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Abstract. This paper presents a study on classifying music by affective visual
information extracted from music videos. The proposed audio-visual approach
analyzes genre specific utilization of color. A comprehensive set of color specific
image processing features used for affect and emotion recognition derived
from psychological experiments or art-theory is evaluated in the visual and
multi-modal domain against contemporary audio content descriptors. The
evaluation of the presented color features is based on comparative classification
experiments on the newly introduced ’Music Video Dataset’. Results show
that a combination of the modalities can improve non-timbral and rhythmic
features but show insignificant effects on high performing audio features.

1 Introduction

Over the past decades music videos distinctively influenced our pop-culture and became
a significant part of it. Since their inception in the early 1980-ies music videos emerged
from a promotional support medium into an art form of their own. The effort invested
to produce a video creates enough information such that many music genres can be
predicted by the moving pictures only. This potential of information provided was demon-
strated in previous work on music video based artist identification [13], where a precision
improvement of 27% could be observed over conventional audio features. Harnessing this
potential presents a new way to approach existing Music Information Retrieval (MIR)
problems such as an audio-visual approach to music video segmentation [4]. Approaches
to affective content analysis of music videos are provided by [19] and [20]. In order to use
the visual domain for music retrieval tasks, it has to be linked to the acoustic domain.
Since substantial research on audio-visual correlations in music videos is yet scarce or
not available, we base our approach on the simplified assumption that both layers intend
to express the same emotions. In this paper we evaluate if this information - and more
specifically the color information - is sufficient to discriminate music genres. Using color in
content-based image retrieval has been extensively studied [9, 10, 12] and is yet described
as problematic since it is highly influenced by lighting conditions during image acquisition.
In music videos different illumination settings and colors are usually desired artistic effects.
In the following section we introduce seven feature sets that derive from psychological
experiments, art-theory or try to model human perception. Section 3 lays out the evalua-
tion and introduces the Music Video Dataset to foster further research. After discussing
the results in Section 4 conclusions and outlooks to future work are provided in Section 5.



Short Name # Descriptiom
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Statistical Spectrum Descriptors
(SSD)

168 Statistical description of a psycho-accoustic transformed
audio spectrum

Rhythm Patterns (RP) 1024 Description of spectral fluctuations
Rhythm Histograms (RH) 60 Aggregated Rhythm Patterns
Temporal SSD and RH Temporal variants of RH (TRH #420), SSD (TSSD #1176)
MFCC 12 Mel Frequency Cepstral Coefficients
Chroma 12 12 distinct semitones of the musical octave

V
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Global Color Statistics 6 mean saturation and brightness, mean angular hue, angular
deviation, with/without saturation weighting

Colorfulness 1 colorfulness measure based on Earth Movers Distance
Color Names 8 Magenta, Red,Yellow,Green,Cyan Blue, Black, White
Pleasure, Arousal, Dominance 3 approx. emotional values based on brightness and saturation
Itten Contrasts 4 Contrast of Light and Dark, Contrast of Saturation, Contrast

of Hue and Contrast of Warm and Cold
Wang Emotional Factors 18 Features for the 3 affective factors by Wang et al. [17]
Lightness Fluctuation Patterns 80 Rhythmic fluctuations in video lightness

Table 1: Overview of all features. The column ’#’ indicates the dimensionality of the
corresponding feature set.

2 Method

Audio features are extracted from the separated audio channel of the music videos.
Visual features are extracted from each frame of a video and aggregated during post-
processing by calculating the statistical measures mean, median, standard deviation,
min, max skewness, kurtosis. As a pre-processing step black bars at the borders of
video frames, also called Letterboxing or Pillarboxing, are removed.

2.1 Audio Features

Psycho-accoustic Music Descriptors as proposed by [7] are based on a psycho-
acoustically modified Sonogram representation that reflects human loudness sensation.
Statistical Spectrum Descriptors (SSD) subsequently compute statistical moments for the
24 critical bands of hearing. Rhythm Patterns (RP) describe fluctuations in modulation
frequency which provide a rough interpretation of the rhythmic energy of a song.
Rhythm Histograms (RH) aggregate the modulation amplitude values of the individual
critical bands computed in a RP. Temporal Variants (TSSD, TRH) describe variations
over time through statistical moments calculated from consecutive segments of a track.
For the extraction, we employed the Matlab-based implementation, version 0.6411.

Mel Frequency Cepstral Coefficients (MFCC) are well known audio features
derived from speech recognition.Chroma features project the spectrum onto 12 bins rep-
resenting the semitones of the musical octave. We utilized MARSYAS [14] version 0.4.5.

2.2 Visual Features

Global Color Statistics calculate Mean Saturation and Mean Bightness based on
the Improved Hue, Luminance and Saturation (IHLS) color space [18] which has the
advantages of low saturation values of achromatic pixels and independence of saturation
from the brightness function. Hue in IHLS is an angular value. Circular statistics has to be
applied [5] to assess angular mean Hue and angular deviation of Hue. Saturation weighted
mean Hue and deviation of Hue are more robust towards weakly saturated colors.

Global Emotion values refer to a Pleasure-Arousal-Dominance model based on
investigated emotional reactions presented in [15]. The introduced relationship between
saturation (S) and brightness (B) is calculated from the corresponding IHLS channels:



Pleasure=0.69∗B+0.22∗S (1)

Arousal=−0.31∗B+0.60∗S (2)

Dominance=0.76∗B+0.32∗S (3)

Colorfulness is one of the features used in [2] to computationally describe aesthetics
in photographies. The proposed method is based on a partitioned RGB palette using
Earth Mover’s Distance (EMD) [11] to calculate the dissimilarity of a supplied image
to an ideal color distribution of a colorful image.

Wang Emotional Factors Wang et al. [17] identified three factors based on emotional
word correlations that are relevant for image retrieval based on emotion semantics.
Three feature sets are calculated using fuzzy membership functions to assign values
of the perceptual psychology motivated L*C*H* color space to discrete semantic words.
Feature One includes lightness description of a segmented image ranging from very
dark to very bright. These are combined with the calculated hue labels cold and warm.
Feature Two provides a description of warm or cool regions with respect to different
saturations as well as a description of contrast. Feature Three combines lightness
contrast with an sharpness estimation. A no-reference perceptual blur measure [1] was
used. The sharpness is further calculated by 1−blurIndex. The contrast description
overlaps with the Itten contrasts and is omitted.

Itten’s Contrasts are a set of art-theory concepts defined by Johannes Itten [6] for
combining colors to induce emotions based on an proportional opponent color model.
The contrast calculation is aligned to the method presented in [8] which uses Wang’s
feature extraction [17] as a predecessor. Instead of a waterfall segmentation we used a
Quick Shift [16] approach due to better performance at reasonable processing time. We
calculated the following contrasts: Contrast of Light and Dark, Contrast of Saturation,
Contrast of Hue and Contrast of Warm and Cold.

Color Names describe color distributions of the reduced Web-safe Elementary-color
palette consisting of the 8 elementary colors Magenta, Red, Yellow, Green, Cyan, Blue,
Black and White. To map a frame of a video to this palette it is converted to Hue Value
Saturation (HSV) color-space. Contrast, brightness and color enhancement is applied
through application of Contrast Limited Adaptive Histogram Equalization (CLAHE) [21].
Color Quantization to reduce the number of distinct colors of the frame to the desired
palette is obtained by applying error diffusion which computes the mean square error
between the original pixel value and its closest match which is then propagated locally to
its surrounding pixels. Ordered Dithering was used since it reduces the effect of contouring
but stays more consistent with the original colors. A 32x32 Bayer pattern matrix was
used as threshold map. Feature Calculation is concluded by calculating the statistical
moments mean, median, variance, min, max, skew and kurtosis of the reduced palette.

Lightness Fluctuation Patterns are calculated analogous to the music feature
Rhythm Patterns (RP) [7] from the perceptually uniform LAB color space. For each
frame a 24 bin histogram of the lightness channel is calculated. Fast Fourier Transform
(FFT) is applied to the histogram space of all video frames. This results in a time-
invariant representation of the 24 lightness levels capturing reoccurring patterns in the
video. Only amplitude modulations in the range from 0 to 10 Hz are used for the final
feature set, since rhythm cannot be perceived from higher modulation frequencies. Based
on the observation that light effects, motions and shots are usually beat synchronized
in music videos, LFPs can be assumed to express rhythmic structures of music videos.



3 Evaluation - The Music Video Dataset

The empirical evaluation is based on the Music Video Dataset (MVD). We use empirical
classification experiments and Chi-square feature selection to analyze the performance of
the visual and audio-visual feature-spaces. The MVD is a collection of carefully selected
music videos. It consists of different subsets that can be combined to bigger data-sets. The
following sub-sets of the MVD are used to evaluate the features presented in Section 2:

MVD-VIS: The Music V ideo Dataset for VISual content analysis and classification
is intended for classifying music videos by their visual properties only. Special emphasis
has been set on minimizing the intra- and maximising the inter-class variance in the
acoustic domain of the dataset. Non overlapping sub-genres were chosen and tracks
within a certain class share very similar musical characteristics. Music genre classification
based on conventional audio features provides accuracy above-average (see Table 2)
compared to current benchmarks of the Music Information Retrieval domain [3].

MVD-MM: The Music V ideo Dataset for MultiModal content analysis and clas-
sification is intended for multi-modal classification and retrieval tasks. The overlapping
classes have high inter and intra class variance. Genre classification based on audio
features provides average results and serves as starting point for multi-modal approaches.

MVD-MIX: The MVD-MIX data-set is a combination of the data-sets MVD-VIS
and MVD-MM. The distinct genres of the sub-sets have been selected in a way, that a
union of the two sets provides a non-overlapping bigger set. Consequently the inter-class
variance increases while the intra-class variance remains the same as for the individual
sets. While the sub-sets are intended for developing content descriptors, the MVD-MIX
should be used for audio-visual evaluations.

The dataset creation was preceded by the selection of the non-overlapping genres
respectively to enable the combination of the two subsets into the bigger MVD-MIX
dataset. Each genre consists of 100 selected videos. Resulting in dataset sizes of 800
music videos for MVD-VIS and MVD-MM each as well as 1600 for the MV-MIX
dataset. Music videos were selected primarily by their audible properties. A set of
selection criteria has been applied such as quality criteria of at least 90 kBits/s audio
encoding and video resolution ranging from QVGA to VGA. Only official music videos
were selected, no live performance, abstract or animated videos. Artist stratification
is provided by selecting only two tracks per artist.
Data Provision: Due to copyright restrictions it is not possible to redistribute music
videos or audio files. Yet, all videos have been retrieved from Google’s Youtube platform
and a list of corresponding Youtube video-ids is provided. It should be stated that the
availability of these videos cannot be guaranteed and that some may vanish over time. To
ensure comparability of results and reproducibility of the experiments, all features of this
publication including a range of standard visual and acoustic features are being provided
and customized features will be extracted and provided on request. All extracted features
are made available for download at: http://www.ifs.tuwien.ac.at/mir/mvd/.

4 Results

Table 2 summarizes the results of the comparative classification experiments. The top
segment of the table provides audio only results which serve as baseline for evaluating
the visual and audio-visual approaches. Using visual features only an accuracy of 50.13%



Table 2: Classification results for audio, visual and audio-visual features showing accuracies for Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF) and Naive Bayes (NB)
classifiers. Bold-faced values highlight improvements of audio-visual approaches over audio features.

MVD-VIS MVD-MM MVD-MIX

SVM KNN RF NB SVM KNN RF NB SVM KNN RF NB
A
u
d
io

TSSD-RP-TRH 93.79 80.85 77.13 71.46 74.76 55.00 55.84 52.20 75.91 54.16 49.80 48.32
TSSD 86.81 72.58 70.72 62.61 69.97 53.33 56.16 53.65 66.19 47.40 45.33 44.22
RP 87.26 69.81 71.29 64.04 60.35 42.38 43.85 41.63 63.19 43.06 42.53 41.39
SSD 85.78 73.18 72.80 58.81 68.74 50.28 54.43 48.41 65.11 44.64 46.18 38.92
TRH 71.04 55.83 55.16 53.86 49.50 38.28 37.66 39.66 46.61 33.02 30.54 35.70
MFCC 62.28 48.58 49.04 46.95 42.14 29.16 32.50 34.17 37.02 26.60 25.57 27.11
Chroma 36.34 28.09 34.41 23.03 25.26 20.11 23.16 19.41 19.64 14.68 16.52 12.08

Visual Features 50.13 34.04 38.60 39.38 31.69 21.16 22.86 23.38 32.22 17.89 19.36 21.16
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TSSD-RP-TRH 94.86 81.38 76.51 71.65 75.69 55.78 54.36 51.36 76.53 55.76 49.15 49.08
TSSD 88.45 71.65 68.80 64.75 70.55 52.60 54.34 52.25 69.46 46.15 43.12 45.16
RP 89.80 71.99 69.90 65.78 62.79 43.93 43.74 41.61 66.59 44.47 40.61 41.68
SSD 85.25 62.05 66.22 57.80 65.34 42.28 48.53 44.24 65.21 36.13 39.64 38.76
TRH 77.84 55.98 57.21 59.71 58.50 32.79 35.60 41.40 56.31 31.39 31.18 40.09
MFCC 63.71 41.53 45.78 46.28 42.88 24.38 27.40 27.35 43.11 22.33 22.89 25.62
Chroma 55.70 39.28 42.78 43.13 35.29 24.16 26.04 25.51 35.43 20.10 21.91 24.14

could be reached for Support Vector Machines (SVM) for the MVD-VIS set. Accuracies
for other sets or classifiers range from 17.89% to 39.38%. Because all classes equal in size
these results are above a baseline of 12.5% or 6.25% respectively. Yet, the performance of
the visual features alone is not representative. The audio-visual results show interesting
effects. Generally, there is insignificant or no improvement of the performance over the
top performing audio features. The results show that combining the visual features with
chroma and rhythm descriptors has a positive effect on the accuracy while it is negative
with spectral and timbral features. Applying ranked Chi-square attribute selection on
the visual features shows, that affective features as well as the frequencies of black and
white pixels have highest values. Further, more information is provided by variance
and min/max aggregated values than by mean values.

5 Conclusions and Future Work

We presented a comparative evaluation of audio-visual music classification that focused on
the color information of music videos. A set of diverging approaches based on psycholog-
ical or perceptive models has been applied to extract different kinds of semantic informa-
tion. We further introduced a descriptor that captures rhythmical changes in illumination.
The performance of the color features is generally noticed as weak, while some interesting
effects on chromatic and rhythmic features in the audio-visual domain are observed.

Future work on music videos will extend the semantic space to include texture, local
features and object detection. Results are expected to provide information about how ap-
propriate these methods are to solve MIR problems and how they can be used to connect
the audio with the visual domain to facilitate new scenarios such as query-by-image.
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Fig. 1: Chi Square Feature Evaluation in descending order from left to right. Dark blue areas correspond
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