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Abstract
Producing large software systems is an

extremely challenging engineering task. The main
reason is the difficulty of managing the enormous
amounts of code and the great numbers of people
involved in the effort. We have developed three novel
interactive glyphs specifically tuned for visualizing
software data. Our glyphs enable users to track
software errors, isolate problems, and monitor
development progress. To demonstrate our glyphsÕ
functionality, we apply them to visualizing statistics
from a multi-million line software project.  

Keywords: Glyphs, information visualization,
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productivity.

1: Introduction

Software is a huge industry producing the most
complicated data-driven systems ever created.
Developing large software systems is an extremely
complex, team-oriented, engineering activity.  One
aspect that makes software production particularly
difficult is that software is invisible.  It has no
physical shape or form.  By making software visible
we can help software engineers cope with the inherent
complexity, help managers better understand the
software process, and thereby improve productivity of
the production process.  The fundamental research
problem in displaying software, as in Information
Visualization, involves inventing visual metaphors
for representing abstract data.

Over the last several years many novel
techniques and systems have appeared for visualizing
algorithms, code text, and the artifacts associated
with software such as code author, file sizes, file
changes, and execution times[1, 2, 3, 4, 5].  Much of
this research has focused on improving individual
programmer productivity.  Unfortunately, less
research has been directed to visualizing software data

associated with team productivity. In large scale
systems with thousands of programmers, the team-
oriented aspects of the process and management
decisions dominate the effects of individuals, no
matter how talented and productive individuals are.
Our focus is visualizing project-oriented software
data.

The main components of a software project are
shown in Figure 1 with software releases at the apex
of the tree. A release may be viewed from three
different perspectives: functional, organizational and
structural. Each of these perspectives appears as a
column in Figure 1.

Software Release
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Module
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File

Department

Figure 1: Software project components

The functional perspective views a release based
on the various capabilities it provides to customers.
A set of software capabilities are collected together
and packaged into a release for customers. This
categorization is useful because it defines a customer
delivery against which deadlines are cast. In addition,
it is commonly used as an organizing factor for the
development team producing the release.

The organizational perspective focuses on the
people involved in a software production process.
The development team is usually divided into
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departments. Each department in turn has its own
hierarchy of groups and engineers. This categorization
is useful for providing human links for resolving or
following up on problems.

Finally the structural perspective views the
software structure of the project. This refers to how
the code in the project is grouped, i.e. the directory
structure.  At the highest level the code is divided
into subsystems. Within each subsystem are
modules, and within each module are source code
files.

A multi-million line software project may be
partitioned into tens to hundreds of subsystems,
hundreds to thousands of modules, thousands to
hundreds of thousands of files. For each file the
version management system maintains the complete
history, including the date and time of every change,
lines affected, reason for the change, functionality
added by the change (for new code additions), the
fault repaired (for error correcting code), etc.

These databases associated with software projects
are a rich, underutilized resource for understanding
software production.  The challenge, however, is to
extract information from the database and present it
to software engineers and managers in a useful and
actionable form.  This is difficult because the data is
nontraditional, unstructured, and noisy.  The volume
of information (hundreds of potentially interesting
statistics on hundreds of thousands of files) makes
looking at printouts infeasible.  Furthermore, by
looking at fine-grain details it is impossible to obtain
an overall perspective.  The traditional way to analyze
large datasets involves statistical analysis.
Unfortunately, for software data, the many missing
values and non-numeric nature of the data frustrate
statistical analysis software.

To overcome these problems we have developed
three glyphs, infoBUG, timeWheel, and 3D-wheel,
that we believe to be novel. Each of the glyphs
presents software data from a new perspective. We
believe the glyphs are useful for visualizing software
project data for the following reasons:

Use of prior established visualizations: We combine
established visualization views (time series,
histogram, rose-diagram) to form our glyphs and
have tailored them to the software domain.  This
allows users to more easily interpret the glyph by
using prior graphic knowledge. In addition, our
glyphs allow us to effectively show both continuous
(e.g. time) and discrete (e.g. code author, file type)
data, unlike previous glyph work[6] which can only
encode discrete attributes.

Maintenance of object coherence: We use glyphs to
view many dimensions of a data object
simultaneously. We do this by clustering together
simple graphical artifacts (e.g. marks, bars, lines). In
infoBUG clustering is achieved by forming a familiar
shape, namely an insect. In timeWheel and 3D-wheel
the graphical components are clustered by using a
circular layout technique.

Another method for viewing such multi-
dimensional objects uses linked scatterplots [7]. The
advantage of glyphs over linked plots is that glyphs
preserve the ÒobjectnessÓ of the data elements (i.e. all
properties of a particular software component are
grouped together spatially). This is important in
analyzing software systems because the data elements
within that domain conform to real programs, people,
or concepts. On the other hand it is much harder to
look for general trends across objects using glyphs.
For this task, we provide users with the hierarchy of
scatterplots (Figure 9).

Ability to show multiple different object types: The
glyphs are versatile and can show data for many
different software components (e.g. releases,
engineers, features). Thus users do not need to relearn
new visualization structures for each component type.

In the following three sections we present each of
the glyphs in detail and apply them to visualizing
software data associated with a large real-time
software system.  This software system, developed
over the last two decades by thousands of
programmers, has gone through many releases and is
deployed world-wide. Our glyphs focus on showing
the various components present in this software
project, and how these components change through
time.

2: InfoBUG

The InfoBUG glyph provides an overview of the
software components and facilitates comparisons
across these components. It is so named because it
resembles an insect, consisting of four main sections:
wings, head, tail, and body. Figure 2 shows this
decomposition and Figure 3 shows 16 releases of the
software project using the infoBUG interface. The
advantage of an InfoBUG over tiled single-variable
plots is that it permits the user to simultaneously
compare objects across many dimensions.

InfoBUG Wing: Each insect wing is a time series
with time being encoded from top to bottom. The x-
axis on the left bug wing encodes the relative number
of code lines in the software object (loc) and the x-
axis on the right bug wing encodes the relative
number of errors (err).
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By comparing the shape of the right and left
wings we can determine whether increases in loc
bring about similar increases in err. Usually we
would expect increases in loc to bring about
comparable increases in err and vice versa. If loc
increases are not accompanied by increases in err,
then the particular object is possibly not being well
tested. On the other hand, if increases in err are not

caused by similar increases in loc, then the existing
code could be inherently difficult, have architectural
problems that are causing problems, or be poorly
written and in need of re-engineering. In such cases
the wings of the infoBUG would be non-
symmetrical, and thus relatively easy to identify in
the representation that we have chosen. From Figure
3, all the bug wings appear symmetrical, indicating
that there are no loc/err growth problems at the

Head Wings Body Tail
Time

c-code

header 
lines

sd-code

#-lines-of-code #-errors

#-File 
changes

#-of 
children #-Lines 

deleted

#-Lines added 
fr. errors

#-Lines added 
fr. new 
functionality

Figure 2: Decomposition of InfoBUG into its four main components

Figure 3: infoBUG  interface showing 16 software releases
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release level.

The position of the wings (whether at the bottom
or to  the top) indicates whether an object was
worked on early or late in the project. For example,
we can tell that release-1, release-2, release-7,
release-13, release-14, release-15 and release-16 are
all new releases because their wings are placed at the
bottom of their bodies. Release-3, release-4, release-
8, release-9 and release-10 are all older releases,
indicated by their wing positions close to the top.

The InfoBUG glyph is interactive.  Clicking on
the wings, will cause the selected time slice to be
shown in the head, body and tail of the infoBUG.
The current time slice shown is indicated with a red
band. The time component for all infoBUG glyphs
can be changed simultaneously by using the slider at
the bottom of the interface (shown at the bottom of
Figure 3).  Through interactive manipulation, the
analyst can determine how the different data attributes
of an object change through time. Stroking the
mouse through the wing(s) of objects shows the
changes in file type consistency (head), in number of
file changes (body) and in the number of lines added
and deleted  (tail).

InfoBUG Head: Within a software object (such as a
release, module, or a feature package) there are many
different types of code. For example, the release
shown in Figure 2 has C-language code, SD-language
(State Definition) code, header lines, preprocessor
directives, and debugging code. The antennae on the
infoBUG head show, for a given time, the relative
code sizes by type. The code type is color coded and
the color scale for it is shown at the left of the
display (Figure 3).

This encoding allows the analyst to compare the
composition of different objects. For example, Figure
3 tells us that most of the releases are made up of C
code (shown in light gray) and SD code (shown in
dark gray). Certain releases have significantly more C
code than SD code (e.g. release-5, release-6), while
others have about equal amounts of both (e.g.
release-4, release-1). All of the releases have some
small amount of L type code (headers).

By interactively changing the time component
we are able to obtain information on how the
different code types evolve. An interesting example is
release-10 which started off only having L type code
(header code). Shortly after, C code was added and
then more slowly, SD  code. Currently C code is
most prevalent and SD code next most with about
two thirds as much.  Such changes give us hints to
development practices and changes in the demands(or
functionality) of a software component.

InfoBUG Tail: The bug tail is triangle-shaped. Its
base encodes the number of code lines added (add)
and its height encodes the number of code lines
deleted (del).  The tail base (i.e. total number of code
lines added) is further divided into two parts: code
added due to error fixing (left, color coded in dark
gray) and code added for new functionality (right,
color coded in light gray). Figure 3 shows that most
of the releases consist of code added for new
functionality, except for release-8 which is a bug-
fixing release.

By looking at the shape of the tail we can
determine the ratio of add  to  del.  A short squat
triangle like the one for release-8 shows a high
add/delete ratio. The shapes of the triangles for most
of the other releases are less squat indicating a lower
add/delete ratio. A triangle that is higher than it is
wide has more deleted lines than added lines. This
could be an indication of a serious problem in the
release. None of the releases in Figure 3 show this
property.

Apart from the shape of the tail, the size of the
tail indicates the amount of activity in a particular
object. Objects with larger tails (e.g. release-6,
release-9) have more activity than those with smaller
tails (e.g. release-11, release-10). It is interesting to
note that release-6 appears to be the largest release
but it is a fairly new effort that only became active
relatively late in the development process.

InfoBUG Body: The infoBUG body encodes number
of file changes (fchg) in the bar at its center. From
Figure 3 we can tell that release-6 has the most
number of file changes (fchg). This is not surprising
as release-6 also has the most lines of code added
and deleted as indicated by its larger tail.

The InfoBUG body also shows the number of
child objects contained within the current parent
object. This is encoded as the size of the black circles
on the insect body. The type of child objects encoded
depends on the software hierarchy of the system
being analyzed. In our system for example, a release
object will have as its children modules, supervisors,
and packages. A supervisor object on the other hand
has developer and feature objects as children. The size
of the children groups helps us gauge whether a
software object is ÒwideÓ (i.e. related to many other
components) or ÒnarrowÓ (i.e. related to only a few
other components). A software object may be wide in
certain respects and narrow in others. For example
release-1 and release-2 in Figure 3 are spread out over
many modules (top left body circle) but affects very
few supervisors and packages. This indicates that the
releases are specific to a small set of packages but the
changes made affected large portions of those
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packages. On the other hand, release-11 affects many
packages (lower right body circle) but the effects
within each package are relatively small as indicated
by the small module circle (top left circle).

3: Time-wheel

The timeWheel allows the user to view multiple
different properties of a software component through
time. Each property is represented as a time series
and all of them are laid out circularly. Figure 4 shows
a timeWheel for developer userId1. The properties
encoded by the height of each of the time series in
the timeWheel is also shown in Figure 4.

UserId1

#-of-errors (err)

#-of-people (nop)

#-of-error-
added-lines 
(aerr)

#-of-error-
deleted-lines 
(derr)

#-of-new-added-
lines (anew)

#-of-new-deleted-
lines (dnew)

#-of-undefined-
deleted-lines (dudef)

#-of-undefined-
added-lines (audef)

#-lines-of-code 
(loc)

#-of-file-changes
(fchg)

Figure 4: Variables represented in
timeWheel

The number of undefined added code lines

(audef), and undefined deleted code lines (dudef) refer
to code changes that have missing data in its purpose
field. The number of people attribute (nop) for
developer objects refers to the number of people that
worked on the errors owned by the current developer.
Each of the variables on the timeWheel are color
coded according to the color at the left of the
timeWheel interface (Figure 6). The direction of the
arrows in Figure 4 indicates the direction of time
increment for each series.

Two main trends that can be easily identified
using the timeWheel are: tapering trends (Figure 5-
left) and increasing trends (Figure 5-right). Tapering
trends have high activity at the outset which slowly
tapers off with time. Increasing trends, on the other
hand, have little activity at the outset followed by
increasing activity towards the end.

Figure 5: (left)  tapering trend
(right) increasing trend

Figure 6 shows the timeWheel display of all the

Figure 6: timeWheel interface showing 16 software releases
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releases shown in Figure 3. From Figure 6 we can
pick out which releases have increasing and which
have decreasing activity. Increasing trends can be seen
on release-1, release-2, release-7, release-13,
release-14, release-15 and release-16. Not
surprisingly these are all the later releases and thus
most of the effort came late in the development
process. On the other hand, release-3, release-4,
release-8, release-9, and release-10 exhibit
decreasing trends. These are the older releases that
were developed earlier on in the development process
and then completed.

From Figure 6 we also see that all the time
trends within an object have approximately the same
shape (except for the two flat time series which
indicates that there is missing data). This indicates
that there are no deviations from the dominant trend
of progress.

Some objects, however, may have mixed trends.
For example in Figure 4, userId-1 has an overall
tapering trend, but there are divergent variables. The
interesting information to derive from userId-1Õs
timeWheel display is that the aerr and derr attributes
have tapering trends while the anew and dnew
attributes have increasing trends. Because the loc
trend (dark gray) is tapering, we can deduce that most
of the code added were from error fixes. In addition,
we can tell that there are two clear phases for
developer userId-1. First, userId-1 did error fixes but
later moved on to developing new code. We can also
deduce that error fixing accounted for a more
important portion of userId-1Õs activities because it

corresponds to the dominant trend. All this
information would have been lost in the other
visualizations because detailed time information is
not shown.

4: 3D-wheel

The three dimensional wheel encodes the same
data attributes as the timeWheel but using the height
dimension to encode time. Each object variable is
encoded as an equal slice of a circle and the radius of
the slice encodes the size of the variable just as in a
rose-diagram.  Each variable is also color coded as in
the timeWheel display.

An object that has a sharp apex has an increasing
trend through time and an object that balloons out
has a tapering trend. Figure 7 shows the same 16
releases of Figures 3 and 6 as 3D-wheels. It is easier
to perceive the  overall time trends from the 3D-
wheel glyphs (Figure 7) than the timeWheel glyphs
(Figure 6). This is because in the 3D-wheel, the trend
is clearly expressed by the shape of the wheel whereas
in the timeWheel the trend has to be derived from the
wheel pattern of each software component.

While it is easier to identify trends using the 3D-
wheel, it is harder to identify divergences because of
occlusion and perspective. Users must rotate the 3D-
objects to see all of the data and at any one time only
a subset of the data can be seen. Figure 8 shows the
3D-wheel representation of userId-1. Note that unlike
the timeWheel display (Figure 4) it is harder to see

Figure 7: 3D-Wheel interface showing 16 software releases
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the difference in trends between the anew, dnew
attributes (which have increasing trends) compared to
the other attributes (which have decreasing trends).
This is because part of the glyph is occluded.

Figure 8: 3D wheel display of UserId-1

5: Scenario

We have integrated our different glyphs using a
hierarchical sequence of tiled scatterplots (Figure 9).
This hierarchy is based on the software hierarchy
described in Figure 1 but with some modification. At
the x-axis of each scatterplot we encoded the number
of code lines (loc) and at the y-axis we encoded the
number of errors (err). This encoding is made
because the ratio of err/loc helps determine the
quality of a software component.

In this scenario, a software manager owning a
software subsystem is exploring its components for
possible problems. First of all, the manager loads all
the relevant software releases into the scatterplot
hierarchy (top row Figure 9). To get an overall
summary of the releases, she views them using the
InfoBUG glyphs. This is achieved by selecting all
objects in the scatterplot with a bounding box and
then pressing the BUG button on the interface. The
infoBUG view on all 16 releases is shown in Figure
3. An object that stands out in Figure 3 is release-8
which has significantly more bug-fixes than the other
releases.

The manager selects this release and displays all
of its child components at level two of the hierarchy
(middle row Figure 9). This level groups objects
according to module, supervisor, and feature. In this
view, she looks at the supervisor scatterplot and
picks the supervisors that were most involved with
this particular release (i.e. has high number of code
lines), namely sup-1 and sup-2. She then hands the
problem over to them.

The supervisors examine the module and feature
information for release-8 and finds that in particular,
changes were made to moduleY and moduleX. Thus
they display the child components of these modules
at level three of the hierarchy (bottom row Figure 9).
This level shows developers and low-level features.
Based on these scatterplots, the primary developer

Figure 9: Hierarchy of scatterplots
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involved in changing moduleX and moduleY  for
release-8 is userId3. The main low-level feature is
feature-1.

To get more information, the supervisor looks at
the global profile (statistics collected from all
releases) of feature-1 to see if the problem is special
to this particular release or is common across
releases. The global data of feature-1, viewed as an
infoBUG glyph (not shown), show that this
particular problem is present globally. The supervisor
makes note of this and moves on. There is a
possibility that the high err/loc ratio may cause the
release to be delayed. To check on lateness the
supervisor brings up a timeLine display for release-8
(Figure 10).

Figure 10: TimeLine display of release-
8  with lateness attribute encoded as
color

The timeLine display (Figure 10) is used to view
detailed information about each error. Each timeLine
encodes time in the x-axis and developers on the y-
axis. The start of each line represents the time at
which the error was opened for fixes and the end of
each line encodes when the error was fixed. Other
properties of the error(e.g. priority, severity, lateness)
may be mapped to the color of the lines. The color
encoding is shown by the axis on the left. By setting
the color of the timeline to encode lateness (Figure

10), the supervisor discovers that there are no serious
lateness problems in this release.

The supervisor then examines the main developer
involved in modules moduleX and moduleY, namely
userId3. From the infoBUG glyph of the global
profile of userId3 (Figure 11), it appears that userId3
is a bug fixer. This is indicated by the infoBUG
glyph tail base which is predominantly dark gray.
The timeLine display of userId3 (not shown)  further
shows that he is conscientious of fixing his bugs
promptly. At this point the supervisor contacts
developer userId3 and asks him for information on
the problem.

Figure 11: InfoBUG global profile for
userId-3

UserId3 is currently working on multiple
different releases, and is unable to recall the situation
surrounding this problem. Therefore, he runs the
glyph system and examines the information provided
by sup-1 and sup-2. He then loads in the files
associated with the problem and examines them
using SeeSoft[8]. He also uses a timeLine display
(not shown) to view the actual bug concepts that were
involved and summarizes his findings for his
supervisor, providing visual aids where necessary.

This scenario demonstrates that it is important to
have a system that spans different levels of data
abstraction (e.g. from releases to pakages to low-level
features) because different levels of the organization
are interested in different parts of the data. By having
all this within the same system, the people involved
can communicate through a common base and share
their findings.
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6: Conclusions

We present three novel glyphs for visualizing
software data. These glyphs are used to analyze
different aspects of a large software project, including
isolating problems, uncovering their effects, and
finding possible solutions. The glyphs are innovative
in that:
· They integrate established visualization

techniques thereby capitalizing on known
graphical skills.

· They maintain the ÒobjectnessÓ of software
components, which is important in the software
data domain.

· They are versatile and able to show many
different software data types.

One particularly exciting aspect of this research
involves our company Intranet.  We are using the
corporate WEB as a distribution mechanism to
provide access to our visualizations.  We built our
glyphs using Java and VRML and have them running
on top of a Netscape browser.  Now anyone inside
the corporate firewall can access our software
visualization glyphs and display software project
data.  In the past we have built many innovative
tools that were not widely used because of platform
and database obstacles.  By centralizing the databases
and building on top of a ubiquitous platform, we can
connect with a much wider user base.
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