performance counters are a monitoring and

4.1 WPC-based QoS Monitoring of Web Services 47

Figure 13: Windows Performance Monitor

analysis instrument at the management instrument layer of the Windows
Communication Foundation, which is deeply integrated into the operating
system. The implementation of these counters is as simple as it gets, which
is one of their main advantages.
The Windows platform declares dozens of performance counters. The most
commonly known is % Processor Time, which is used by the Windows Task
Manager to display the activities of running processes. Example B describes
how performance counters are used in another performance evaluation tool
– the Windows Performance Monitor.
The Windows Communication Foundation (WCF) introduces three addi-
tional categories of performance counters - ServiceModelService for mon-
itoring parameters related to the application domain and the service host,
ServiceModelEndpoint for monitoring Web service endpoints and Service-

ModelOperation for monitoring the discrete operations - each category
defining and implementing a set of counters to analyze the performance of
a hosted WCF Web service. A complete overview of all WCF performance
counters is provided in Appendix 3.

Example 3. The Windows Performance Monitor (see Figure 13) is a tool
provided by the Windows operation system, which can be used to diagnose
performance problems. A set of performance counters can be selected which

4.1 WPC-based QoS Monitoring of Web Services 48

are sequentially polled by the Performance Monitor and displayed as line
charts. By default the monitor reads every second the current values of the
selected counters and updates the chart. This provides a real time graphical
display of the results which can be used to identify performance bottlenecks
and allows for a system administrator to take action.

The reason why this solution uses WPCs is, that they provide a highly
accurate means of monitoring the QoS of a Web service. Furthermore, this
can be achieved without altering any existing or prospective services. By
taking advantage of the three performance counter categories, introduced
by the WCF, it is possible to track Web services through examining these
counters. Another advantage of WPCs is, that they permanently keep on
counting - even if the QoS monitor is not running. This is just because the
counters are managed by the operating system, independently from the QoS
monitor. If the WPC-based QoS monitor crashed or is disabled for a certain
timespan, the performance counters remain. The QoS for this timespan can
be evaluated, the next time the WPC-based QoS monitor is started.

4.1.2 Architecture

The WPC-based monitoring service is realized as Windows service. This ar-
chitectural approach provides advantages like automatic startup at boot
time. Once installed, a Windows service can be configured, started or
stopped from the Services Control Manager .
This service - the WPC-based QoS monitor - has to be installed on each
host providing a Web service, that should be monitored. Nevertheless, as
depicted in Figure 12 it is not necessary that these services all remain on the
same host, nor that the WPC-based QoS monitor remains on the same host
of the VRESCo runtime. The WPC-based QoS monitor uses VRESCo’s
client library to transmit the evaluated QoS data to the VRESCo runtime.

The second architectural decision was, to use the performance counters pro-
vided by the Windows Communication Foundation [19, 26]. It requires only
an additional parameter in the Web services App.config or Web.config

file, to advice Windows to attach the performance counters to the service.

4.1 WPC-based QoS Monitoring of Web Services 49

Figure 14: QoS Monitoring Service Architecture

Adding additional parameters to an already existing configuration file, can-
not be considered as altering the implementation. Thus, the WPC-based
QoS monitor can be applied to every WPC Web service, disregarding its
implementation.

The format of the data retrieved by the performance counters is not con-
form with the QoS model used by VRESCo. Thus, the according data is
mapped to apply this format (see Chapter 4.1.3). After the measured re-
sults have been aggregated and mapped accordingly, they are transmitted
to VRESCo’s QoS Management Service. The data is queued as QoS-Event
and has to be processed by VRESCo’s QoS Scheduler. This scheduler ag-
gregates the values of the WPC-based QoS monitor and stores them in the
metadata repository.

4.1.3 Quality of Service Model

For being an Add-On to VRESCo’s QoS Monitoring Service, the Quality of
Service Model of the WPC-based QoS monitor is adopted from [34].

4.1 WPC-based QoS Monitoring of Web Services 50

VRESCo QoS
Param

Perfmon Description

ExecutionTime Calls Duration
(WCF)

The timespan from invoking an oper-
ation to its termination, aggregated
as mean value over the measuring in-
terval (milliseconds)

Throughput Calls Per Seconds
(WCF)

The number of calls to an operation
per second aggregated as mean value
over the measuring interval

Accuracy Calls Failed or Fa-
luted (WCF)

The accuracy of this operation (in
percent) over the measuring interval

Service Available Availability (not
WCF)

The availability of the Web service (in
percent) over the measuring interval

Table 2: QoS Monitoring - Mapping of Performance Counters to VRESCo
QoS Parameters

ExecutionTime. The execution time te(S, o) of an operation o of a Web
service S is the mean duration this operation needs to execute (measured
in milliseconds). This mean value is aggregated over the measuring inter-
val14. The utilized performance counter “Calls Duration” of the counter
category “ServiceModelOperation 3.0.0.0” already calculates a mean value
respectively to the last time it has been read. This implies that the pro-
ceeding value is reseted, which can be resulting inaccurate samples for this
attribute, if other applications but the WPC-base QoS monitor invoke this
performance counter.
To render this problem the provided aggregation methods are dispensed and
another low level approach has been taken to retrieve this QoS parameter
appropriately. Technically this performance counter sums-up the call dura-
tion of each execution of the assigned operation as well as the total number
of executions. Additionally, it also counts how often this operation has been
executed. Respectively, represents

∑n
i=0 ewpc the number of all executions

of the operation since the initialization of the Web service until the sample
has been read.
To calculate this value, two samples of the performance counter have to be

14The measuring interval is a configuration parameter of the WPC-base QoS monitor

and is explained in detail in Table 3.

4.1 WPC-based QoS Monitoring of Web Services 51

Figure 15: QoS Calculation by Subtracting Overlapping Intervals

taken (see Figure 15). Each sample taken of the performance counter repre-
sents the total sum of all “Calls Duration” (respectively “execution time”)
since the initiation of the Web service on the corresponding host. Thus,
the new sample of Figure 15 has a higher “Calls Duration”-value

∑n
i=0 tewpc

than the old sample
∑n−1

i=0 tewpc . This is because the number of executions
of the current sample

∑n
i=0 ewpc is higher than the number of the old sample∑n−1

i=0 ewpc.

Accordingly, the desired execution time te of a service’s S operation o is
calculated as the difference between the sum of call durations from the last
and the current samples, divided through the difference of total calls. In the
following equation as well as in the equations of the other QoS parameters,
n represents the current sample number and

∑n
i=0 tewpc describes the sum of

all execution times stored by the performance counter up to the n-th sample.

te(S, o) =
∑n

i=0 tewpc −
∑n−1

i=0 tewpc∑n
i=0 ewpc −

∑n−1
i=0 ewpc

Throughput. Throughput tp(S, o) of an operation o of a Web service S

represents the number of requests that can be processed within the monitor-
ing interval (measured in executions per minute). The assigned performance
counter “Calls Per Second” cpswpc of the counter family “ServiceModelOp-
eration 3.0.0.0” is of the same type as the one used for “Calls Duration”.
Therefore, it is again calculated as the quotient of the difference between
the number of total requests per second cpswpc from the last sample and the

4.1 WPC-based QoS Monitoring of Web Services 52

current sample and the difference of the total requests ewpc between the last
and current sample.

tp(S, o) =
∑n

i=0 cpswpc −
∑n−1

i=0 cpswpc∑n
i=0 ewpc −

∑n−1
i=0 ewpc

Accuracy. The Accuracy ac(S, o) of an operation o of a Web service S

is defined as the success rate of o as the relation between successful and
failed operation requests (measured in the number of failed requests per
second). It is assessed by utilizing the performance counter “Calls Failed
Per Second” cfpswpc of the counter family “ServiceModelOperation 3.0.0.0”.
This value is calculated exactly as the Throughput - the quotient of the
difference between the number of total requests per second cfpswpc from the
last sample and the current sample and the difference of the total requests
ewpc between the last and current sample.

ac(S, o) =
∑n

i=0 cfpswpc −
∑n−1

i=0 cfpswpc∑n
i=0 ewpc −

∑n−1
i=0 ewpc

Service Available. The availability av(S) of a Web service S is the prob-
ability that this service is up and running and producing correct results over
the period of the monitoring interval (measured as percentage over the mon-
itoring interval). The data is retrieved from a custom performance counter
as described later on page 56 and is calculated as the quotient of the dif-
ference between the number of successful availability-check requests srwpc

from the last sample and the current sample and the difference of the total
availability check requests rwpc between the last and current sample.

av(S) =
∑n

i=0 srwpc −
∑n−1

i=0 srwpc∑n
i=0 rwpc −

∑n−1
i=0 rwpc

4.1 WPC-based QoS Monitoring of Web Services 53

Figure 16: WPC QoS Monitor Class Diagram

4.1.4 Implementation

The WPC-based QoS monitoring service has been implemented solely using
the .NET Framework 3.5.
All main functions are implemented by four classes (see Figure 16). The
component is represented by the QoSMonitor, which is responsible for load-
ing the settings from the configuration file, mapping the performance coun-
ters to VRESCo managed Web services and providing an API to control the
monitor. The Windows service uses this API to initialize, start and stop the
QoSMonitor.

Usage of WCF Performance Counters in the QoS Monitoring Ser-
vice. Performance counters are instantiated and constantly polled. Some
data can be mapped directly to VRESCo QoS parameters, some has to be
aggregated to match its representative data format. Table 2 shows which
performance counters are used and how they are mapped to VRESCo QoS
metadata attributes. A complete overview of available performance counters
in the Windows Communication Foundation is listed in appendix B

Mapping Performance Counter Instances to Web Services and Op-
erations. The unique identifier, also called InstanceName, of a WCF per-

4.1 WPC-based QoS Monitoring of Web Services 54

formance counter of the category “ServiceModelService 3.0.0.0” is a charac-
ter string built of two parts: the name of the Web service and the service
endpoint. If the resulting length of the string exceeds a certain length, the
components of the identifier will be truncated and replaced by hex-values
before they are concatenated.

Example 4. A Web service called “BookFlight” is provided with the service
endpoint address “http://localhost:8011/bookingprovider/bookingservice”.
The corresponding InstanceName would be:

bookflight@http:||localhost:8011|bookingprovider|bookingservice

The VRESCo publishing service is hosted on “vresco.vitalab.tuwien.ac.at”
with the service name “publishingservice”’ with the service endpoint “http://-
vresco.vitalab.tuwien.ac.at:20000/publishingservice”. This would result in
the following identifier:

publishingservice@http:||03ac.at:20000|publishingservice

The mapping of Web services to performance counters is realized through
string matching. For each Web service specified in the QoS monitors’s
App.Config file, a ServiceMonitor object is created and the appropriate
ServiceRevision is queried from VRESCo. The ServiceRevision pro-
vides all relevant informations about this Web service. With this infor-
mation provided the QoSMonitor iterates through all InstanceNames and
checks if they contain the name of the service.

The mapping of a Web service to an instance of the performance counter
category “ServiceModelService 3.0.0.0” is necessary to successfully map the
Web service’s operations to their corresponding performance counters. For
each Web service all instances of the category “ServiceModelOperation 3.0.0.0”
are retrieved. Again, the names of the operations is provided by the Service-
Revision. The identifier of a ServiceModelOperation performance counter
is similarly assembled as an InstanceName of a ServiceModelService counter.
Every identifier contains the name of the operation as well as the name of
the corresponding Web service. This simplifies the mapping of a service
to all its operation performance counter instances. For each operation, an

4.1 WPC-based QoS Monitoring of Web Services 55

Figure 17: QoS Monitoring Service SequenceDiagram

ServiceOperationMonitor object is created and added to the correspond-
ing ServiceMonitor.

Passive Monitoring. After a successfully mapping of Web services and
their operations, the QoSMonitor contains a set of ServiceMonitors, which
in turn contain a set of ServiceOperationMonitors (see Figure 14). The
latter implement the access methods to the performance counters as well as
the QoS calculations based on the formulas of Chapter 4.1.3.
Figure 17 depicts the procedure of QoS information retrieval. The QoS-

Monitor is the controlling instance and sequentially triggers all its associ-
ated ServiceMonitos to start their performance measuring. The Service-

Monitor collects the required QoS data for each operation from its corre-
sponding ServiceOperationMonitor and sends this information to VRESCo.
As denoted in Table 2, all WCF performance counters (ExecutionTime,
Throughput and Accuracy) can be monitored passively, because the Service-
OperationMonitor only needs to poll the values of these counters, that are

4.1 WPC-based QoS Monitoring of Web Services 56

increased on the occurrence of events triggered during the execution of the
according Web service.

Active Monitoring - Monitoring Availability. Chapter 4.1.3 stated
that “the availability of a Web service is the probability that this service is up
and running and producing correct results over the period of the monitoring
interval”. This QoS parameter cannot be measured passively. If a service
is not invoked for a certain time, the corresponding throughput decreases -
but, the only way to assess the availability of a Web service is to actively
invoke it. Thus, the accounting of availability information is impossible due
to the design of Windows performance counters, because it would require
them to actively invoke themselves to observe the presence of a service.
Accordingly a custom performance counter has been implemented. The
QoSMonitor sequentially triggers the ServiceMonitors to check the avail-
ability of their services. The ServiceMonitor tries to poll sample data
from a performance counter instance. This instance is only available if the
appropriate service is currently running. If this procedure succeeded, the
availability counter as well as the number of availability checks is increased.
If the trial failed, only the number of checks is increased. Thus, the avail-
ability is the relation of successful trials to the over-all number of trials.
The length of the interval of the AvailabilityCheck can be declared by
specifying the parameter availabilitycheckinterval in the App.Config

file (see table 3). The shorter the interval the more accurate the aggregated
value of availability, but the higher the additional of the CPU.

4.1.5 Installation and Configuration

The WPC QoS monitoring service has to be installed on the host, which
provides the Web services. Being part of the VRESCo framework, it is
obvious that these services have to be successfully registered with VRESCo
runtime, though it is not necessary for the runtime to reside on the same
host.

4.1 WPC-based QoS Monitoring of Web Services 57

Option Description
General Configuration Options

monitoringinterval Specifies the measuring interval (in millisec-
onds)

availabilitycheckinterval Specifies the interval of the availability check
(in milliseconds)

webservices Specifies one or more webservices that should
be monitored

Web service Configuration Options

wsdl Specifies an URL to the wsdl-file
revisionid Specifies the RevisionID of this service
operations Specifies one or more operations to be moni-

tored. If no operations are supplied, all oper-
ations of this service will be monitored

Operation Configuration Options

name Specifies the name of the operation

Table 3: QoS Monitoring - Configuration Options

Installing and Running the QoS Web Service Monitoring Service.
To install the WPC QoS monitoring service a separate MSI-Installer has
been created. After the successful installation of the service, it has to be
configured accordingly. This is done by setting the required parameters in
the App.Config file, which is located in the installation directory.
The service can be started and stopped by the Windows service interface.
Once started the service constantly continuous to monitor the specified ser-
vices.
If the service does not find a running VRESCo runtime on its initialization,
it suspends for 10 minutes and tries again. Starting the specified Web ser-
vices after the QoS monitor does not affect its behavior and only results in
a poor availability.

Configuring the QoS Web Service Monitor. The QoS Web service
Monitor can be configured by setting its parameters in the App.Config file.
This file needs to include the newly implemented vresco.qosmonitoring

configuration section at the top (see Listing 2).

4.1 WPC-based QoS Monitoring of Web Services 58

The configuration section is exampled in Listing 3 and has to supply the
already explained parameters of Table 3. Each Web service has to specify
the URL of its describing WSDL file. Additionally the according VRESCo
RevisionID can be supplied (see Web service configuration options, Table
3). If only certain operations should be monitored, each operation has to
be supplied. Only these operations will be monitored and the others are
ignored. If no operation is supplied, the QoS monitoring service will auto-
matically observe all operations of this Web service. Service and operation
names are queried case-sensitive by VRESCo’s querying service.
Finally performance counting has to be enabled in the hosting application’s
App.Config file by adding the parameters of Listing 1.� �
1 <diagnostics performanceCounters="All" wmiProviderEnabled="true" />� �

Listing 1: QoS Monitoring - Enable performance counters

� �
1 <configSections >
2 <section name="vresco.qosmonitoring"
3 type="QoSMonitoringService.QoSMonitoringConfig ,
4 QoSMonitoringService ,
5 Version =1.0.0.0 ,
6 Culture=neutral ,
7 PublicKeyToken=null" />
8 </configSections >� �

Listing 2: QoS Monitoring - Configuration Section

� �
1 <vresco.qosmonitoring monitoringinterval="20000"
2 availabilitycheckinterval="5000">
3

4 <webservices >
5 <webservice
6 wsdl="http:// localhost:8011/SMSProvider/A1SMSService?wsdl">
7 </webservice >
8 <webservice
9 wsdl="http:// localhost:8013/SMSProvider/OneSMSService?wsdl"

10 revisionid =1 >
11 <operations >
12 <add name="SendSMS" />
13 </operations >
14 </webservice >
15 </webservices >
16

17 </vresco.qosmonitoring >� �
Listing 3: QoS Monitoring - Example configuration

4.2 VRESCo Integration into WWF Designer 59

4.2 VRESCo Integration into WWF Designer

This Chapter describes the implementation of step 2 of the problem defini-
tion (see Chapter 1.2) - the integration of VRESCo managed Web services
into the Visual Studio workflow designer.

4.2.1 Overview

This task preliminary contributes to the next task, which introduces a new
method of QoS-measuring of Windows Workflow Foundation (WWF) [4]
workflows (see Chapter 4.3). This chapter will provide a short overview of
workflows and how this thesis contributes to

Workflow. A workflow describes a sequence of activities, agents and de-
pendencies between activities which are necessary to reach a predefined goal
- generally, workflows are used to model real work or small decomposed
patterns of it. They are less specific than a process description - for not
including well-defined inputs, outputs and purposes. Agents can be humans
or other interacting components like software systems. The dependencies
determine the execution sequence of activities, which can be executed se-
quentially, repeatedly in a loop or in parallel.
The typical representation of a workflow is a directed graph where nodes
correspond to activities and edges correspond to activities (see Figure 18)
and are designed with graphical modeling tools.

Microsoft’s Visual Studio also integrates a workflow designer since version
Visual Studio 2005. It is part of the WWF and can be used to create
workflow templates by simply dragging activities from the toolbox onto a

Figure 18: Example Workflow - Simplified Online Shop

4.2 VRESCo Integration into WWF Designer 60

Figure 19: Visual Studio Workflow Designer

workflow template (see Figure 19). The designer integrates very well into
the development environment and provides plenty of convenient tools as well
as full debug capabilities.

WWF workflows are very well suited for Web service composition. A rich
toolset of activities are provided to control the execution of a workflow. To
invoke a Web service, service references can be bound to the workflow and
InvokeWebService-activities are used, to call the operations of these ser-
vices. This binding of services during the design of the workflow, presents
some comforts, like automatic import of operations and their parameters,
etc. On the other hand, this statically binds a certain Web service to a
workflow. To change this service, the workflow has to be recompiled.
Dynamic Web service composition requires Web services to be assigned at
runtime - while the workflow is executed, or at least during its initialization.
The VRESCo environment provides facilities for dynamic service composi-
tion, but a direct integration of VRESCo into Visual Studio has not been
implemented, yet.

Though the WWF designer provides proprietary activities for Web ser-
vice invocation, the only way to invoke a service which is registered at

4.2 VRESCo Integration into WWF Designer 61

VRESCo currently is, to query, bind to and execute it within a standard
CodeActivity. This very cumbersome approach requires the developer to
know exactly specific information of the designated Web service. The vast
amount of redundant code, which is increased with each additional service
call represents another drawback of this approach. Thus, a custom activity
is implemented to drag-and-drop a VRESCo Web service activity right into
a visually designed workflow in Visual Studio. This activity only needs some
parameters to identify the requested service and takes care of binding and
invocation procedures.

The solution provided by this thesis consists of two activities, the VRESCo-

WebserviceActivity and the VRESCoRebindingActivity. The VRESCo-

WebserviceActivity can be used, to call VRESCo managed Web services
with fixed rebinding. The VRESCoRebindingActivity uses a query to select
the Web service that should be invoked.

4.2.2 VRESCoWebserviceActivity Implementation

The VRESCoWebserviceActivity is derived from System.Workflow.Com-

ponentModel.Activity, entailing it with the basic activity properties and
functionality.

The design decision to provide the activity as linkable library imposes the
need to specify the path to the project’s App.Conifg file on each instantiated
VRESCoWebserviceActivity. This prerequisite emerges from the VRESCo
Client Library which is utilized by the activity to query the registry for
Web services. The client library depends on the VRESCo configuration
properties which are declared in the App.Config file. This configuration file
resides in the project’s workspace environment. The activity, however, is
injected into Visual Studio’s platform environment. Access to the workspace
environments of the separate projects is only provided to Visual Studio
plugins.

The implementation overrides the Execute method to perform the required
actions of binding and invoking the specified Web service.
The activity binds to a service using VRESCo’s client library. Because it

4.2 VRESCo Integration into WWF Designer 62

Figure 20: VRESCo Activities in Toolbox

binds to a specific service revision, the RebindingStrategy is always fixed.
This revision is retrieved from VRESCo Querier and a RebindingProxy

is instantiated and stored statically in the LocalQuerier. This Local-

Querier represents the layer between the VRESCo client library and the
VRESCoWebserviceAcitivity, as well as the VRESCoRebindingActivity

and encapsulates all access to the client library. Furthermore, it creates the
rebinding proxies (see Chapter 2.3) for each VRESCo activity and stores
their references statically. Thus, the proxies remain and can be referenced
by the next workflow invocation. This is required to enable rebinding.
The specified Web service is then invoked using the supplied Request-

Message. According to the specified RequestPattern the service response
is stored in the ReceiveMessage or discarded.

4.2.3 Using the VRESCoWebserviceActivity

In order to use the VRESCoWebserviceActivity the library as well as the ref-
erenced VRESCo libraries have to be included and referenced in the project.
After successfully including the required libraries, the VRESCo.Workflow
Components category containing the VRESCoWebserviceActivity is added
to the Toolbox (Figure 20). The activity can be applied by simply dragging
it onto the workflow.

First of all, when using the activity, the path to the project’s App.Config

file has to be supplied. Thus, the configuration has to contain all attributes
that are necessary to access the VRESCo client library. This declaration is
only needed to provide the Workflow designer with proper information, but

4.2 VRESCo Integration into WWF Designer 63

Figure 21: VRESCoWebserviceActivity - Properties Dialog

does not affect the runtime behavior of the activity.

Figure 20 shows the available configuration options of a VRESCoWebservice-

Activity. The parameters are described in Table 4. The first two param-
eters are standard attributes derived from the WWF activity. An activity
has to be uniquely named and can be provided with an additional descrip-
tion. The RequestPattern defines how the Web service should be invoked.
RequestResponse calls the operation and waits for the result message. Fire-
AndForget instead just invokes and ignores the result.

To specify a Web service the according RevisionID can be entered into the
properties dialog. This will trigger the implementation to query VRESCo
for the corresponding Revision and to supply all necessary attributes with
the retrieved data. Accordingly the Revision Search Dialog proceeds after

4.2 VRESCo Integration into WWF Designer 64

Property Description
Name Unique name of the activity
Description Additional description of the activity (op-

tional)
Enabled Enable/Disable the activity
AppConfigPath Absolute path to the project’s App.config file

containing the URLs to the VRESCo core ser-
vices

RequestPattern The required request pattern (with or without
response)

Service The RevisionID of the VRESCo managed
service (can be entered directly or selected by
using the search-form

ServiceOperation Specifies the required Operation
RequestMessage The DaiosMessage for the service request
ReceiveMessage The DaiosMessage for the service result

Table 4: VRESCoWebserviceActivity - Properties

selecting an adequate Revision. The Revision Search Dialog is described
beneath. After successfully selecting the ServiceRevision, the Operation-
DropdownList of the properties dialog will be updated with all operations
that have been published to the VRESCo registry.

The required RequestMessage has to be globally accessible in the workflow
and has to be built in advance by using the constructor of the workflow or by
prepending a CodeActivity to the VRESCoWebserviceActivity. Request-

Message and ReceiveMessage are realized as DependencyProperties, allow-
ing them to be selected through a special dialog. This dialog can be opened
by clicking on the dotted button in the properties field.

The VRESCo Revision Search Dialog. The Revision Search Dialog
(see Figure 22) is a convenient way to query a service that is managed
by VRESCo. It allows to search for Web services according their Feature-
or Operation-name. The search is wild carded, thus, the exact name of a
feature or operation is not required.

4.2 VRESCo Integration into WWF Designer 65

Figure 22: VRESCoWebserviceActivity - Choose Revision

4.2.4 VRESCoRebindingActivity Implementation

The VRESCoRebindingActivity is intended to enable dynamic Web service
composition. By defining a query, Web services can be selected according
certain parameters (i.e. feature name, QoS, etc.). This query is passed on to
the LocalQuerier, which creates a RebindingProxy based on these param-
eters. Thus, the VRESCoRebindingActivity itself has no direct reference to
a Web service, but instead it has a description of what the service should
do and how it should perform. The service is queried during the execution
of the workflow and the proxy binds to it.

This activity also uses the LocalQuerier to access proxies and execute
queries. Furthermore, a query builder has been implemented, which allows
for building and testing queries. These queries are stored as a CSV-strings
and could also be entered without the query builder.

4.2.5 Using the VRESCoRebindingActivity

Again, the activity requires the path to the project’s App.config file, to pro-
vide the configuration for the client library. The activity has to be dragged
onto the workflow and the properties of Figure 23 have to be set.

4.2 VRESCo Integration into WWF Designer 66

Figure 23: VRESCoRebindingActivity - Properties

The QueryString can be built manually or by using the query builder (see
Figure 24). To build the string manually, the query has to be formatted
in the following sequence: Add/Match ; Search Criterion ; Comparator ;
Search Value ; QueryMode
Add/Match specifies the VRESCo expression type. A Search Criterion is
any kind of search criterion supported by VRESCo’s query engine (i.e. Fea-
ture, QoS, etc.). The Comparators are those of standard programming
languages (i.e. Java, C++, etc.). The Search Value is any string, which
does not contain a semicolon. The QueryMode is a string representation of
VRESCo’s QueryMode and accepts the values Exact, Priority and Relaxed.
If more then one parameter is entered, the parameters have to be separated
by “|”.

Example 5. A query for Web services, which implement the feature “Abort”
and have a response time of less then 400 milliseconds could be manually
provided by the following CSV-formatted string:

4.2 VRESCo Integration into WWF Designer 67

Figure 24: VRESCoRebindingActivity - Query Builder

Add;Feature;==;Exact|Add;QoS.Response;<=;0.400;Exact

This query can also be entered by using the query builder. The described
example is depicted in Figure 24.

The Query Builder Dialog. The query builder (see Figure 24) provides
a Graphical User Interface (GUI) to easily build and test queries. The
query is built like described in the previous paragraph. The first ComboBox

defines the VRESCo expression type. The second selects the search criterion,
with several predefined values. It uses the LocalQuerier to retrieve some
information from VRESCo. For example, if the search criterion “Feature” is
selected, the search value’s ComboBox is updated with all features, currently
registered at VRESCo. In this case, the Search Value can be selected
using the DropdownList of the ComboBox. If another criterion is selected,
this value can also be entered manually.

By pressing “Add”, the settings of all ComboBoxes are stored in a new row

4.2 VRESCo Integration into WWF Designer 68

of the query table below. Each row represents an expression of the query
and can be edited or deleted. This query can also be tested by pressing
“Test Query”, which builds a query of all entered expressions and executes
it. The results are displayed in the second table of the query builder.

The query is stored by pressing “Ok”. This closes the query builder and
stores the query as formatted string in the properties field QueryString.

4.3 WWF Workflow Monitoring 69

4.3 WWF Workflow Monitoring

The following chapter describes the monitoring of Windows Workflow Foun-
dation (WWF) workflows which is realized by utilizing the WWF tracking
service. It implements the requirements as described in step 3 of the problem
definition (see Chapter 1.2).

4.3.1 Overview

Chapter 4.1 described the WPC-based QoS monitor as an approach to solve
step 1 of the problem definition (see Chapter 1.2). This solution represents
server side monitoring of the QoS of a Web service. A workflow, as described
in Chapter 4.2.1, is composed of several Web services. During its execution,
all specified services are invoked in sequence. Thus, a workflow represents
a Web service client as well as the monitoring of a workflow represents the
client side observation of QoS values.

Differences of client and server side monitoring have already been mentioned
in the problem definition. Server side monitoring is expected to be very ac-
curate, because the performance of a Web service is only influenced by a few
parameters. On the other hand, QoS values observed at the client side, have
to be differentiatedly analyzed, because there have to be much more com-
ponents taken into account (i.e. the underlying network, the performance
of the client host, etc.).
Some of this influencing factors are already analyzed be the QoS monitor
introduced in [34] (see also Chapter 2.3). This monitor provides additional
network related information like latency, response time and round trip time.
Combining the results of WPC-based QoS monitoring with network related
information observed by VRESCo’s QoS monitor, QoS aggregation algo-
rithms, like those presented in Table 30 on page 93, are expected to be
reasonably accurate.

Aggregating the QoS of a workflow only by the QoS of its component services
disregards the fact, that a workflow may contain several auxiliary activities.
The Windows Workflow Foundation (WWF) provides a set of activities,

4.3 WWF Workflow Monitoring 70

which either call external methods or can be used to implement the exe-
cutable code. Current literature has not addressed this problem, yet. The
solution described in this chapter provides a tool to monitor the performance
of a workflow. Furthermore, it allows for tracking the performance of each
of its component activities as well. This provides valuable insights in the
overall performance of a workflow and which allows for optimizing them.
The data can also be used to tweak QoS aggregation or dynamic composi-
tion algorithms.
This information is also evaluated by this thesis. Chapter 4.4 introduces an
evaluation tool, which allows for clicking through the activities of a work-
flow. Chapter 5 provides a structured evaluation by comparing the estimated
performance with observations by this workflow monitor.

Chapter 4.1 introduced Windows performance counters as a highly accurate
measuring tool. Unfortunately the Windows Workflow Foundation does
not provide additional counters which could be used to track the perfor-
mance of workflows. Though, WWF provides an internal service to monitor
workflows, the WWF tracking service, which will be explained in detail in
Chapter 4.3.2.

4.3.2 Architecture

The architecture of the WWF Workflow Monitoring is built upon the WWF
tracking service. This service provides means to track events that are ini-
tiated at several execution points of activities during the execution of a
workflow. It is part of the WWF workflow runtime and is only triggered
when a Workflow is executed.

WWF Tracking Service. The WWF Tracking Service [13] can be used
to track workflows. An executing workflow sends events which are catego-
rized by the following event types:

• Workflow Events occur when the state of a specific Workflow changes
(Created, Completed, Idle, Suspended, Resumed, Persisted, Unloaded,

4.3 WWF Workflow Monitoring 71

Figure 25: Windows Workflow Tracking - Architecture

Loaded, Exception, Terminated, Aborted, Changed, Started)

• Activity-Execution Status Events are similar to workflow events and
pronounce the the currently entered state of the concerning activity
(Executing, Closed, Compensating, Faulting, Canceling).

• User Events are custom events generated by the application. These
events enable to pass relevant application-specific information to the
tracking service which in turn can be observed by other applications.

Additionally WWF provides an out-of-box SqlTrackingService which is a
simple track-and-store implementation, simply logging all described events
to a database. This solution was considered as inappropriate, because of the
vast number of events being triggered during a workflow execution. Simply
logging all events and calculating the required values on demand, would
result in a poor behavior - unacceptable for dynamic workflow composition.

WWF Tracking Service Functionality. The tracking service has to be
attached to the workflow runtime. In standalone applications this can be
accomplished by instantiating the service and adding it to the runtime in the
source code. If the workflow is published as Web service (i.e. on a Microsoft

4.3 WWF Workflow Monitoring 72

Figure 26: VRESCo Tracking Channel - Tracking Sequence

Internet Information Services (IIS) Server) the corresponding Web.config

file has to be extended to attach the tracking service accordingly.
By initiating a workflow, the WWF tracking service instantiates a work-
flow tracking channel and passes all occurring events on to it. The channel
represents the main component for implementing custom logging behavior.

4.3.3 VRESCo Tracking Service

The main functionality of the WWF workflow monitoring service is imple-
mented in the tracking channel, which is used by tracking service.

Initialization. By initiating a new instance of a workflow its structure
is mapped accordingly by building a tree-structure. The nodes of the tree
represent ActivityRecords.
These records store the necessary information to significantly evaluate the
Workflow. Each record is linked to the corresponding activity reference of
the workflow, which facilitates the backtracking of workflow events.

On every occurrence of an event, the ActivityExecutionStatus is checked.
If the status is Executing, the corresponding activity has been success-
fully initiated and has even now commenced its execution. In this case the
VRESCo Tracking Channel stores the time stamp of this event in the cor-
responding ActivityRecord as the start time of the event. If the event’s
status is Closed, the activity terminated successfully and the VRESCO

4.3 WWF Workflow Monitoring 73

� �
1 using(WorkflowRuntime workflowRuntime = new WorkflowRuntime ())
2 {
3

4 WFTrackingService tracking = new WFTrackingService(
workflowRuntime);

5 workflowRuntime.AddService(tracking);
6 AutoResetEvent waitHandle = new AutoResetEvent(false);
7

8 workflowRuntime.WorkflowCompleted +=
9 delegate(object sender , WorkflowCompletedEventArgs e)

10 {
11 waitHandle.Set();
12 };
13 workflowRuntime.WorkflowTerminated +=
14 delegate(object sender , WorkflowTerminatedEventArgs e)
15 {
16 Console.WriteLine(e.Exception.Message);
17 waitHandle.Set();
18 };
19

20 WorkflowInstance instance =
21 workflowRuntime.CreateWorkflow(typeof(WPC_Casestudy.Workflow1)

);
22

23 instance.Start();
24

25 waitHandle.WaitOne ();
26 }� �
Listing 4: Workflow Monitoring - Example configuration for Self-Hosted
Workflows

Tracking channel stores the terminating time stamp.

As for any typical tree structure, ActivityRecords also store their suc-
cessors and predecessors. This tree allows to store the workflow struc-
ture and save it to the database. Other application, like the Workflow
Monitoring Evaluation Tool (see Chapter 4.4) can use this information
to recreate the workflow. Special types have been implemented for If-

ElseActivities, ParallelActivities, SeuqenceActivites and While-

Activities. According the different properties and behavior of certain
Activities, also different types of ActivityRecords have been implemented
to correctly map the underlying Workflow.. Additionally a Hashtable is
used to index the ActivityRecords.

4.3 WWF Workflow Monitoring 74

� �
1 <WorkflowRuntime Name="WorkflowServiceContainer">
2 <Services >
3 <add type="
4 System.Workflow.Runtime.Hosting.ManualWorkflowSchedulerService ,
5 System.Workflow.Runtime , Version =3.0.0.0 , Culture=neutral ,
6 PublicKeyToken =31 bf3856ad364e35" UseActiveTimers="true"/>
7

8 ...
9

10 <add type="VRESCo.Workflow.Tracking.WFTrackingService ,
11 VRESCo.Workflow , Version =1.0.0.0 , Culture=neutral ,
12 PublicKeyToken=null"/>
13 </Services >
14 </WorkflowRuntime >� �

Listing 5: Workflow Monitoring - Example Web.config configuration

Data Evaluation. The evaluation of QoS relevant data is kept simple.
The evaluation of the ExecutionTime of an activity is accomplished as al-
ready explained above, by setting timestamps on certain activity execu-
tion status events respectively on ActivityExecutionStatus.Executing and
ActivityExecutionStatus.Closed. The time span between these two times-
tamps represents the ExecutionTime of this Activity and is stored respec-
tively in the database.
If the activity execution status is Faulting or Canceling, the execution
time is not calculated. Instead the accuracy of this activity is decreased.

Tracking Store. The evaluated data is stored in a MS SQL database,
using two tables. One table is used for workflow description and the other
for data storage. Each invocation of an activity results in a database entry -
if a workflow contains loops, there are several entries for activities enclosed
by the loop.

4.3.4 Installation and Configuration

The configuration of workflows depends on their type of project. Work-
flows can be realized as host applications or be deployed as Web services on
application servers (i.e. Microsoft IIS Server).

4.3 WWF Workflow Monitoring 75

Self-Hosted Workflows. When developing host applications, the appli-
cation itself handles the initialization of the workflow runtime. Thus, track-
ing services can be easily applied, since the direct reference to the runtime is
at hand. Listing 4 shows how to setup the VRESCo Tracking Channel in a
host application by passing the tracking service reference on to the workflow
runtime.

Deploying Workflows as Web Services. When deploying workflows
as Web services, the application server is responsible for initializing and
maintaining the workflow runtime. The developed workflow has to provide
a Web.config file, containing several instructions for the application server.
To enable workflow tracking, the parameters of Listing 5 have to be applied
to the configuration file.

4.4 Workflow Monitoring Evaluation 76

4.4 Workflow Monitoring Evaluation

The previous chapter described how a workflow can be monitored and how
its performance can be evaluated. This chapter will introduce two ways of
evaluating the collected data.

4.4.1 Overview

The previous chapters introduced two different approaches to QoS monitor-
ing. Chapter 4.1 presented a WPC-based QoS monitor, which takes advan-
tage of the deeply into the Windows operating system integrated Windows
Performance Counters. Due to this counters, the WPC-based QoS monitor
provides highly accurate server side QoS data. Chapter 4.3 introduced a
WWF workflow monitor, which makes use of a tracking service, which is
provided by the Windows Workflow Foundation. This workflow monitor
provides detailed client side performance data of all distinct activities of a
workflow.

Both approaches evaluate and store their observations in databases. The
WPC-based QoS monitor delivers its results to VRESCo where they are
processed by the QoS Scheduler, which stores them in the registry database.
The WWF workflow monitor stores its data in the tracking store. Querying
a database to evaluate the results is very cumbersome, either way by using
the command line or an integrated SQL-tool.

This chapter introduces a Windows application which allows for a continu-
ous evaluation of a workflow and an evaluation API which can be used by
other applications to query QoS information. The API, for instance, can
be used by VRESCo to optimize its rebinding strategies. In combination
with the VRESCoWorkflowActivity, introduced int Chapter 4.2, this enables
VRESCo to provide highly effective dynamic Web service composition. This
can be achieved, because all activities are taken into account. Furthermore,
the composition is based on “life” data. Thus, VRESCo could react to
changes of the QoS of certain activities, as well as rely on the number of
iterations of loops.

4.4 Workflow Monitoring Evaluation 77

4.4.2 Evaluation Tool

The evaluation tool provides a convenient way of visually evaluating a moni-
tored workflow. The tool is a Windows desktop application with a graphical
user interface, displaying all relevant data of the tracking store.

The evaluation tool consists of three parts:

• Workflow Outline - on the left side of the application is a tree panel
(see Figure 27). This panel shows the exact representation of the
workflow as tree. The workflow itself is the root node of the tree.
Sequencing activities are displayed one below the other within the
node of the enclosing SequenceActivity. ParallelActivities are
nodes containing two SequenceActivities. Their representations are
also stacked - according the WWF designer, which displays workflows
vertically, represents the first node the left SequenceActivity of the
ParallelActivity and the second node the right one. Each node of
the tree shows the name of the activity.

• The Activity Summary - This panel is positioned on the top of
the right side of the evaluation tool. It provides some basic statistics
of the activities measured performance (minimum, maximum, range,
mean, number of samples in database).

• The Performance Histogram - The performance histogram is lo-
cated on bottom of the right side. It provides a graphical representa-
tion of the measured values. The range of a performance value (the
distance between the minimum and maximum measured value) is di-
vided into a predefined number of intervals. The graph shows the
frequencies of values of each interval, thus providing a graphical rep-
resentation of the distribution of the measured values.

The evaluation tool provides two dropdown fields which can be used to set
the evaluation time frame. Initially the values of these fields are set to
the timestamps of the first and last records of the corresponding workflow.

4.4 Workflow Monitoring Evaluation 78

Figure 27: Workflow Evaluation Tool

For instance, these fields can be used to evaluate the performance of the
workflow within the last 24 hours.

By clicking on an activity of the workflow outline, the activity summary
on the right side of the application queries the tracking store for all entries
of the specified time frame. Minimum, maximum and average values are
calculated to basically describe the distribution of the observed data. Ad-
ditionally a histogram is generated and displayed.
If the selected activity is of the type WhileActivity, additionally the av-
erage number of iterations of this loop is calculated and displayed. If the
activity is a conditional IfThenElseActivity, the percentages of how often
the then-path or the else-path has been chosen, is displayed. These values
is required for QoS aggregation formulas (i.e. see Figure 30).

4.4.3 Evaluation API

The evaluation API provides performance data of workflow activities to
other applications.

4.4 Workflow Monitoring Evaluation 79

This API can be used to enhance the performance of VRESCo’s dynamic
workflow composition engine.

• GetExecutionTime - provides the average execution time of an ac-
tivity within a specified time range (in milliseconds).

• GetAccuracy - provides the accuracy of an activity within a specified
time range (in percent of successful executions).

• GetThroughput - provides the throughput of an activity within a
specified time range (in executions).

• GetWhileIterations. - provides the average number of iteration of a
WhileActivity within a specified time range (in number of iterations).

• GetXORPercentage. - provides the average percentage of how often
the then-path of an IfThenElseActivity is executed, within a specified
time range (in percent of then-path executions).

4.4 Workflow Monitoring Evaluation 80

Method Param Description

GetExecutionTime activityID Identifier of the requested activity
from Start timestamp of the evaluation pe-

riod
to End timestamp of the evaluation pe-

riod

GetAccuracy activityID Identifier of the requested activity
from Start timestamp of the evaluation pe-

riod
to End timestamp of the evaluation pe-

riod

GetThroughput activityID Identifier of the requested activity
from Start timestamp of the evaluation pe-

riod
to End timestamp of the evaluation pe-

riod

GetWhileIterations activityID Identifier of the requested activity
from Start timestamp of the evaluation pe-

riod
to End timestamp of the evaluation pe-

riod

GetXORPercentage activityID Identifier of the requested activity
from Start timestamp of the evaluation pe-

riod
to End timestamp of the evaluation pe-

riod

Table 5: Evaluation API - Methods and Parameter

81

5 Evaluation

Chapter 4 listed and described the separate projects and described how
they contribute to VRESCo or among each other. This chapter presents
evaluations of the contributions of this thesis.

• WPC monitoring versus hard coded measuring: The performance of
WPC monitoring is compared to hard coded execution time measure-
ment, which is implemented directly in the Web services of the eval-
uation example (see Chapter 5.1). This comparison should show how
precise WPC based monitoring is compared to direct measuring.

• Workflow tracking versus WPC monitoring: WPC monitoring is as-
sumed to provide very accurate performance data of Web services.
These values are compared with data evaluated through the WWF
tracking service. This evaluation should point out if the Web service
performance, measured on the providing host, is directly related to the
performance of the Web service’s invocation within a WWF workflow.

• QoS aggregation algorithms versus workflow tracking: As stated in
Chapter 1.2 commonly used QoS aggregation algorithms take only ac-
tivities into account, which invoke Web services. This evaluation step
shows the discrepancy between predicted performance using standard
algorithms and measured performance data.

To demonstrate the approaches, introduced by this thesis, a case study with
an example implementation is used.

5.1 Case Study

The example used in the case study simulates the sales process of an online
ticket store, like common Internet stores for cinema or concert tickets. The
buying process is heavily simplified in order to provide a compact evaluation
scenario. Normally such a process requires multiple user interactions and
confirmations until any transaction can be initiated.

5.2 Example Implementation 82

In this scenario it is assumed, that the customer has already confirmed his
selection, agreed upon the general terms and conditions as well as supplied
his credit card credentials. The Workflow as depicted in Figure 28 describes
the remaining transaction which includes conducting an Internet payment
provider, storing the acquisition information to the database and sending a
voucher to the customer.

The business process relies on two Web services:

• TicketService. This service provides operations to handle actions
related to tickets. They can be prepared for the transaction, a voucher
can be prepared to be sent after the transaction has been committed.
If there happens to occur an unexpected error, the transaction will be
aborted.

• PaymentService. The payment of the tickets is executed by invok-
ing an external accredited service provider. To properly execute a
debit transaction, the user (TicketService) has to login successfully.
The debit operation finally transfers the amount from the credit card
owner’s account to the account of the ticket service.
This Web service is a perfect candidate for dynamically rebinding ac-
cording to its performance, price, etc.

The sales process starts by recursively preparing each of the supplied tickets.
After all tickets are prepared, the voucher is prepared to be sent to the
customer. This is handled while logging in to the Payment service and
waiting for result of the debit activity. According to the debit termination
state, the whole transaction is either transmitted or aborted.

5.2 Example Implementation

The Case study consists of several separate projects:

• A Setup Project, hosting the previously exemplified Web services as
well as the VRESCo Runtime. The Web services implement no real

5.2 Example Implementation 83

functionality but simulate operation delays by waiting several mil-
liseconds. The interval for operations that execute on single entities,
consists of a predefined value.

• A Workflow Project composes the described sales process and exposes
the Workflow as Web service. The service is hosted on an Microsoft
IIS server. Auxiliary activities, which are necessary to prepare data for
the Web service calls have also a simulated behavior. The workflow is
designed using the newly introduced VRESCoWebserviceActivity (see
Chapter 4.2).

• The workflow monitoring service (see Chapter 4.3) is used to measure
the performance of the workflow.

• The WPC QoS monitoring service is used to measure the host-side
performance of the Web service.

• A simple Java Web service client is implemented with Netbeans IDE15.
This client recursively invokes the Workflow with random parameters.

• The Evaluation Tool (see Chapter 4.4) is used to evaluate the results
of the testruns.

Runtime Behavior Simulation. Since the Web services don’t imple-
ment real functionality, the runtime behavior of the activities is simulated.
Sleep function calls are used to pretend a certain execution time. The inter-
val is best guessed accordingly their functional description. CodeActivities
are assumed to have a very short runtime because in this scenario they only
prepare some data for the Web service calls.
It also depicts the complete simulated behavior a of the example workflow.
According to this, the trivial assumption of one execution with only one
ticket request is that the workflow will successfully execute in 1050ms.

15http://www.netbeans.org/

5.2 Example Implementation 84

Figure 28: Evaluation Workflow

5.2.1 Evaluation Case Study Architecture

The complete structure of the evaluation case study - consisting of the three
main parts Web service evaluation, workflow evaluation and overall eval-
uation - are implemented and set up according to the solution overview
depicted in Figure 12.

The WPC case study setup project hosts the two Web services TicketService
and PaymentService as well as a complete VRESCo runtime. On startup
the VRESCo runtime and the two services are hosted and the services are

5.3 Eval 1: WPC Monitoring versus Hard Coded Measuring 85

properly registered at VRESCo.

The example workflow is hosted on a Microsoft IIS Server with a properly
configured workflow monitoring service. The evaluated data is stored in the
tracking store.

A simple Java program invokes the workflow with alternating parameters.
These parameters are controlling the behavior of the Web services. The
first parameter supplies the number of ordered tickets, which corresponds to
number of iterations of the first loop in the workflow. The second parameter
represents the result of the payment operations.

5.2.2 Evaluation System

The Evaluation was performed on a Lenovo Thinkpad R61 laptop, with a
Intel R©Core

TM
2 Duo CPU T8100 2.1GHz and 3GB main memory. This lap-

top was set up with Microsoft Windows XP SP3 and the .NET Framework
3.5. The VRESCo environment used in the evaluation has been built from
source at Subversion revision number 17921. Microsoft SQL Server 9.0.4035
was used as data store for VRESCo as well as for the tracking store. Mi-
crosoft Internet-Information services (IIS) version 5.1 was used to host the
evaluation workflow ad well as the WF tracking monitor. To evaluate and
compare the data retrieved from the case study, Microsoft Excel 2007 was
used.

5.3 Eval 1: WPC Monitoring versus Hard Coded Measuring

The first evaluation of this thesis examines the accuracy of WPC-based QoS
monitoring. This approach to observing the performance of Web services is
expected to provide precise results.

5.3 Eval 1: WPC Monitoring versus Hard Coded Measuring 86

� �
1 public bool CommitTransaction(Ticket ticket)
2 {
3 DateTime begin = DateTime.Now;
4

5 ...
6

7 DateTime end = DateTime.Now;
8 TimeSpan span = end - begin;
9

10 Console.WriteLine("code; TicketService; CommitTransaction; " +
span.Milliseconds.ToString () + ";");

11

12 return true;
13 }� �

Listing 6: Eval 1 - Example of Hard Coded Performance Measurement

5.3.1 Evaluation Method

To evaluate if the QoS information observed by the WPC-based QoS monitor
is valid and accurate, its results are compared to values retrieved from direct
measuring.

Direct Measuring. Each method of the Web services implements its own
time measuring and outputs its execution time to the console log (see Listing
6). At the beginning of each procedure, the current time stamp is stored.
Just before the operation ends, or returns a result, another time stamp is
taken. The difference of these two time stamps represents the execution
time of the procedure. This information, as well as the Web service and
procedure name, is formatted as Comma Separated Value (CSV) data and
written to standard output.

WPC-based QoS Monitor Measuring. WPC-based QoS monitoring is
used as explained in Chapter 4.1. An additional output statement is added
to the PublishPerformanceCounterQoS method of the QoSManagement-

Service, to track the results which are transmitted to VRESCo (see Listing
7). Again, this information is formatted as CSV-data and written to stan-
dard output. Furthermore, the monitoringinterval is set to 10 seconds to
gather more data points for the evaluation.

5.3 Eval 1: WPC Monitoring versus Hard Coded Measuring 87

� �
1 public void PublishPerformanceCounterQoS(int revisionId , string

opName , VReSCO.Contracts.UserObjects.PerformanceCounterQoS qos)
2 {
3 Console.WriteLine("wpc; " + revisionId + "; " + opName + "; " + (

qos.ExecutionTime * 1000) + ";");
4 ...� �

Listing 7: Eval 1 - Extraction of WPC-based QoS Monitor Data

This evaluation uses the case study, as described above. The Java client in-
vokes the example workflow 70 times with variable input parameters. Thus,
the Web service operations prepareVoucher, loginToPaymentService and
debitAmount are executed 70 times. Due to the variable input parameters
of the workflow, prepareTicket, which is part of a WhileActivity, is exe-
cuted 360 times. Similarly, the conditional IfThenElseActivity executed
the commit operation 47 times and the abort operation 23 times.
Because the monitoringinterval has been set to 10 seconds, the WPC-based
QoS monitor was invoked 31 times.

The standard output of the case study setup is redirected to a file which
allows for a direct data import into Microsoft Excel.

5.3.2 Results

Direct measuring showed, that the execution times of the Web service meth-
ods are related to the predefined sleep-intervals of the implementation,
though they vary about 5% which may result from the addidtional debug-
ging output statements.

Table 6 lists the results of the two Web services. The first two columns
display the names of the Web service’s operations as well as their fixed de-
lays (representing their simulated and expected execution time). The next
column shows the execution times observed by direct measuring. The first
value represents the minimum measured time and the second the maximum
value. The third column shows the average execution time of all observed
values retrieved through direct measuring (Avg(M)). The last column dis-
plays the mean value of all WPC-based QoS monitor results.

5.3 Eval 1: WPC Monitoring versus Hard Coded Measuring 88

Activity Fixed Measured Avg(M) WPC

TicketService
prepareTicket 150 156 - 171 160 160
prepareVoucher 400 421 - 437 428 429
commit 300 312 - 343 319 322
abort 200 203 - 218 214 214
PaymentService
loginToPaymentService 100 101 - 109 106 107
debitAmount 250 265 - 281 268 268

Table 6: WPC Results

Comparing the min/max values in Table 6 and their average value with
the result from WPC-based QoS monitoring, points out that a WPC perfor-
mance value represents in three cases exactly the mean value of the execution
times of the procedure. For the other three operations the WPC results are
one to three milliseconds higher than these of direct measuring. One reason
for this may be the time span between taking the second time stamp and
the actual termination of the procedure (see Listing 6). This additional cal-
culation as well as the I/O operation are not taken into account by direct
measuring, whereas the according performance counter is updated by the
actual termination of the procedure.

According to the collected data from direct measuring, the WPC value is
nearly equal the average of the execution times within a monitoringinterval,
with a deviation of less than one percent.

Thus, WPC performance monitoring as introduced in this thesis, represents
a highly accurate tool for QoS measurement of WCF based Web services.
Additionally, the possibility to apply this monitor to Web services without
altering their implementations - moreover, the ability to apply it to binary
implementations without access to the source code - makes it a valuable
contribution to the VRESCo environment.

5.4 Eval 2: Workflow Tracking versus WPC Monitoring 89

5.4 Eval 2: Workflow Tracking versus WPC Monitoring

Eval 1 showed that WPC-based QoS monitoring provides highly accurate
performance measures. This step compares the performance of a Web ser-
vice, which was observed with WPC-based QoS monitoring on the server
side, with the performance of its invocation on the client side. This evalua-
tion should give information about the performance of Web service invoca-
tions in WWF workflows.
The following points of interests have to be targeted:

1. What is the processing overhead of a Web service invocation?

2. Is this overhead constant for a single Web service?

3. Is this overhead constant for all Web services?

If the last question could be answered with “yes”, it could be assumed,
that the server side performance of a Web service is directly related to the
performance on the client side. Thus, if the current QoS of the network is
known, common QoS aggregation algorithms are expected to work efficiently.

5.4.1 Evaluation Method

To properly perform this evaluation, the Web services of the case study are
observed by the WCF-based QoS monitor on the server side. The data is
again extracted through additional CSV-formatted outputs (see WPC-based
QoS Monitor Measuring in Chapter 5.3.1). This CSV-data is imported into
Microsoft Excel and analyzed.
For measuring the performance of the Web service invocations within a
WWF workflow, the WWF tracking monitor (see Chapter 4.3) is used.

Workflow Tracking. Workflow tracking is enabled according to Chapter
4.3. The evaluated data is stored in the tracking store as displayed in Figure

5.4 Eval 2: Workflow Tracking versus WPC Monitoring 90

Activity Fixed WPC Tracking Diff.

TicketService
prepareTicket 150 160 365 205
prepareVoucher 400 429 936 507
commit 300 322 522 200
abort 200 214 417 203
PaymentService
loginToPaymentService 100 107 302 195
debitAmount 250 268 464 196

Table 7: WWF Tracking Results - Web Service Calls

12. The evaluation tool (see Chapter 4.4.2) is used to inspect the results of
the tracking service.

Again the workflow is invoked 70 times by the Java client, with exactly the
same input parameters as in Eval 1. This results in the same number of
executions for the Web services as well as their operations. Accordingly,
the same number of executions is observed on the client side by the WWF
tracking monitor.

To evaluate the first question of the introduction the values are compared
and the difference of the server side and client side execution time is calcu-
lated. To analyze if the calculated overhead is constant for a certain Web
service, the evaluation tool is used, which already provides simple statis-
tical analysis. Minimum and maximum values can be retrieved as well as
a graphically distribution of the performance values. To answer question
three, all invocation overheads are compared.

5.4.2 Results

According to question 1 the analysis of the observed performance data
showed, that the overhead of invoking a Web service within a WWF work-
flow in this case study, spans from 195 milliseconds to 205 milliseconds and
has a mean value of 200 milliseconds. Due to the fact, that Web services
and workflow reside on the same host, this overhead results from querying

5.4 Eval 2: Workflow Tracking versus WPC Monitoring 91

Activity Range

TicketService
prepareTicket 343 - 403
prepareVoucher 906 - 968
commit 500 - 562
abort 406 - 453
PaymentService
loginToPaymentService 286 - 355
debitAmount 437 - 500

Table 8: Eval 2 - Ranges of Web Service Invocations

VRESCo and message processing – especially wrapping and unwrapping of
DAIOs and SOAP messages. The value of prepareVoucher is disregarded
by this calculation, as explained in the discussion (see Chapter 5.4.3).

Table 7 lists the results of the activities which call the example Web services
TicketService and PaymentService. Again, the first column shows the hard
coded delays of the Web services and the second the results from WPC-
based QoS monitoring. The third column lists the results from the WWF
tracking monitor. It represents the average execution time of all activity
invocations.

To answer question 2, all minimum and maximum values of execution times
of Web services are compared. This data has been observed by the WWF
tracking monitor and is analyzed using the evaluation tool. Table 8 shows
the ranges of all Web service operations. The mean range is 60 milliseconds.
But, by analyzing the distributions of the observed performance values, by
using the histogram visualization provided by the evaluation tool, it could
be verified, that the values are largely located near the mean. An example
distribution of this evaluation is depicted in Figure 29. It shows, that 45
times the value 453 was observed and 20 times the value 468. The mean value
of this activity is 464, so 65 values (90%) of the values of the debitAmount

activity of this case study are located near the mean.
According to this, it can be stated, that the invocation overhead is constant
for a Web service.

5.4 Eval 2: Workflow Tracking versus WPC Monitoring 92

Figure 29: Eval 2 - Distribution of Execution Times of DebitAmount

By answering question one, it has already been shown, that the overhead
of invoking a Web service spans from 195 milliseconds to 205 milliseconds
and has a mean value of 200 milliseconds. With a standard deviation of 3,9
milliseconds, the overheads of all Web service invocations vary about 2% of
the mean value. Thus, it can be assumed, that the overhead is constant for
all Web services of this case study. Again prepareVoucher is disregarded
by this calculation. The concerning activities

5.4.3 Discussion

All activities observed by the WWF tracking monitor performed equally
according to their overhead of invoking Web services, except the first two
activities of the ParallelActivity used in the case study. PrepareVoucher
exceeded the average overhead by 250%. PrepareVoucherData, which does
not invoke a Web service and just executes a few statements on the local
host needed twice the time to execute as a similar activity before.
This behavior could be reproduced by simply moving the first sequence to
the right side and the second to the left. In this scenario, InitLoginData

5.5 Eval 3: QoS Aggregation versus Workflow Tracking 93
Chapter 3: A Multi-Layer QoS Model for Service-Oriented Systems

Attribute Sequence Loop XOR-XOR AND-AND

Performance

Response
Timea (qrt)

Pn
i=1 qrt(fi) qrt(f) ∗ c

Pn
i=1 pi ∗ qrt(fi) max{qrt(f1), .., qrt(fn)}

Throughput
(qtp)

min{qtp(f1), .., qtp(fn)} qtp(f)
Pn

i=1 pi ∗ qtp(fi) min{qtp(f1), .., qtp(fn)}

Scalability
(qsc)

min{qsc(f1), .., qsc(fn)} qsc(f)c Pn
i=1 pi ∗ qsc(fi) min{qsc(f1), .., qsc(fn)}

Dependability

Availabilityb

(qav)

Qn
i=1 qav(fi) qav(f)c Pn

i=1 pi ∗ qav(fi)
Qn

i=1 qav(fi)

Reliable
Messaging
(qrm)

q′rm =

(
true ∀1<i≤nqrm(fi) = true

false ∃fi∈F qrm(fi) = false

Security and Trust

Security
(qsec)

q′sec =

(
X.509 ∀1<i≤nqsec(fi) = X.509

None otherwise

Reputation
(qrep)

1
n

Pn
i=1 qrep(fi) qrep(f)

Pn
i=1 pi ∗ qrep(fi)

1
n

Pn
i=1 qrep(fi)

Cost and Payment

Price (qp)
Pn

i=1 qp(fi) qp(s) ∗ c
Pn

i=1 pi ∗ qp(fi)
Pn

i=1 qp(fi)

Penalty (qpl)
Pn

i=1 qpl(fi) qpl(s) ∗ c
Pn

i=1 pi ∗ qpl(fi)
Pn

i=1 qpl(fi)

aThe same aggregation rule is used for execution time, latency, processing time and round trip time.
bThe same aggregation rule is used for accuracy and robustness.

Table 3.2: QoS Attributes and Aggregation Formulas

structure of the composition and the annotations of the QoS values. Once a composition is de-
ployed and running, these annotated values will be adapted based on execution monitoring
of the composition to accurately reflect historical loop counts and XOR branching decisions.

In case of security, we simply assume that if one service in the composition requires a
specific security protocol (e.g., X.509), then all services in the composition have to support
the same security protocol. In the formula in Table 3.2, we only formally define it for the
case of X.509, however, it is the same for all other possible security attributes (e.g., such as
UsernamePassword). In case of reliable messaging, the same restriction applies. A more

41

Figure 30: QoS Aggregation Formula

and Login activities perform almost equally.
An explanation of this behavior could not be found. Thus, these two values
are disregarded in some calculations.

5.5 Eval 3: QoS Aggregation versus Workflow Tracking

The previous evaluation showed, that the performance of the Web service
invoking activity on the client side is related to the performance on the server
side. This evaluation will analyze the performance of the QoS aggregation
formulas of Figure 30.

In the represented table, a sequence describes a SequenceActivity of the
WWF - respectively a sequence of consecutive activities. The formula for
response time qrt states, that the response time of a sequence is equal the
sum of all response times of the activities in this sequence qrt(fi). For a loop
- a WhileActivity in WWF - the response time qrt is equal the product
of the response time of the activity qrt(f) and the number of iterations c.
For conditional Xor-Xor constructs - IfThenElseActivities in WWF - the
response time is equal the sum of all response times of the activities qrt(fi)
multiplied with the probability of being invoked pi. And-And construct -
ParallelActivities in WWF - are calculated by selecting the maximum
value of all contained activities.

5.5 Eval 3: QoS Aggregation versus Workflow Tracking 94

5.5.1 Evaluation Method

To evaluate the performance of the aggregation algorithms of Figure 30,
three approaches are analyzed. Each approach aggregates the QoS based on
different input values.

Aggregation approach 1. The first approach takes the results of WPC-
based QoS monitoring from Eval 1 and adds the additional overhead of 200
milliseconds from Eval 2 to each Web service invocation. For the first loop
of the evaluation workflow it is assumed, that other observations indicated
that the loop iterates four times on average. For the XOR-XOR activity of
the evaluation workflow it is assumed, that the then-path is executed 60%
of the time and the else-path respectively 40% of the time.

Aggregation approach 2. The second approach is equal to the first one,
but it takes accurate input parameters for loops and XOR-XOR activities.
By using the number of iterations, observed by the WWF tracking monitor,
this approach should provide more accurate results than the first. Accord-
ingly, the exact percentage of how often the then-path, respectively the
else-path, is executed is provided for XOR-XOR activities. The exact num-
ber of iterations, calculated by the evaluation tool, is 5. The then-path of
the IfThenElseActivity is executed 66,6% of the time and the else-path
33,3% of the time.

Aggregation approach 3. The third approach uses the exact input pa-
rameters from the second approach and includes the CodeActivities of
the evaluation workflow. Therefore, the simplified assumption is made, that
these activities have a general execution time of 50 milliseconds (based on
the results of Table 10).

5.5 Eval 3: QoS Aggregation versus Workflow Tracking 95

Acitivity WPC Aggr 1 Aggr 2 Aggr 3 Tracking
Loop 640 1440 1800 2150 2100
AND-AND 438 775 775 875 1550
Sequence 1 375 775 775 875 896
Sequence 2 438 638 638 738 1056
XOR-XOR 260 460 466 516 540
Sequence 3 300 500 500 550 575
Sequence 4 200 400 400 450 465
Workflow 1338 2675 3041 3541 4190

Table 9: Eval 3 - Comparing Aggregation Algorithms

5.5.2 Results

Table 9 shows the results of the aggregation approaches according to their
input parameters.
The first line shows the results for the loop/WhileActivity of the evaluation
workflow. The first value represents the value observed by the WPC-based
QoS monitor multiplied with the assumed number of iterations. The second
value is calculate according aggregation approach one and takes the pro-
cessing overhead into account. The third value is based on the number of
iterations as observed by the WWF tracking monitor. The fourth line is
based on aggregation approach three and takes also CodeActivities into
account. And the last line shows the execution time measured by the WWF
tracking monitor.
As already can be seen, the more precise the input parameters, the more
accurate the results of the aggregation. Even aggregation approach two,
which does not take auxiliary activities into account, provides a very accu-
rate estimate of the execution time of this loop.
The results of the AND-AND/ParallelActivity - the second line in Table
9 - are more complex. The result of the AND-AND aggregation is the max-
imum of Sequence 1 and Sequence 2. If only QoS data of the WPC-based
QoS monitor is used, Sequence 2 would take longer to execute. Adding the
processing overhead to each Web service invocation will pick Sequence 1 as
maximum. Approach two does not provide more accurate input, thus the
result is the same. Aggregation approach three provides again highly accu-
rate performance estimations, except for Sequence 2 (refer to the discussion

5.5 Eval 3: QoS Aggregation versus Workflow Tracking 96

Activity Fixed Tracking
initTicketData 50 50
initLoginData 50 50
checkLoginResult 50 51
prepareVoucherData 50 101
prepareCommit 50 50
prepareAbort 50 50

Table 10: WWF Tracking Results - Auxiliary Activities

in Chapter 5.4.3). According to these results a workflow optimization based
on WPC-based QoS data would choose Sequence 2 for further optimization.
Based on further information from the WWF tracking monitor, Sequence 1
would be selected.
The XOR-XOR/IfThenElseActivity showed now noticeable abnormali-
ties, but only improved the accuracy of the aggregation algorithms by pro-
viding more accurate input parameters.
The last line represents the sum of the loop, AND-AND and XOR-XOR
activities. This also reflects the assumption: the more accurate the input
parameters, the more accurate the result of the aggregation algorithm.

This evaluation showed that performance data observed by the WWF track-
ing monitor provides valuable input for aggregation algorithms used by
VRESCo. This data could be queried by VRESCo, by using the evalua-
tion API introduced in Chapter 4.4.3.

97

6 Conclusion and Future Work

Selecting component services of a set of semantical equal Web services to
optimize the overall QoS of a composite service, commonly representing a
value contributing business process, is one of the main objectives of QoS-
aware service compositions. In order to meet this expectations QoS aggre-
gation algorithms need to based on profound data which is gathered from
measuring the performance of the corresponding component services. A
vast amount of literature describes various methods of QoS aggregation and
QoS data repositories but only a few approaches focus on the process of
performance measuring.

This thesis introduced two new approaches of measuring the QoS of WCF
based Web services. One solution, the WPC monitoring service, makes use
of Windows Performance Counters, which are integrated into the operating
system and provide highly accurate performance measures at a minimum
of additional computational overhead. The evaluation proved that perfor-
mance values retrieved from the WPC monitor are as accurate as hard coded
performance measuring directly integrated into the application.
The second approach makes advantage of the tracking service, provided by
the WWF, which tracks all events, that are initiated during the execution of
a workflow. Contrary to WPC monitoring, which evaluates the performance
of component services directly on the hosting server, the WF tracking server
resides in the application server that hosts the workflow, thus representing
a client side view of the component services. The evaluation showed, that
the performance of Web service invocations is related to the performance
measured by the WPC monitor, taking a processing and communication
overhead into account. It also pointed out, how traditional QoS aggrega-
tion algorithm estimates deviate sometimes more then 100% for not taking
auxilliary activities into account.

6.1 Future Work

The evaluation showed how estimated QoS values can deviate from measured
performance. Based on the data observed by the WF tracking service, new

6.1 Future Work 98

algorithms have to be evaluated which take auxiliary activities into account
and take advantage of the Evaluation API provided by this thesis.

99

Appendix

100

A List of Abbreviations

AOP Aspect Oriented Programming
API Application Programming Interface
BPEL Business Process Execution Language
BPI Business Process Integration
BPM Business Process Management
BPML Business Process Modeling Language
BPMS Business Process Management Systems
Caas Composition as a Service
CPU Central Processing Unit
Daios Dynamic and asynchronous invocation of services
ebXML Electronic Business using eXtensible Markup Language
EMSC Extended Message Sequence Charts
ER Enterprise Relationship
FTP File Transfer Protocol
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IIS Microsoft Internet Information Services
ISO International Organization for Standardization
IT Information Technology
JAX-WS Java API for XML based Web Services
JAXB Java Architecture for XML Binding
JMX Java Management Extension
MSC Message Sequence Charts
OASIS Organization for the Advance of Structured Information

Standards
OWL Web Ontology Language
P2P Peer-to-Peer
QoS Quality of Service
RDF Resource Description Framework
REST Representational state transfer

101

RPC Remote Procedure Call
SLA Service Layer Agreement
SMTP Simple Mail Transfer Protocol
SOA Service oriented Architecture
SOC Service Oriented Computing
SQL Structured Query Language
TCP Transmission Control Protocol
UBR UDDI Business Registry
UDDI Universal Description, Discovery and Integration
URL Uniform Resource Locator
VCL Vienna Composition Language
VQL VRESCo Query Language
VRESCo Vienna Runtime Environment for Service oriented Com-

puting
W3C World Wide Web Consortium
WCF Windows Communication Foundation
WPC Windows Performance Counter
WS-BPEL Web Services Business Process Execution Language
WS-CDL Web Services Choreography Description Language
WSDL Web Services Description Language
WWF Windows Workflow Foundation
WWW World Wide Web
XML eXtensible Markup Language

102

B WCF Performance Counters� �
1 Transacted Operations Committed
2 Transacted Operations Aborted Per Second
3 Calls Failed
4 Queued Messages Rejected Per Second
5 Transacted Operations In Doubt Per Second
6 Transacted Operations In Doubt
7 Security Calls Not Authorized
8 Transacted Operations Committed Per Second
9 Security Validation and Authentication Failures

10 Calls Duration
11 Transacted Operations Aborted
12 Queued Messages Dropped
13 Reliable Messaging Sessions Faulted Per Second
14 Queued Poison Messages Per Second
15 Calls Faulted Per Second
16 Instances
17 Security Calls Not Authorized Per Second
18 Instances Created Per Second
19 Calls Outstanding
20 Calls Faulted
21 Calls
22 Calls Failed Per Second
23 Reliable Messaging Sessions Faulted
24 Transactions Flowed Per Second
25 Queued Messages Rejected
26 Security Validation and Authentication Failures Per Second
27 Queued Poison Messages
28 Reliable Messaging Messages Dropped Per Second
29 Calls Per Second
30 Queued Messages Dropped Per Second
31 Reliable Messaging Messages Dropped
32 Transactions Flowed� �

Listing 8: ServiceModelService 3.0.0.0

103

� �
1 Calls
2 Calls Per Second
3 Calls Outstanding
4 Calls Failed
5 Calls Failed Per Second
6 Calls Faulted
7 Calls Faulted Per Second
8 Calls Duration
9 Reliable Messaging Messages Dropped

10 Reliable Messaging Messages Dropped Per Second
11 Reliable Messaging Sessions Faulted
12 Reliable Messaging Sessions Faulted Per Second
13 Security Calls Not Authorized
14 Security Calls Not Authorized Per Second
15 Security Validation and Authentication Failures
16 Security Validation and Authentication Failures Per Second
17 Transactions Flowed
18 Transactions Flowed Per Second� �

Listing 9: ServiceModelEndpoint 3.0.0.0

� �
1 Calls
2 Calls Per Second
3 Calls Outstanding
4 Calls Failed
5 Calls Failed Per Second
6 Calls Faulted
7 Calls Faulted Per Second
8 Call Duration
9 Security Validation and Authentication Failures

10 Security Validation and Authentication Failures Per Second
11 Security Calls Not Authorized
12 Security Calls Not Authorized Per Second
13 Transactions Flowed
14 Transactions Flowed Per Second� �

Listing 10: ServiceModelOperation 3.0.0.0

104

C VRESCo Client Library - Example Invocation� �
1

2 IVReSCOQuerier querier =
3 VReSCOClientFactory.CreateQuerier("guest");
4

5 IVReSCOPublisher publisher =
6 VReSCOClientFactory.CreatePublisher("guest");
7

8 // building the request message
9 DaiosMessage smsRequest = new DaiosMessage ();

10 smsRequest.SetString("RecipientNumber", "0699 -12341242");
11 smsRequest.SetString("SenderNumber", "0650 -69696669");
12 smsRequest.SetString("Message", delay);
13

14 DaiosMessage SendSMS = new DaiosMessage ();
15 SendSMS.SetComplex("SMSRequest", smsRequest);
16

17

18 // create rebinding -proxy
19 var fquery = new VQuery(typeof(Feature));
20 fquery.Add(Expression.Eq("Name", "SendSMS"));
21 IList <Feature > features =
22 querier.FindByQuery(fquery , QueryMode.Exact) as IList <Feature >;
23

24

25 IList <ServiceRevision > revisions = querier.GetAllRevisions ();
26 foreach (ServiceRevision rev in revisions)
27 {
28 publisher.DeactivateRevision(rev.Id);
29 }
30

31

32 var frquery = new VQuery(typeof(ServiceRevision));
33 frquery.Add(Expression.Eq("Operations.Feature.Name", "SendSMS"));
34

35

36 DaiosRebindingMappingProxy proxy =
37 querier.CreateRebindingMappingProxy(frquery ,
38 QueryMode.Exact ,
39 0,
40 new

MappingRebindingStrategy
()

41) as DaiosRebindingMappingProxy;
42

43

44 proxy.UseMapping = true;
45

46

47 foreach (ServiceRevision rev in revisions)
48 {
49 if (rev.Service.Name == name)
50 {
51 publisher.ActivateRevision(rev.Id);
52 }
53 else
54 {
55 publisher.DeactivateRevision(rev.Id);
56 }

105

57 }
58

59 proxy.ForceRebinding ();
60

61

62 // invoke service
63 DaiosMessage result = proxy.RequestResponse(SendSMS);� �

Listing 11: Example - VRESCo Web service Invocation

REFERENCES 106

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[2] Natee Artaiam and Twittie Senivongse. Enhancing service-side qos
monitoring for web services. In SNPD ’08: Proceedings of the 2008
Ninth ACIS International Conference on Software Engineering, Ar-
tificial Intelligence, Networking, and Parallel/Distributed Computing,
pages 765–770, Washington, DC, USA, 2008. IEEE Computer Society.

[3] Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for
composed services. In ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing, pages 193–202, New York,
NY, USA, 2004. ACM.

[4] Bruce Bukovics. Pro WF: Windows Workflow in .NET 3.5. Apress,
Berkely, CA, USA, 2008.

[5] Michael J. Carey. Soa what? Computer, 41(3):92–94, 2008.

[6] Issam Chebbi, Schahram Dustdar, and Samir Tata. The view-based
approach to dynamic inter-organizational workflow cooperation. Data
Knowl. Eng., 56(2):139–173, 2006.

[7] OASIS International Standards Consortium. Uddi version 3.0.2,
September 2004. http://www.uddi.org/pubs/uddi v3.htm.

[8] OASIS International Standards Consortium. ebxml registry services
and protocols v3.0, March 2005. http://www.ebxml.org.

[9] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrat-
ing XML and Web Services. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2004.

[10] Li Fei, Yang Fangchun, Shuang Kai, and Su Sen. A policy-driven dis-
tributed framework for monitoring quality of web services. In ICWS
’08: Proceedings of the 2008 IEEE International Conference on Web
Services, pages 708–715, Washington, DC, USA, 2008. IEEE Computer
Society.

REFERENCES 107

[11] Organization for the Advance of Structured Information Stan-
dards (OASIS). Reference model for service oriented architecture
1.0, oasis standard, October 2006. http://docs.oasis-open.org/soa-
rm/v1.0/.

[12] Apache Software Foundation. Apache axis, 07 2009.
http://ws.apache.org/axis/.

[13] David Gristwood. Windows workflow foundation: Tracking ser-
vices introduction, January 2007. http://msdn.microsoft.com/en-
us/library/bb264459

[14] Lican Huang, D.W. Walker, O.F. Rana, and Yan Huang. Dynamic-
workflow management using performance data. In Cluster Computing
and the Grid, 2006. CCGRID 06. Sixth IEEE International Symposium
on, volume 1, pages 154–157, May 2006.

[15] Nicolai Josuttis. Soa in Practice: The Art of Distributed System Design.
O’Reilly Media, Inc., 2007.

[16] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Daios:
Efficient dynamic web service invocation. IEEE Internet Computing,
13(3):72–80, 2009.

[17] Phillip Leitner. The daios framework - dynamic, asynchronous and
message-oriented invocation of web services. Master’s thesis, Vienna
University of Technology, 10 2007.

[18] Fei Li, Fangchun Yang, Kai Shuang, and Sen Su. Q-peer: A decentral-
ized qos registry architecture for web services. In ICSOC ’07: Proceed-
ings of the 5th international conference on Service-Oriented Computing,
pages 145–156, Berlin, Heidelberg, 2007. Springer-Verlag.

[19] MSDN Library. Performance counters in the .net framework. Webpage,
July 2009. http://msdn.microsoft.com/en-us/library/w8f5kw2e.aspx.

[20] Anton Michlmayer, Florian Rosenberg, Phillip Leitner, and Schahram
Dustdar. End-to-end support for qos-aware service selection, invocation
and mediation in vresco. 05 2009.

REFERENCES 108

[21] Anton Michlmayr, Philipp Leitner, Florian Rosenberg, and Schahram
Dustdar. Publish/subscribe in the vresco soa runtime. In DEBS ’08:
Proceedings of the second international conference on Distributed event-
based systems, pages 317–320, New York, NY, USA, 2008. ACM.

[22] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram
Dustdar. Qos-aware service provenance inweb service runtimes. 2009.

[23] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin
Treiber, and Schahram Dustdar. Towards recovering the broken soa
triangle: a software engineering perspective. In IW-SOSWE ’07: 2nd
international workshop on Service oriented software engineering, pages
22–28, New York, NY, USA, 2007. ACM.

[24] Microsoft.com. Uddi shutdown faq, July 2009.
http://uddi.microsoft.com/about/FAQshutdown.htm.

[25] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-
oriented computing: State of the art and research challenges. Computer,
40(11):38–45, November 2007.

[26] Chris Peiris, Dennis Mulder, Amit Bahree, Aftab Chopra, Shawn Ci-
coria, and Nishith Pathak. Pro WCF: Practical Microsoft SOA Imple-
mentation (Pro). Apress, Berkely, CA, USA, 2007.

[27] Chris Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003.

[28] Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient on-
line monitoring of web-service slas. In SIGSOFT ’08/FSE-16: Proceed-
ings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of software engineering, pages 170–180, New York, NY, USA,
2008. ACM.

[29] World Wide Web Consortium (W3C) recomendation. Web
services description language (wsdl) 1.1, March 2001.
http://www.w3.org/TR/wsdl.

[30] World Wide Web Consortium (W3C) recomendation. Web ser-
vices choreography description language version 1.0, November 2005.
http://www.w3.org/TR/ws-cdl-10/.

REFERENCES 109

[31] World Wide Web Consortium (W3C) recomendation. Soap
version 1.2 part 0: Primer (second edition), April 2007.
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[32] Red Hat, Inc. Hibernate Reference Documentation v3.3.1, 2008.

[33] Michael Rosen, Boris Lublinsky, Kevin T. Smith, and Marc J. Bal-
cer. Applied SOA: Service-Oriented Architecture and Design Strategies.
Wiley Publishing, 2008.

[34] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping performance
and dependability attributes ofweb services. In Proc. International
Conference on Web Services ICWS ’06, pages 205–212, September 18–
22, 2006.

[35] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, Predrag Ce-
likovic, and Schahram Dustdar. Towards composition as a service -
a quality of service driven approach. In ICDE ’09: Proceedings of the
2009 IEEE International Conference on Data Engineering, pages 1733–
1740, Washington, DC, USA, 2009. IEEE Computer Society.

[36] W3C Member Submission. Owl-s: Semantic markup for web services,
November 2004. http://www.w3.org/Submission/OWL-S/.

[37] Mingjie Sun, Bixin Li, and Pengcheng Zhang. Monitoring bpel-based
web service composition using aop. In ICIS ’09: Proceedings of the 2009
Eigth IEEE/ACIS International Conference on Computer and Infor-
mation Science, pages 1172–1177, Washington, DC, USA, 2009. IEEE
Computer Society.

[38] Liangzhao Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware for web
services composition. Software Engineering, IEEE Transactions on,
30(5):311–327, May 2004.

[39] Liangzhao Zeng, Hui Lei, and Henry Chang. Monitoring the qos for
web services. In ICSOC ’07: Proceedings of the 5th international con-
ference on Service-Oriented Computing, pages 132–144, Berlin, Heidel-
berg, 2007. Springer-Verlag.

REFERENCES 110

[40] Wentao Zhang, Yan Yang, Shengqun Tang, and Lina Fang. Qos-driven
service selection optimization model and algorithms for composite web
services. In COMPSAC ’07: Proceedings of the 31st Annual Interna-
tional Computer Software and Applications Conference, pages 425–431,
Washington, DC, USA, 2007. IEEE Computer Society.

[41] Farhana Zulkernine and Patrick Martin. Conceptual framework for a
comprehensive service management middleware. In AINAW ’07: Pro-
ceedings of the 21st International Conference on Advanced Information
Networking and Applications Workshops, pages 995–1000, Washington,
DC, USA, 2007. IEEE Computer Society.

[42] Farhana H. Zulkernine, Patrick Martin, and Kirk Wilson. A middle-
ware solution to monitoring composite web services-based processes. In
SERVICES-2 ’08: Proceedings of the 2008 IEEE Congress on Services
Part II, pages 149–156, Washington, DC, USA, 2008. IEEE Computer
Society.

	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Contribution
	1.4 Organization of this thesis

	2 State of the Art Review
	2.1 Service-oriented Architecture
	2.1.1 Web Services
	2.1.2 Service Orchestration and Choreography

	2.2 Tools and Technologies
	2.2.1 WSDL
	2.2.2 SOAP
	2.2.3 UDDI
	2.2.4 ebXML
	2.2.5 WS-CDL
	2.2.6 WWF
	2.2.7 BPEL
	2.2.8 OWL

	2.3 VRESCo
	2.3.1 VRESCo Architecture

	3 Related Work
	4 Design and Implementation
	4.1 WPC-based QoS Monitoring of Web Services
	4.1.1 Overview
	4.1.2 Architecture
	4.1.3 Quality of Service Model
	4.1.4 Implementation
	4.1.5 Installation and Configuration

	4.2 VRESCo Integration into WWF Designer
	4.2.1 Overview
	4.2.2 VRESCoWebserviceActivity Implementation
	4.2.3 Using the VRESCoWebserviceActivity
	4.2.4 VRESCoRebindingActivity Implementation
	4.2.5 Using the VRESCoRebindingActivity

	4.3 WWF Workflow Monitoring
	4.3.1 Overview
	4.3.2 Architecture
	4.3.3 VRESCo Tracking Service
	4.3.4 Installation and Configuration

	4.4 Workflow Monitoring Evaluation
	4.4.1 Overview
	4.4.2 Evaluation Tool
	4.4.3 Evaluation API

	5 Evaluation
	5.1 Case Study
	5.2 Example Implementation
	5.2.1 Evaluation Case Study Architecture
	5.2.2 Evaluation System

	5.3 Eval 1: WPC Monitoring versus Hard Coded Measuring
	5.3.1 Evaluation Method
	5.3.2 Results

	5.4 Eval 2: Workflow Tracking versus WPC Monitoring
	5.4.1 Evaluation Method
	5.4.2 Results
	5.4.3 Discussion

	5.5 Eval 3: QoS Aggregation versus Workflow Tracking
	5.5.1 Evaluation Method
	5.5.2 Results

	6 Conclusion and Future Work
	6.1 Future Work

	A List of Abbreviations
	B WCF Performance Counters
	C VRESCo Client Library - Example Invocation
	References

