Matlab Single and Double Precision Analysis

Serwah Sabetghadam

Abstract

In this report we analyze the single or double precision in Matlab
matrix multiplications. Based on the memory requirements and hardware
specifications, we determine which size of matrix we can use.

1 Matlab Single and Double Analysis

1.1 What matrix size fits into memory?

For any matrix size we need double of its size to fit into memory. The reason is
that we have the matrix itself and also b = b*a or b = a? where a is the matrix
and b is the result of multiplications. In Table 1, we show the memory needed
in each case. In any case the memory should not be used up and we need about
5GB for the Java program itself to run.

For single matrixes we need the memory of size: a double size matrix + a
single size matrix, as you see in the 4th row, 19GB is from the double matrix
and 19GB is the two single ones needed. The reason is that we cannot directly
create a single matrix in Matlab. We should first create a double matrix and
then apply single function on that matrix. Of course we can delete the double
matrix after creating the single matrix, but this does not change the need.

Table 1: Memory needed to create the matrix. Those matrix sizes that need
more than 80GB are not practical, since the memory is not always 100GB
available. The real free memory is about 90GB. If we touch the border of
available memory it needs to swap and will be very slow.

.. .. real need .
matrix size | precision | memory . total | practical
(program requirement)
50000 double 19GB 38GB + 10GB 48GB | yes
60000 double 27.5GB | 55GB+ 10GB 65GB | yes
70000 double 38GB 75GB + 10GB 85GB | no
50000 single 9.5GB 19GB+19GB+ 10GB 48GB | yes
60000 single 14GB 27.5GB + 28GB+ 10GB | 66GB | yes
70000 single 19GB 38GB+ 38GB+ 10GB 90GB | no

1.2 Matrix Multiplication

In this section we compare the time taken for double and single precision matrix
multiplication for different matrix sizes. With double precision, the matrix of
size 50,000 takes 45min for each multiplications. This takes 3.125 days for 100

steps for just one topic, more than 150 days for all topics. Then I calculated
the matrix multiplication with power operator and also single precision which
is much faster. Meanwhile, we compared the time needed to multiply in loops,
or using power operator of Matlab. The results are shown in Table 3.

Table 2: Matlab matrix time needed for one iteration

matrix size | precision | one iteration
50,000 single 18 m
60,000 single 32 m
70,000 single 59 m
50,000 double 47.5 m
60,000 double 4h 37m

Table 3: Matlab matrix multiplications with different matrix sizes and operators

.. .. multiply power 50 topics 50 topics
matrix size | steps | precision | g one topic | for one topic | (with loop) | (with power)
50,000 50 single 15h 2h 24m 31d 5h 5d
60,000 50 single 1d 1h 4h 16m 52d 2h 9d
70,000 50 single 2d 2h 6h 37m 104d 4h 14d
50,000 50 double | 1d 153h 5h 48m 83d 7h 12d 2h
60,000 50 double 9d 5m 20h 30m 450d 4h 42d 17h
50,000 100 single 1d 6h 2h 55m 62d 10h 6d
60,000 100 single 2d 2h 4h 31m 104d 4h 9d 11h
70,000 100 single 4d 4h 7h 23m 208d 8h 15d 7h
50,000 100 double 3d 3h 6h 40m 166d 14h 13d 18h
60,000 100 double 18d 10m 22h 18m 900d 8h 50d

As shown in the table, multiplicaions with single precision is much faster
compared to what we had for double precision.

Considerations There is an issue with using power operator, that we will not
have the matrix multiplication result in each step, to compute the performance
stepwise.

One idea could be to write the power in a loop like:

n = number of iterations;
m = matrix;

a = activation_vec

for i =1 to log(n) do

Z = m#m;
res = a.z;
m= z;

end

In this case in binary indexes (2,4,8,16) we can have the steps results. However
we miss the results of steps in between. Therefore, time needed to do a 64 step
in the graph is 6 times to the time of one iteration (Table 2).

2 Are single and double multiplication result
the same?

In this section we did the verification of matrix multiplication of single and
double precision values. First, let’s have a look at max/min double and precision
values in Matlab.

Largest and Smallest Double-Precision Values The MATLAB functions
realmax and realmin return the maximum and minimum values that you can
represent with the double data type: The range for double is:

—1.79769e¢+308 to —2.22507e¢—308 and
2.22507e¢—-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity, respectively:

realmax + .0001e+308
ans =
Inf

—realmax — .0001e-+308
ans =
—Inf

Largest and Smallest Single-Precision Values The MATLAB functions
realmax and realmin, when called with the argument ’single’, return the maxi-
mum and minimum values that you can represent with the single data type:

str = ’The range for single is:\n\t’g to %g and\n\t %g to %g’;
sprintf (str, -realmax(’single’), -realmin(’single’),
realmin(’single’), realmax(’single’))

ans =
The range for single is:
-3.40282e+38 to -1.17549e-38 and
1.17549e-38 to 3.40282e+38

In the single precision interval (1.17549e-38 to 3.40282e+38), the results of
multiplication with single or double precision are completely the same. We
tested with Matlab rand function. For the numbers bigger than this interval it
goes to Infinity value and make Inf values in the matrix. For numbers less than
the min value, it rounds to 0.

3 Test in Astera

To analyse what happens in practice, we performed the real matrix multiplica-
tions in Astera. These matrizes are not normalized and they are as generated
before. We compared the result of using Matlab file with double precision ma-
trixes with the result of single precision matrixes. In small number of iterations,

the results (the final calculated precision) are the same. When it reaches higher
multiplications, it may cross the margins. Once it happened in the 88th step.
Since in the step 87 that all the numbers were greater than 1.0e+38. In the next
iteration, some cells will have Inf value, since it goes beyond the single max
value. Another time it happened in the 110th step - depending on the topicID
that we start from we have different sub-graphs and matrixes. We cannot say a
step number that all matrixes from different topics will cross the upper margin.
This happens since we generate energy, and this value explodes in larger steps.

We did not cross the lowest margin), since the generated value is always
getting larger and larger.

Considerations There is a point with the new experiments that we are think-
ing of now. That in this case the matrixes have normalized value. This means
that the sum of the rows remains always 1. This scenario will not happen with
crossing the margin max values. But it may happen with crossing the min value
of single precision.

4 Conclusion

e Matrix size: For 60,000 and 70,000 size single and double matrixes fit
into memory. Anyway 50,000 will be faster.

e Time needed: With single precision time of power multiplications are
thinkable. For double or loop iterations the time is too long.

e Snapshots to the iterations: we will have the results only in 2nd, 4th,
8th, 2"th steps.

e Number of steps: This is a remained concern. We do not know the
minimum step that this margin cross happens, specially if we do the mul-
tiplications with power operator.

