
Revealing Structure within Clustered Parallel Coordinates Displays

Jimmy Johansson∗ Patric Ljung∗ Mikael Jern∗ Matthew Cooper∗

NVIS - Norrköping Visualization and Interaction Studio, Linköping University, Sweden

(a) A linear transfer function has been applied to the high-precision texture

in order to prevent cluttering and to provide overview of the data.

(b) A logarithmic transfer function is applied to a selected cluster. The

structure is preserved and emphasis is put on the low density regions.

(c) Local cluster outliers are enhanced. A square root transfer function is

used and the outliers are visible even through high-density regions.

(d) A complementary view of the clusters with uniform bands. ‘Feature

animation’ presents statistics about the clusters and acts as a guidance.

Figure 1: An example data set containing 7,800 7-dimensional data items classified into 6 clusters. Different transfer functions are used to map
density values to opacity revealing different aspects of the clusters in the parallel coordinates display. Since all operations are performed on
high-precision textures, details are preserved and the feedback is instantaneous and independent of the size of the data set and of the clusters.

ABSTRACT

In order to gain insight into multivariate data, complex structures
must be analysed and understood. Parallel coordinates is an excel-
lent tool for visualizing this type of data but has its limitations. This
paper deals with one of its main limitations — how to visualize a
large number of data items without hiding the inherent structure
they constitute. We solve this problem by constructing clusters and
using high-precision textures to represent them. We also use trans-
fer functions that operate on the high-precision textures in order to
highlight different aspects of the cluster characteristics. Providing
pre-defined transfer functions as well as the support to draw cus-
tomized transfer functions makes it possible to extract different as-
pects of the data. We also show how feature animation can be used
as guidance when simultaneously analysing several clusters. This
technique makes it possible to visually represent statistical infor-
mation about clusters and thus guides the user, making the analysis
process more efficient.

CR Categories: I.3.6 [Computer graphics]: Methodology and
techniques—Interaction techniques; I.5.3 [Pattern recognition]:
Clustering—Similarity measures

Keywords: Parallel coordinates, clustering, transfer function, fea-
ture animation.

∗e-mail:{jimjo,plg,mikje,matco}@itn.liu.se

1 INTRODUCTION

Today, multivariate data are common and as soon as we collect
data or perform a simulation, we are faced with the difficulties of
analysing and understanding complex data structures. Since these
data sets are rapidly increasing in size, many of the standard multi-
variate visualization techniques (see [4] for an overview) encounter
problems. They have limitations in how many data items can be
simultaneously perceived and interactively investigated. This prob-
lem is particularly relevant in the area of exploratory data analysis
— the process of examining data without knowing exactly what re-
lationships or anomalies to expect.

The parallel coordinates technique [12, 11], where N - dimen-
sional data items are represented in a 2-dimensional display using
parallel axes, is commonly used for analysing multivariate data and
makes it possible for the user to get an overview of the data. There
is, however, one major limitation with the parallel coordinates tech-
nique: even for a medium sized multivariate data set the display
suffers from ‘over-plotting’, resulting in an image which is far too
cluttered to perceive any trends, anomalies or structure. One solu-
tion to this problem is to perform an initial clustering of the data
[6]. Instead of visualizing each single data item, each cluster is
then visualized. In order to fully investigate a data set, however, the
cluster representations must reveal detailed information about each
individual cluster.

In this paper, we display clusters in the parallel coordinates dis-
play and present a number of techniques that allow for efficient
investigation of the structure within these clusters.



The major contributions of this paper are:

• A method for revealing and displaying cluster structure based
on using a high-precision structure texture (figure 1(a)) to-
gether with a flexible and user-driven method for enhancing
and tracking local outliers (figure 1(c)). These methods treat
all data items in a cluster as a single image making interac-
tive analysis of large clusters possible and the user is able to
visually interpret each cluster individually or all clusters si-
multaneously.

• The concept of using a transfer function (TF) in conjunction
with parallel coordinates to allow for a more powerful and
customized analysis process (figure 1(b)). A TF, defined as

T(s) = α(s), (1)

enables the user to easily investigate different aspects of the
data by mapping a data value, s, to an opacity value, α . Both
pre-defined as well as user-defined TFs may be used.

• ‘Feature animation’ as an intuitive way of visualizing statisti-
cal properties of the clusters (figure 1(d)). Both the variance
and skewness of a cluster may be used as a guidance as to
where to start the analysis.

The remainder of this paper is organized as follows. Section 2
presents related work concerning clustering in parallel coordinates
together with previous work on how to reveal cluster structures.
Section 3 describes our methods for creating high-precision tex-
tures to reveal the cluster structure and how a TF can be used in
conjunction with parallel coordinates. We also present a method
for analysing local outliers. Section 4 presents the feature anima-
tion technique and discusses its use in parallel coordinates. Section
5 deals with performance and implementation details. Finally, in
Section 6, we discuss our results and our future research work.

2 RELATED WORK

A clustering algorithm aims at grouping data items so that items in
a cluster are as similar as possible and as different from data items
in the other clusters as possible. Clusters can be expressed in dif-
ferent ways [9, 10]. A cluster may be exclusive, so that any data
item belongs to only one cluster. The clusters can be overlapping;
a data item may belong to several clusters. In a probabilistic clus-
ter, each data item belongs to all clusters with a certain probability.
Finally, the clusters may form a hierarchical structure. There has
been work on how to extend the parallel coordinates technique to
display and analyse the results produced by many of these cluster-
ing approaches.

Fua et al. [6] propose a multiresolutional view of the data via
hierarchical clustering. Each cluster is visualized as a band faded
from a completely opaque centre to a transparent edge. This tech-
nique reveals the true size of each cluster but presents limited in-
formation about the structure within each cluster. Their implemen-
tation provides a number of interaction techniques, such as drill-
down, dimension zooming and structure-based brushing. Berthold
and Hall [5] use fuzzy rules to first cluster the data and then use
parallel coordinates for displaying and analysing the result. Their
visual representation is similar to the one presented in [6]. They use
a solid line to represent the centre of each cluster with the centroid
of the cluster defining the centre value. As in [6], they use a fad-
ing region but this shows information about each data item’s cluster
membership. Andrienko and Andrienko [1] suggest “striped” en-
velopes and ellipse plots as two methods for displaying properties
and structure of subsets in parallel coordinates. Both of these meth-
ods are based on dividing the value range of each axis into equal fre-
quency intervals. A limitation of both methods is that they convey

information about each variable independently of each other, hence
it is not possible to investigate the relation between two adjacent
dimensions. Another approach based on the concept of represent-
ing each cluster as an envelope or polygon is presented by Novotny
[15]. He presents an approach based on representing the data using
different striped textures to help the user distinguish between the
different clusters.

The above methods for representing clusters in the parallel co-
ordinates display provide a good overview of the global structure
of the data but do not completely succeed in revealing all relevant
aspects of the structure within the clusters. When analysing a large
number of clusters, the parallel coordinates display provided by all
of the above methods suffers, to a greater or lesser degree, from
cluttering.

Another way to tackle this problem of cluttered parallel coordi-
nates displays is suggested by Miller and Wegman [14], where line
density plots are suggested. Density plots are also implemented in
Wegman and Luo [17], where each line is rendered with a user-
defined transparency value aiding in the visual search for clusters
in the cluttered parallel coordinates display. Rodrigues et al. [13]
use frequency plots to highlight highly populated regions to facil-
itate the analysis of cluttered parallel coordinates. They calculate
the frequency for each data item in each dimension independently
and the intensity along each line is set by interpolating between the
line’s endpoint values, that is the intensity of a line between two
axes is not constant making it hard to see correlations between two
adjacent dimensions. Artero et al. [2] attempt to highlight signifi-
cant relationships between axes in the parallel coordinates display
by constructing a density plot using a 3 × 3 averaging filter applied
to a pre-calculated frequency-matrix. This may give rise to arte-
facts because it creates lines in the parallel coordinates display that
do not directly map to data items in the original data set.

3 REPRESENTING CLUSTER CHARACTERISTICS USING
HIGH-PRECISION TEXTURES

This section describes how to generate a high-precision texture that
can be used to reveal different types of cluster information. We
also describe how TFs and enhancement of local outliers may be
used to improve and highlight different aspects of data visualized
with parallel coordinates. The process of creating the parallel co-
ordinates display and how the different textures are put together is
illustrated in figure 2. After reading the data into memory and cal-
culating clusters, information from the clustering algorithm is used
to construct the high-precision structure texture, outlier texture and
animation texture (described in section 4). The cluster representa-
tion is then constructed by compositing these textures on top of a
coloured polygon representing the chosen cluster representation.

The visualization methods presented here can be used to anal-
yse exclusive, overlapping and hierarchical clusters. When using
a probabilistic clustering algorithm, however, where all data items
are present in all clusters, this approach is inappropriate. For the
purpose of our experiments, we have chosen to use the well-known
partitioning cluster algorithm K-means [9, 10] to classify the data
items into exclusive clusters.

3.1 Constructing the Structure Texture

In parallel coordinates the different individual lines overlap each
other and make trends discernible. These trends must be preserved
as much as possible and limiting this information may guide the
user into drawing false conclusions about the data. The most obvi-
ous way to show the structure within a single cluster would be to
show the parallel coordinates for the data included in that cluster
overlaid upon the representation of that cluster. However, as the
number of data items within the cluster increases, the display will



texture
StructureOutlier

texture
Animation

Data

Outlier

Clustering

Transfer function

parameters

texture

Animation
parameters

User

Rendered

display

parameters

image

Figure 2: The process of creating the parallel coordinates display with
the high-precision texture for the cluster structure and textures for
local outliers and animation. All of these textures can be interactively
manipulated by the user and the outlier and animation textures can
also be independently switched on or off.

become cluttered. The number of intensity levels necessary to cap-
ture all the structure within a cluster is, in theory, only limited by
the number of data items. When dealing with very large data sets,
the number of lines needed to be rendered may cause limitations in
interactivity. As an alternative to rendering each individual line, a
high-precision texture will be used. A high-precision texture can be
defined as

T = tm,n ∈ N, with tm,n < 2B and B > 8. (2)

Typically B = 16 or B = 32 is used. N denotes the natural numbers.
Besides ensuring the same interactivity regardless of data and clus-
ter size, the texture approach gives a number of other advantages,
described in detail in this and the forthcoming sections.

The high-precision texture to hold the structure information of
each cluster is created as a pre-processing step using graphics hard-
ware. This is a fast operation but it introduces a precision prob-
lem due to the fact that the framebuffer has a limited precision. A
framebuffer of B bits supports 2B different intensity levels (B usu-
ally being 8, yielding 256 different intensity levels). If a cluster
in the parallel coordinates display contains more than M = 2B− 1
different intensity levels, this information can not be revealed using
additive blending. This can, however, be solved by rendering the
data in subsets of M items and accumulating these rendered subsets
in a higher precision buffer. This ensures that the maximum num-
ber of intensity levels never exceeds M, thus additive blending may
be safely used without the risk of saturation.

The subset technique deals with the precision problem but an-
other problem still remains. The problem is that in order to ensure
that the maximum available intensity range is used in each clus-
ter, it is necessary to count the number of intersecting data items
present anywhere in the display, not simply those which occur at

Figure 3: The high-precision texture used to represent the cluster
structure. In this example, the texture contains information about 3
clusters and the bottom third shows the image part used for 1 cluster.

the axes. This value, ρ , is used to normalize the intensity range
ensuring that all intensity information is retained. Without using a
texture, ρ would be computationally expensive to extract because
it would be necessary to calculate, for each pixel in the parallel co-
ordinates display, the number of overlapping lines. Using a texture
this is simply done by finding the maximum value in an array. Ob-
viously the value of ρ will vary from cluster to cluster and, usually,
it will be much lower for a small cluster than for a large one.

The complete procedure for creating the high-precision structure
texture is outlined below and an example of the result is illustrated
in figure 3.

1. Specify a coordinate system to be used for rendering lines in
the framebuffer and a 2-dimensional texture size.

2. For each cluster i, where i = 1, . . . ,C, perform the following
steps:

(a) Select all data items belonging to cluster i.

(b) Render the selected data items in subsets of M data
items, read pixels from the framebuffer and accumu-
late the results. The opacity value for each line is set to
1/M. This ensures that, when using additive blending,
the precision in the framebuffer is never exceeded.

(c) In the resulting image, find the maximum value ρi.

3. Find ρglobal , the largest of the ρi values and normalize the in-
tensity range. Depending on the normalization method used,
different aspects are revealed. If we normalize the resulting
image using ρglobal , clusters with a small maximum intersect-
ing value will be more transparent. Normalizing each clus-
ter individually using ρi, each cluster’s maximum intersecting
value will be perceived as equally dense. Both approaches
are, in a sense correct, only highlighting different aspects.

In the clustered parallel coordinates display, each cluster can ei-
ther be represented as a uniform band, displayed at the cluster cen-



Figure 4: The interactive TF editor used together with the parallel
coordinates display. In this example, a TF is drawn, using a square
root space, to enhance the lowest and highest regions.

troid, or represented with its true size. Evidently, the latter repre-
sentation gives a correct visual mapping but representing each clus-
ter as a uniform band may, in some situations, have its advantages.
First of all, for a larger number of clusters, a thin band will not take
up as much vertical space and can therefore be used to get a good
overview of the data. Secondly, the feature animation technique is
easier to interpret when using a uniform band. By letting the user
decide which cluster representation to use, different aspects of the
data may be investigated. The uniform bands are drawn with a rela-
tive width, ψ , according to ψ = P

Pmax
κ ,where P is the population of

the current cluster, Pmax is the population of the largest cluster and
κ is a user-defined scaling factor. During run-time it is possible to
interactively select a cluster for a more detailed analysis as well as
changing the width of the uniform cluster bands.

To get a better visual separation between each cluster, we use the
hue, saturation and value (HSV) colour model [7]. The saturation
and value components are set to fixed values and the angle, φ , be-
tween each hue component is calculated as φ = 2π

C . Applying the
high-precision structure texture to a coloured polygon reveals the
cluster structure and ensures that no information is lost. Figure 1(a)
shows an example of this applied to a synthetic data set.

3.2 Using Transfer Functions for Customized Cluster Visual-
ization

The high-precision texture reveals the cluster structure but, due to
the sometimes large range of intensities, the human eye has diffi-
culty in perceiving the smallest intensity values (which may be only
a thousandth or less of the maximum value). As in previous work
[2], a linear scaling may be used to scale the intensity range in a
cluster and make the smallest intensity values visible to the human
eye. However, this has the disadvantage that the highest intensity
values may be clamped and so a major part of the cluster structure
could be lost. A better way of manipulating the intensity values is
to use a transfer function (TF) which allows non-linear as well as
user-defined mapping. A more complete definition of the TF than
the one given in section 1 is

T(s) = α(s), with α(s) ∈ [0,1] and s ∈ [0,ρ] (3)

where α(s) can, for example, be a square root function or a table
lookup.

3.2.1 Pre-defined Transfer Functions

Our implementation supports a number of pre-defined functions.
Figure 5 illustrates 4 different TFs and the results applied to a clus-
ter in the parallel coordinates display. Figure 5(a) shows the result
of applying a linear TF. A square TF (figure 5(b)) filters out all the
sparse regions leaving only the areas of highest concentration. If the
data set contains much noise, this TF may help clear up the view.
In contrast, in order to enhance areas of low concentration, a square
root or logarithmic TF can be used (figures 5(c) and 5(d)). This is
useful when searching the cluster for potential outliers.

3.2.2 User-defined Transfer Functions

Besides using a pre-defined TF, it is possible to draw a function
either free-hand or by assigning a number of control points. This
gives the user an active role in the visualization process and pro-
vides a more powerful analysis than by only using the pre-defined
TFs. Since the TF operates on the texture, the feedback is instan-
taneous and the response time is the same regardless of the size of
the data set or clusters. Figure 4 shows a screenshot of the clustered
parallel coordinates display together with the interactive TF editor.

When drawing a free-hand TF, one common thing to do is to try
to isolate the data items having the lowest intensity values in order
to search for anomalies. This can, however, be difficult due to the
high intensity range: the precision in the low region of the drawing
space is simply not high enough. Instead of using a linear drawing
space it is more convenient to draw the TF using a square root or
logarithmic space. This gives the necessary precision in the lower
regions and it is easier to isolate the data items having the lowest
intensity.

3.3 Enhancing Local Outliers

In order to gain additional insight into a data set, outliers must be
investigated. It is thus of interest to be able to highlight these in
the visualization. Before we discuss the method we have used for
this, it is important to define what actually constitutes an outlier.
In the most general case an outlier is a data item that differs from
the main characteristics of the data set. This can be measured in
many different ways, see [16] for a more detailed discussion of this.
In our case, we focus on local outliers — a data item that differs
from the main trend in a particular cluster. In this section, a local
outlier is simply termed an outlier. We use a method based on the
interquartile range [8] to define if a data item is an outlier or not.
This is a robust estimate of the spread of the data, since changes
in the upper and lower 25 percent of the data do not affect it. For
each cluster, i, and dimension, j, the interquartile range, Qiqr

i j , is
defined as the difference between upper and lower quartiles, Q3

i j -
Q1

i j, where Q1
i j is the 25th percentile and Q3

i j is the 75th percentile.
The data items that belong to cluster, i, are determined to be outliers
if they fall βQiqr

i j above Q3
i j or below Q1

i j. This is done for each
dimension, j, independently. The value of β may be interactively
changed, but one commonly used rule when searching for outliers
is to use β = 1.5. Larger values of β can be used to identify more
extreme outliers.

Since the outlier test is applied to each dimension independently,
the matrix, R, containing the data items classified as outliers may
contain doubles or triples, and so on. Having the same data item
twice in R means that the data item is an outlier in two dimensions.
A threshold value, γ , may be used to specify in how many dimen-
sions a data item needs to be classified as an outlier in order that
the entire data item can be deemed to be an outlier of the cluster.
The complete procedure for constructing the outlier texture is as
follows.



0

1

0 ρi

(a) A linear TF is applied to the high-precision texture.

0

1

0 ρi

(b) A square TF is used and only dense regions become visible. This facilitates analysis of many clusters simultaneously.

0

1

0 ρi

(c) Applying a square root TF enhances low density regions and makes it easier to search for outliers.

0

1

0 ρi

(d) Using a logarithmic TF puts even more emphasis on the lower density regions.

Figure 5: 4 different TFs applied to a cluster in the parallel coordinates display. For the current cluster, ρi = 891.



(a) The 6 strongest outliers enhanced (β = 1.5, γ = 2).

(b) The 4 strongest outliers enhanced (β = 2.5, γ = 2).

Figure 6: Enhancing local outliers calculated using the interquartile
range. Since the outliers are enhanced they are clearly visible even
when they overlap dense regions.

1. Specify a coordinate system to be used for rendering lines in
the framebuffer and a 2-dimensional texture size.

2. For cluster i, i = 1, . . . ,C, do the following steps:

(a) For each data item, use the interquartile range to test if
the current data item is an outlier.

(b) In matrix R, find the data items that appear with a fre-
quency greater or equal to γ .

(c) Render each line with a user-defined transparency value
and read pixels from buffer. This will produce an image
containing only those data items classified as outliers.

The enhanced outliers are displayed using a separate texture, thus
they can be easily switched on or off, see figure 2. Since it is pos-
sible to specify both how much a single data item needs to differ
from the main cluster trend as well as in how many dimensions it
must be an outlier, this is a flexible and useful tool for the user when
trying to understand the data. It is also possible to interactively set
a scaling value to specify the opacity telling how much the outliers
should be enhanced. By studying the enhanced outliers in figure 6
we get information about the performance of the clustering algo-
rithm used. In figure 6(b) it is seen that the green and blue clusters
have the strongest outliers. Figure 6(a) also shows that the magenta
cluster contains a strong outlier. This indicates that the algorithm
has had most problems constructing these clusters.

4 FEATURE ANIMATION

Animation has been widely used in visualization to enhance the un-
derstanding of time-varying variables. In conjunction with parallel
coordinates, however, there are few examples. The most interesting
work has been done by Barlow and Stuart [3] who animate the line

(a) A negative
skewness.

(b) A symmet-
ric distribution
(no skewness).

(c) A positive
skewness.

Figure 7: Different types of skewness which can be detected using
the feature animation technique.

segments in the parallel coordinates display to enhance the under-
standing of how objects within the multidimensional space change
over time. We also use animation together with the parallel coordi-
nates display but for a different purpose. We do not use it for an-
imating time changes but for conveying statistical properties about
clusters. The technique, which we call ‘feature animation’, is used
to disclose the skewness or variance of each dimension and cluster
and consists of a set of moving lines close to each axis, with differ-
ent phase velocities. The lines are implemented using a pre-defined
texture and the appearance of movement is created by translating
the polygon’s texture coordinates across the texture.

For the variance the phase velocity is always positive, while for
the skewness it is possible to display a positive as well as a negative
skewness. The phase velocity, Vi j, for cluster, i, and dimension, j,
is calculated as follows.

For the variance

Vi j =
(

σ
2
i j

)ε

η , (4)

while for the skewness

Vi j =

{
0, if σi j = 0

∑
K
k=1(Xi jk−µi j)

3

(K−1)σ 3
i j

ζ , if σi j 6= 0 (5)

where K is the number of data items in cluster i, µi j is the mean of
the Xi jk values and σi j is the standard deviation. The lines which
are used in the animation are created using a separate texture. The
animation is performed by using Vi j to determine the speed in which
the vertical texture coordinates should be translated. η and ζ are
global constants used to control the speed of the animation. ε is,
by default, set to 1 but can be increased to display the quadratic
variance, cubic variance, and so on. This is important in order to
identify which regions have substantially larger variance than the
average. For a specific dimension where all data items have the
same value, that is σi j = 0, there will be a divide by zero in the
skewness equation (5). In this case, the skewness is set to 0.

By animating the variance the user can quickly examine each
cluster to see if the cluster is tight or loose. Typically, we want
to isolate loose clusters and try to find out why the clustering algo-
rithm has done a poor job constructing these clusters. The skewness
is a measure of the amount of asymmetry in the distribution. The di-
rection and speed of the animation indicate the direction, as shown
in figure 7, and magnitude of the skewness, respectively. The ani-
mation technique can be used regardless of which geometric cluster
representation is used. It is, however, more effective when used to-
gether with the uniform band cluster representation since the cluster
overlap is far less than when representing the clusters at their true
size. Figure 8 shows an illustration of the feature animation with



(a)

(b)

Figure 8: Animating the cluster variance or skewness attracts the
user’s attention and provides guidance when analysing a larger num-
ber of clusters. (a) presents an overview of the data and the user can
easily see areas of rapid movement which indicate a strong variance,
or a strong negative or positive skewness. In (b) a specific cluster is
selected for a more detailed analysis.

the moving lines close to each axis. In the same way as the outlier
texture, this texture may be independently switched on or off, see
the illustration in figure 2.

5 PERFORMANCE AND IMPLEMENTATION

Our visualization methods are implemented using C++ and
OpenGL. The time it takes to create the high-precision texture in the
pre-processing step depends on the texture size, the number of data
items and the dimensionality of the cluster. As an example, using a
standard desktop PC with a 2.4 GHz Intel P4 CPU, 1 GB RAM and
an NVIDIA Quadro FX 500 graphics card, it takes approximately
700 ms to perform the procedure described in section 3.1 to create
high-precision textures for 10 clusters of a 7-dimensional data set
containing 7,800 data items. Each of the 10 cluster representations
is constructed using a texture of size 1024 × 512. Applying TFs to
the high-precision textures is even less computationally expensive
and the same 10 clusters are updated in approximately 90 ms. For
the logarithmic function, which is by far the most time-consuming
operation, a lookup table was used. If an extremely large texture
is used, the delay when applying a TF could become a problem.
This can, however, be overcome by using a floating point buffer
and performing all operations directly on the GPU. During the vi-
sualization, we are able to maintain a frame-rate of 140 frames per
second, using a display window with a resolution of 1600 × 800
pixels, regardless of data size.

A limitation of our texture approach is that, for example, select-
ing a single data item or a subset of data items is more compli-
cated than when drawing each line individually. This is because all
data items in a cluster are treated as the same object. A seemingly
straightforward solution for this would be to compare the coordi-
nates of each data item and the mouse pointer. However, when

visualizing large clusters, the pixel resolution of the mouse pointer
would not be high enough since the width of each line would be
smaller than a single pixel. The same problem would, however, be
present when rendering each data item as an individual line. Cur-
rently, these types of selections within the clusters are not supported
in our system.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have described a method for revealing structure
in clusters visualized with parallel coordinates. This is done by
using a high-precision texture that can be used to prevent cluttering
and ensure that the entire available intensity range is preserved. To
accomplish this, we normalize the intensity range using a maximum
data item overlap, which may be present anywhere in the parallel
coordinates display and thus do not limit the calculation to those
overlaps occurring at the axes. This guarantees that no structure is
lost, either in the low or high-density regions. The high-precision
cluster structure technique has been used to visualize numerous data
sets, up to as large as 100,000 data items, and so far we have not
observed any cluttering artefacts. The structure is clearly seen and
it is easy to detect potential sub-clusters and trends.

A transfer function (TF) may be used on the high-precision tex-
ture to perform a linear, non-linear or user-defined mapping. This
gives new possibilities when analysing large clusters in parallel co-
ordinates and as illustrated in figure 5, it is possible to perceive very
low intensity regions while preserving the structure in high-density
regions. The use of TFs becomes, due to the increasing range of
intensity levels, more and more important as the number of data
items increases. Having the ability to draw a free-hand TF can be
a powerful tool when trying to investigate a specific feature. It can,
however, be difficult to draw a function that highlights relevant fea-
tures and it often takes numerous attempts to accomplish this. As
a complement to drawing a free-hand TF to highlight low-density
regions, different degrees of local outliers may be enhanced using
a technique based on the interquartile range. The advantage of this
technique is that it is possible to track these data items through the
high-density cluster regions.

All of our techniques are implemented using textures and this has
the advantage that the size of the data set and the clusters do not af-
fect the interactivity. Also, since all calculations when using the TF
editor are performed on the texture, the feedback is instantaneous
and different aspects and characteristics of a cluster can quickly be
revealed.

In this paper, we have also employed a technique called fea-
ture animation, which intuitively provides the user with informa-
tion about the cluster variance and skewness. The feature animation
technique has been tested on several data sets and figure 8 shows an
example of 7,800 7-dimensional data items classified into 10 clus-
ters. This gives 70 different intersection points that may require
analysis. Feature animation acts as an efficient guide for the user
and reduces the number of intersection points that need to be anal-
ysed.

For future work it would be interesting to study whether ad-
vanced image analysis methods could be used on the high-precision
texture to further reveal and highlight cluster properties. We have so
far experimented with simple methods such as Sobel and Laplace
filters for edge detection but, compared with using TFs, these have
not been found particularly effective. Using simple lines for the an-
imation has so far worked well and quickly provides the user with
relevant information. However, it would be interesting to study how
more complex animation schemes may be used.



ACKNOWLEDGEMENTS

This work has been funded by grant A3 02:116, supported by the
Swedish Foundation for Strategic Research.

REFERENCES

[1] G. Andrienko and N. Andrienko. Parallel coordinates for exploring
properties of subsets. In Proceedings of the second IEEE Interna-
tional conference on coordinated and multiple views in exploratory
visualization, pages 93–104, 2004.

[2] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz. Uncovering
clusters in crowded parallel coordinates visualizations. In 10:th IEEE
Symposium on Information Visualization, pages 81–88, 2004.

[3] N. Barlow and L. J. Stuart. Animator: A tool for the animation of
parallel coordinates. In Eighth IEEE International Conference on In-
formation Visualisation, pages 725–730, 2004.

[4] W. Basalaj. Proximity Visualization of Abstract Data. PhD thesis,
University of Cambridge, 2000.

[5] M.R. Berthold and L. O. Hall. Visualizing fuzzy points in parallel
coordinates. In IEEE Transactions on Fuzzy Systems, pages 369–374,
2003.

[6] Y. H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierarchical parallel
coordinates for exploration of large datasets. In IEEE Visualization,
pages 43–50, 1999.

[7] R. C. Gonzales and R. E. Woods. Digital image processing. Prentice
Hall, second edition, 2001.

[8] J. Han and M. Kamber. Data Mining:concepts and techniques. Mor-
gan Kaufmann, 2001.

[9] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT
Press, 2001.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2001.

[11] A. Inselberg. The plane with parallel coordinates. In The Visual Com-
puter, pages 69–92, 1985.

[12] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for vi-
sualizing multidimensional geometry. In IEEE Visualization, pages
361–378, 1990.

[13] J. F. Rodrigues Jr., A. J. Traina, and C. Traina Jr. Frequency plot and
relevance plot to enhance visual data exploration. In XVI Brazilian
Symposium on Computer Graphics and Image Processing, pages 117–
124, 2003.

[14] J. J. Miller and E. J. Wegman. Construction of line densities for par-
allel coordinate plots. Computing and graphics in statistics, pages
107–123, 1991.

[15] M. Novotny. Visually effective information visualization of large data.
In Proceedings of the 8th Central European Seminar on Computer
Graphics (CESCG 2004), pages 41–48, 2004.

[16] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999.
[17] E. J. Wegman and Q. Luo. High dimensional clustering using par-

allel coordinates and the grand tour. Technical Report 124, Fairfax,
Virginia 22030, U.S.A., 1996.


