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Abstract

The goal here is to present a multi-
dimensional visualization methodology
and its applications to Visual and Auto-
matic Knowledge Discovery in a coher-
ent paper. Visualization provides in-
sight through images and can be consid-
ered as a collection of application spe-
cific mappings:

ProblemDomain — VisualRange.

For the visualization of multivariate
problems a multidimensional system of
Parallel coordinates (abbr. ||-coords)
is constructed which induces a one-
to-one mapping between subsets of N-
space and subsets of 2-space. The re-

*Senior Fellow San Diego SuperComputing
Center, California, USA

t36A Yehuda Halevy Street, Raanana
43556, Israel

1530-1893/01 $10.00 © 2001 IEEE

sult is a rigorous methodology for do-
ing and seeing N-dimensional geome-
try. We start with an overview of
the mathematical foundations where it
is seen that from the display of high-
dimensional datasets the search for
multivariate relations among the vari-
ables is transformed into a 2-D pattern
recognition problem. This is the ba--
sis for the application to Visual Knowl-
edge Discovery which is illustrated in
the second part with real dataset of
VLSI production. Then a recent ge-
ometric classifier is presented and ap-
plied to 3 real datasets. The results
compared to those of 23 other classifiers
have the least error. The algorithm, has
quadratic computational complexity in
the size and number of parameters, pro-
vides comprehensible and explicit rules,
does dimensionality selection — where
the minimal set of original variables re-



quired to state the rule is found, and
orders these variables so as to optimize
the clarity of separation between the
designated set and its complement.
Finally a simple wisual economic
model of a real country is constructed
and analyzed in order to illustrate the
special strength of ||-coords in model-
ing multivariate relations by means of
hypersurfaces. ~

Do it in Parallel! :

- In 1854 a cholera epidemic raging in
London motivated Dr. J. Snow to
search for clues. ~On a map of the
neighborhood he placed dots at the lo-
“cations of the recorded deaths.
stroke of good fortune, the map also
had the positions of the drinking wa-
ter wells.
in the vicinity of just one of the wells
was visually striking. He had the han-
dle of the suspect well changed and the
epidemic stopped! Apparently, the dis-

ease was being transmitted by contact .
This true story is.

with the handle.
widely. considered as an early success
of visualization [22]; the picture pro-
vided insight which no one had gleaned

from the tabular -presentation of the

data. Since nothing succeeds like suc-
cess, others also chose to present and
analyse their data visually. But They
hit a wall: how to display data having
many more than 2 variables? In due
course lots of ingenious methodologies

By a-

The concentration of dots

for visually encoding finite multivari-
ate point sets were developed but hav-
ing serious shortcornings (see [22] for
a beautiful non-technical survey). By
and large, they are laborious, lose in-
formation, have high representational
complexity (which limits the number
of variables that can be handled), can
not represent relations among the vari-
ables, each variable may require differ- -
ent treatment etc. A conceptual break-
through is needed.

The approach taken here is, in the
spirit of Descartes, based on a coordi-
nate system but differing in an impor-
tant way. In geometry parallelism,
which does not require a notion of an-
gle, rather than orthogonality is the -
more fundamental concept. This, cou-
pled with the fact that orthogonality -
“uses-up” the plane very fast, was the
inspiration in 1959 for “Parallel Coor-
dinates” whose systematic development
began in 1977 (see [8] for a recent re-
view). The goal is the visualization of
multidimensional geometry and multi-
variate problems without loss of in-
formation. ' '

In the Euclidean plane R? with zy-
Cartesian coordinates, N copies of the
real line labeled X, X, ..., Xn are

‘placed equidistant and perpendicular to

the z-axis. They are the axis of the
Parallel Coordinate system for RY
all having the same positive orientation
as the y-axis. A point C with coordi-
nates (c1,cs,...,Cn) is represented by the



- \ )
;/‘ 2 N
J— N4
~.~1Cq y
o I A ¢
\ N
0 y X
\ /
/ \
A \
Ky 3 \\ )
N
A
X 2 K5 X Xs

Figure 1: Polygonal line C' represents
the point C = (c1, ¢2, €3, 4, Cs)-

complete polygonal line C (i.e. the lines
of which only the segments between the
axes are usually shown) whose N ver-
tices are at (i — 1,¢;) on the X;-axis
fori =1,...,N as shown in Fig.1. In

'Y \\ Xo

- %
V Y
X \\ %4
X1 iz
v TS

_ 7 L,L)
(#,a2)(d,maz+b) B, U N=m 1-mi/ (g, ma,+b)

a N A A
y{ )ﬂrm

{:xa=mx, +b
X X4

(.-01)

IO —

X4 X2

Figure 2: In 2-D parallel coordinates
induce a point «— line duality.

this way, a 1-1 correspondence between
points in RV and planar polygonal lines
with vertices on the parallel axes is es-
tablished.

At first a relation, typically involving
infinitely many points, is represented
by the envelope [3] of the corresponding
infinite family of polygonal lines repre-
senting the points of the relation. Let’s
look at the situation in 2-D where a
point on the plane is represented by
a segment between the r; and z, axis
and, in fact, by the whole line contain-
ing the segment. In Fig. 2, the distance
between the parallel axes is d. The line

(1)

is a collection of points A. They are
represented by the infinite collection of
lines A (the image of a set F' in ||-coords
is denoted by F) on the zy plane which
when m # 1 intersect at the point with
zy-coordinates:

l:z9=mx,+0,

’[:(_d_,_b_
1-m1—m

)- (2)

This point represents the linear re-
lation, Equation (1), and is the enve-

_ lope of the family of lines A. The two

parameters m and b specify completely
both [ and I. So in 2-D ||-coords induce
a Point = Line duality (i.e. mapping
points into lines and vice versa). But
there is a “little problem” when m = 1.
This is because dualities properly reside
in the Projective P? [5] and not in the



Figure 3: Hyperbbla (point-curve) —
- Ellipse (line-curve).

Euclidean plane. As m — 1 the point
I — oo in the direction with slope b/d.
So a line with m = 1 is mapped into
a direction which provides the full in-
formation about the line. That is, lines
with m = 1 are mapped into the ideal
points of P2.

Figure 4: Line Interval in 10-D. Heav-
ier polygonal lines represent the end-
points.

The role of the envelopes is seen cle-
arly in finding the image(representation)
7 of a curve r. The image is obtained
as the envelope of the lines represent-
ing the points of r. We distinguish
by referring to the original curves as
point-curves and their images as line-
curves. In Fig.3 we see one of the
6 ways that conics(point-curves) map
into conics(line-curves). Actually, -this
is a special case of a much more general
result [10] involving convex sets. If you
are still with us, congratulations. You

- are certifiably brave and perhaps incor-

rigibly masochistic. But we’ve only just

‘begun!

Indexing

Dualities between points and lines do
not usually generalize nicely in N-space -
but they do in ||-coords. Consider a line
[ 'in N-Dimensional space described by

(3)

licvi @ = myziy + by,

 for i=2,...,N. In the z;_jz;-plane the

relation labeled /;_;; is a line in-2-D
and therefore by Equation (2), is repre-
sented by the point:

- ‘{(z‘ —)(1—m)+1 b

2
(4)

where, the distance between adjacent
axes is taken as 1. So a line in N-
D can be uniquely represented by N-1
such points one for each pair (i — 1,1).

1—m; "1 —my



A polygonal line passing through all
these N-1 points necessarily represents
a point on the line [ since the pair of y-
coordinates a;_1, a; of its vertices simul-
taneously satisfy Equation (3) for i =
2,...,N. In Fig. 4 several polygonal lines
representing points on an interval of a
line in 10-D are shown. The indezing of
the points in Equation (4) is an essen-
tial part of the representation. Since the
display space is at a premium the index-
ing is usually not included in the pic-
ture. But in principle it must be acces-
sible from some database. A number of
construction algorithms based on this
representation, and crucially depending
on the indexing, have been found in-
cluding one for obtaining the minimum
distance between two lines and a Colli-
sion Avoidance algorithm for Air Traffic
control [9].

Recursion

It turns out that the three points
l_i’j,[j,kyl-i,k are always collinear. Let’s
denote by L the line on which the three
points are on. This property is essen-
tial for the representation of higher di-
mensional p-flats in N-space (that is
planes of dimension 2 < p < N —1).
Let’s illustrate it by taking a plane ms
in 3-D. For a line [ C my the points

: l_l,z, 1_2,3,1—1,3 are obtained, which by the

3pt collinearity property yield a line L.
Similarly for another line I’ C m the
corresponding line L' is obtained. The
point of intersection, ;93 = LN L,
has the remarkable property that for
any other line " C , the correspond-
ing line L” also intersects at 71 23. This
condition characterizes coplanarity and
is shown in Fig.5." It can be shown
in this way that 72 can be represented
bv two points with 3 indices (since the
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Figure 6: A Sphere in 5-D



Fi’gurev7.: A Convex Hypersurface in 20-
D and a point constructed with the in-
terior point algorithm. '

plane is described by a linear equation
in 3 variables) and which distinguish
them from two points with two indices
representing a line in 3-D.

To recoup, we started with points
(which are O-flats i.e. 0-dimensional)
on a 2-flat 7, then constructed lines (1-
flats) on 7y and from them obtained
the representation of the 2-flat still in
terms of points. This outlines the re-
cursive (on the dimensionality) con-
struction which enables the representa-
tion of higher dimensional objects (see
Eickemeyer|6)).

Polytopes & Hypersurfaces

- A multidimensional object, represented
in ||-coords, can still be recognized after

10

it has been acted on by projective trans-
formation (i.e. translation, rotation,
scaling and perspective). Using Eick-
emeyer’s representation, convex poly-
topes in N-D can be directly visualized
(Chatterjee [4]).

Certain classes of smooth hypersur-

. . faces can be represented and visualized. -

see Fig.6, and there is an efficient and
widely applicable algorithm for finding
and displaying interior points see Fig. 7.
In short, the representation in ||-coords -

- of non-trivial multidimensional objects

can be accomplished without loss of in-
formation, and provides visible features
revealing the geometrical properties of

- the object being represented.

Visual Data Mining - A =
Case Study -

We saw that parallel coordinates trans-
form multivariate relations into 2-
D patterns, a property that is well
suited for visual data exploration -
and analysis. For this reason sev-
eral software (including commercial)
tools (i.e. VisuLab(Hinterberger[18]),
VisDB(Keim [14]), Xmdv(Ward[15]),
XGobi (Swayne, Cook, Buja, [20]), Par-
allax (Avidan [1]) eéc include ||-coords.
This type of application hinges on :

e an informative display of the data,

e good choice of queries, and



X1 p.v X3 X4 X5 X6 X7 X8

473 Points

Figure 8: The full dataset

e skillful nteraction by the wuser
of the display in search of pat-
terns corresponding to relation-
ships among the variables in the
data.

To appreciate all this an actual case
study is described. The dataset, dis-
played in Fig.8, consists of produc-
tion data of several batches of a spe-
cific VLSI chip with measurements of
16 parameters involved in the pro-
cess. The parameters are denoted by
X1, X2,..., X16. The yield, as the
% of useful chips produced in the batch,
is denoted by X1, and X2 is a mea-
sure of the quality (given in terms
of speed performance) of the batch.
Ten different categories of defects are
monitored and the variables’ scales of
X3 through X12 are inverted so that
0 (zero) amount appears at the top
and increasing amounts appear propor-
tionately lower. The remaining X13

11

through X16 denote some physical pa-
rameters.

Since the goal here is to raise the
yield, X1, while maintaining high qual-
ity, X2, we have a case of multi-
objective optimization due to the pres-
ence of more than one objective. The
production specialists believed that it
was the presence of defects which pre-
vented high yields and qualities. So
their purpose in life was to keep on
pushing — at considerable cost and ef-
fort — for zero defects.

With this in mind the result of our.
first query is shown in Fig. 9 where the
batches having the highest X1 and X2
have been isolated. This in an attempt
to obtain clues; and two real good ones
came forth. Notice the resulting range
of X'15 where there is a significant sep-
aration into two clusters. As it turns
out, this gap yielded important insight
into the physics of the problem. The



other clue is almost hidden. A care-
ful comparison — and here interactiv-
ity of the software is essential — be-
tween Fig. 8 and Fig. 9 shows that some
~ batches which were high in X3 (i.e. due

to the inverted scale low in that defect)
were not included in the selected sub-
set. That casts some doubt into the
belief that zero defects are the panacea
and motivates the next query where we
search for batches having zero defects
in at least 9 (excluding X3 where we
saw that there are problems) out of the
10 categories. The result is shown in
Fig.10 and is a shocker. There are 9
such batches and all of them have poor
ytelds and for the most part also low
quality! That this was not questioned

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 XI12 Xi3 X14 XIS XI16
18 Points

Figure 9: The batches high in Yield,
X1, and Quality, X2.
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Figure 10: The batches with zero in 9
out of ten defect types.

and discovered earlier is surprising. We
scrutinize the original picture Fig. 8 for
visual cues relevant to our objectives
and our findings so far. And ... there is

¥

PN,

X1 X2 X3 X4 X5 X6 X7 X8 39 XI0 XIl' X12 X13 XM XI5 X16
) 5 Poicts

Figure 11: The batches with the high-
est Yields do not have the lowest defects
of type X3 and X6.



one staring us in the face! Among the
10 defects X3 through X12 whatever
X6 is, it’s graph is very different than
the others. It shows that the process
is much more sensitive to variations in
X6 than the others. For this reason,
we chose to treat X6 differently and re-
move its zero defect constraint. This
query (not shown) showed that the very
best batch (i.e. highest yield with very
high quality) does not have zeros (or the
lowest values) for X3 and X6; a most
“heretical” finding. It was confirmed by
the next query which isolated the clus-
“ter of batches with the top yields (note
the gap in X1 between them and the
remaining batches). These are shown
in Fig.11 and they confirm that small
amounts (the ranges can be clearly de-
limited) of X3 and X6 type defects are
essential for high yields and quality.
Returning to the subset of data which
best satisfied the objectives, Fig.9 in
order to explore the gap in the range
of X15, we found that the cluster with
the high range of X'15 gives the lowest
(of the high) yields X1, and worse it
does not give consistently high quality
X2, whereas the cluster corresponding
to the lower range has the higher quali-
ties and the full range of the high yield.
It is evident that the small ranges of
X3, X6 close to (but not equal to) zero,
together with the short (lower) range
of X15 provide necessary conditions for
obtaining high yields and quality. This
is also indicated in Fig. 11. By a stroke

13

of good luck these 3 can also be checked
early in the process avoiding the need of
“throwing good money after bad” (i.e.
by continuing the production of a batch
whose values of X3, X6 and X15 are
not in the small “good” ranges we have
found).

These findings
were significant and differed from those
found with other methods for statisti-
cal process control[2]. This approach
has been successfully used in a wide va-
riety of applications from the manufac-
ture of printed circuit boards, PVC and
Manganese production, financial data,
determining “skill profiles” (i.e. as in
drivers, pilots), etc.

Automation

Though it is fun to undertake this type
of exploration, the level of skill and pa-
tience required tends to limit the num-
ber of effective users. It is not surpris-
ing then that the most persistent re-
quests and admonitions have been for
tools which, at least partially, auto-
mate the knowledge discovery process.
Hence the motivation for the, recently
found [11], geometric algorithm which
is presented next.

Classification is a basic task in data
analysis and pattern recognition and an
algorithm accomplishing it is called a
Classifier [13], [19], [21]. The input is
a dataset P and a designated subset S.
The output is a characterization, that



is a set of conditions or rules, to distin-
guish elements of S from all other mem-
bers of P the “global” dataset. The
output may also be that there is insuffi-
cient information in the dataset to pro-
vide the desired distinction.

With parallel coordinates a dataset
P with N variables is transformed into
a set of points in N-dimensional space.
In this setting, the designated subset S
can be described by means of a hyper-
surface which encloses just the points
of S. In . practical situations the strict
enclosure requirement is dropped and
some points of S may be omitted (“false
negatives”), and some points of P — S
are allowed (“false positives”) in the hy-
persurface. The description of such a
hypersurface is equivalent to the rule
for identifying, within some acceptable
error, the elements of S. This is the
geometrical basis for the classifier pre-
sented here. The algorithm accomplish-
ing this entails:

- o use of an efficient “wrapping” al-
gorithm to enclose the points of S
. in a hypersurface S; containing S
and typically also some points of
P —8S; so S C S, of course such

an S, is not unique !,

e the points in (P — S)i NS, are iso-

1To avoid unnecessary verbiage by a state-
ment S; C S we also mean that the set of
points enclosed in the hypersurface S; is con-
_ tained in the set of points enclosed by the hy-
persurface Sy.

lated and the wrapping algorithm
is applied to enclose them, and
usually also a few points of Sy, pro-

ducing a new hypersurface S, with
S D (81— S2),

the points in S not included in
S1 — S5 are next marked for input
to the wrapping algorithm, a new
hypersurface S; is produced con-
taining these points as well as some
other points in P—(S; —S5) result-
ingin S C (S; —S)USs,

the process is repeated alterna-
tively producing upper and lower
containment bounds for S; termi-
nation occurs when an error crite-
rion (which can be user specified)
is satisfied or when convergence is
not achieved:

Basically, the “wrapping” algorithm
is a fast way of producing a hyper-
surface enclosing tightly a given point
set. The kind of surface produced is
a convex-hull approximation. The effi-
ciency of the version implemented here
is due to the use of the ||-coords repre-
sentations of N-dimensional objects ap-
plied in the description of the resulting
hypersurface [8]. To summarize, ini-
tially the wrapping S; encloses all the
points of S = Sy. Then in the attempt
to remove all extraneous points a cavity
is created by the subsequent wrapping.
Such cavities are generically denoted by
Sopn, for n = 1,2, .... Usually some of the

14 . .



points of S are enclosed in Sy, so a cor-
rection follows with a Sy, 1, the hyper-
surfaces with odd subscript, which en-
close and add these points to the previ-
ous approximation for the enclosure of
S. Such a correction may also add some
points of P —S which need to be subse-
quently removed, or better reduced, to
provide an increasingly tighter bound.
- So the process entails bounding the des-
ignated set S alternately from above
and below providing, in case of conver-
gence, an increasingly better approxi-
mation for S. It can and does hap-
pen that the process does not converge
when P does not contain sufficient in-
formation to characterize S. It may
also happen that S is so “porous” (i.e.
sponge-like) that an inordinate number
of iterations are required.

At step r the output is the descrip-
tion of the set S, which consists of:

e 3 list of the minimum number
of variables needed to describe S
without loss of information. Un-
like other methods, like the Prin--
cipal Component Analysis (PCA),
the classifier discards only the re-
dundant variables. It is important
to clarify this point. A subset S
of a multidimensional set P is not
necessarily of the same dimension-
ality as P. So the classifier finds
the dimensionality of S in terms of
the original variables and retains
only those describing S. That is,

15

it finds the basis in the mathemat-
ical sense of the smallest subspace
containing S, or more precisely the
current approximation for it. This
basis is the minimal set M, of vari-
ables needed to describe S. We
call this dimensionality selection
to distinguish it from dimensional-
ity reduction which is usually done
with loss of information. Retain-
ing the original variables is impor-
tant in the applications where the
domain experts have developed in-
tuition about the variables they
measure. The classifier presents
M, ordered according to a criterion
which optimizes the clarity of sep-
aration. This may be appreciated
with the example provided in the
attached figure, in addition,

the current approximation of the
rule stated in terms of conditions
on the variables M,, which consti-
tutes the description of the current
hypersurface, is obtained.

So on convergence, say at step 2n,
the description of S is provided as :

S = (Sl—SQ)U(53_54)U...U(SQn_1_SQn)

this being the terminating expression
resulting from the algorithm.

The implementation allows the user
to select a subset of the available vari-
ables and restrict the rule generation to
these variables. In certain applications,



as in process control, not all variables
can be controlled and hence it would be
useful to have a rule involving such vari-

ables that are “accessible” in a mean-
~ ingful way. There are also two options
available : ’

e cither minimize the number of
variables used in the rule, or

e minimize the number of steps, in
terms of the unions and (relative)
complements, in the rule.

In the first case, when the first hy-
persurface S; is found, the variables oc-
curring in its description are the mini-
mum number of variables needed to de-
scribe S. From this point on the al-
gorithm can be restricted to use only

these. If convergence is achieved a rule

~ involving this minimal set of variables
is obtained; we fondly refer to this vari-
ation as Enclosed Cavities and ab-
breviate it by EC. By contrast, when
the algorithm is allowed to operate on
all the initially selected variables at
each step, the number of operations in
“the terminating expression is reduced.
This variation of the classifier is called
Nested Cavities (abbr. NC). Clearly
the minimal set of variables needed to
specify S is not given by NC. In prac-
tice, the reduction in the number of
~ steps between EC and NC turns out
to be substantial.

In the 3 cases presented next the di-
mensionality was lowered significantly

16

not only by EC but also by NC to less
than half and in one case to about 1/4
of the original variables.

One of the difficult problems in using
parallel coordinates for viewing a spe-
cific dataset is to somehow find an axes
permutation which is “good” (i.e. pro-
vides rich visual cues on what may be
true or not) about the specific dataset.
There is an inherent ordering emerging
from dimensionality selection which, as.
we see below, answers this need well.
This ordering is completely dataset spe-
cific. Further, since the algorithm is
display independent there is no inherent

‘limitation as to the size and number of -

variables in the dataset. The most sig-
nificant limitation then in visual data.
mining is finally overcome. The visual
aspects can now be used for display-
ing the result as well as exploring the
salient features of the distribution of
data brought out by the classifier.

This is not the right forum to ana-
lyze the computational complexity and
other intricacies of the algorithm. It is
worth pointing out that achieving an
“optimum”, in the sense of minimizing
the number of cavities, turns-out to be
an NP-complete problem. Still the next
best thing is done here in terms of dis-
covering the cavities in order of decreas-
ing size. Other relevant aspects are:

® an approximate convex-
hull boundary for each cavity is ob-
tained, ' ‘



e utilizing properties of the repre-
sentation of multidimensional ob-
jects in ||-coords, a very low poly-
nomial worst case complexity of
O(N?|P|?) in the number of vari-
ables N and dataset size |P| is ob-
tained; it is worth contrasting this
with the often unknown, or un-
stated, or very high (even exponen-
tial) complexity of other classifiers,

an intriguing prospect, due to the
low complexity, is that the rule
can be derived in near real-time
making the classifier adaptive to
changing conditions,

the minimal subset of wvariables
needed for classification is found,

the rule is given explicitly in terms
of conditions on these variables, in
terms of included and excluded in-
tervals, and provides “a picture”
showing the complex distributions
with regions where there is data
and “holes” with no data; that can
provide significant insights to the
domain experts,

Results

Three datasets, benchmarks in classi-
fication, are used to test the classifier.
The results are then compared to those
obtained with other well-known classi-
fiers.
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On the classifiers

During 1990-1993, Michie, Spiegelhal-
ter and Taylor [16], on behalf of the ES-
PRIT program of the European Union,
made extensive studies of several classi-
fiers applied to diverse datasets. About
23 different classifiers were applied to
about 20 datasets for comparative trials
in the StatLog project. This was de-
signed to test classification procedures
on large-scale commercially important
problems in order to determine suitabil-
ity of the various techniques to indus-
try. There were three main types of
classifiers used:

1. Extension to Linear Discrim-
ination Discrim, Logdisc,
Quadisc, SMART, Backdrop, Cas-
cade and DIPOLY92.

. Decision Trees and Rule-
Based Methods : = NewlD,
AC?, Cal5, C4.5, CART, Ind-
CART, Baytree, CN2, ITRule

. Density Estimates : Naive-
Bay, CASTLE, ALLOC80, K-NN,
RBF, Kohonen and LvQ.

Data, Results and Comparisons

Satellite image data

The dataset used in Statlog is from a
region in Australia. It consists of multi-
spectral values and associated classifi-
cation according to ground type and



can be found in the Statlog ftp site.
Each frame consists of four digital im-
ages of the same scene in different spec- -
tral bands, two in the visible and two in
the near infra-red region. There are 36
variables (the attributes) and the class
attribute for six (6) soil types i.e. the
- six classes to be characterized by the
classifier(s).” The data has 4435 sam-
ples(data items) for the training set and
2000 samples in the test set. By way of -
explanation, for validation the dataset

is partitioned into training and testing

subsets, the “popular” proportions be-
ing about 2/3 to 1/3. The rule is de-
rived, by the classifier, on the train-
ing set and tested on the remainder of
the data; the error pertains to the false
“positives” and “negatives”. The com-
parative results are shown in Table 1
below. An important observation, is
that in a great many cases, Sy turned
out to be the hypersurface requiring the

largest number of variables for its defi-

nition. We conjecture that this is an in-
dication of the existence of many “bor-
derline” cases (i.e. close elements in the
class S and it’s complement), or it - may
suggest that the class definition may be
“fuzzy” . ‘ '

Vowel recognition data

‘The data collection process involves
digital sampling of speech with acous-
~ tic signal processing, followed by recog-
nition of the phonemes, groups of
phonemes and words. The goal here is
a speaker-independent rule based on 10

Rank | Classifier %1:;1)11‘ ‘rat,;e(:z
1 NC 4.3 9.0
2 k-NN 8.9 9.4
3 LvQ 4.8 10.5
4 DIPOL92 5.1 11.1
5 RBF- 11.1 12.1
6 ALLOC80 | 3.6 13.2
7 IndCART 2.3 13.8
8 CART 7.9 13.8
9 Backprop | 11.2 13.9
10 Baytree 2.0 14.7
11 CN2 1.0 | 15.0
12 C4.5 4.0 15.0
13 NewID 6.7 15.0
14 Calb 12.5 15.1
15 Quadisc 10.6 | 155
16 AC* 15.7
17 SMART | 12.3 15.9
18 Cascade 11.2 16.3
19 Logdisc 11.9 16.3
20 Discrim 149 | 171
21 Kohonen | 10.1 17.9
22 CASTLE | 18.6 19.4
23 | NaiveBay | 30.8 28.7
24 ITrule | Failed | Failed

Table 1: Summary of the StatLog re-
sults and comparison with the Nested
Cavities (NC) classifier for the satel-
lite image data. The error is averaged
over the six classes.
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| Rank Classifier Testing Mode Test Error Rate %4]
1 Nested Cavities (NC) | Cross validation 7.9
2 CART-DB Cross validation 10.0
3 Nested Cavities (NC) Train & Test 10.5
4 | Enclosed Cavities (EC) | Cross validation 13.9
5 Train & Test 13.9
6 CART Cross validation 21.8
7 k-NN Train & Test 44.0
8 RBF Train & Test 46.5
9 Multi-layer perceptron Train & Test 494
10 Single-layer perceptron Train & Test 66.7

Table 2: Summary of classification results for the vowel dataset.

- variables of 11 vowels occurring in var-
ious words spoken (recorded and pro-
cessed) by 15 British male and female
speakers. Deterding [7] collected this
dataset of vowels and which can be
found in the CMU benchmark reposi-
tory on the WWW. There are 528 en-
tries for training and 462 for testing.
Three other types of classifiers were
also applied to this dataset: neural net-
works and k-NN by Robinson & Fallside
[12], and Decision trees by Shang and
Breiman [17]. For the sake of variety
both versions of our classifier were used
and a somewhat different error test pro-
cedure was used. The results are shown
in Table 2.

Monkey neural data

We have decided to include the re-
sult on this dataset due to its in-
teresting and unusual features. Here
there are two classes to be distinguished
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consisting of pulses measured on two
types of neurons in a monkey’s brain
(poor thing!). The experiment was
conducted at the Yale Medical School
and we received the data from Prof.
R. Coiffman’s? group working on this
classification problem. There are 600
samples with 32 variables. = Remark-
ably, convergence was obtained and re-
quired only 9 of the 32 parameters.
The resulting ordering shows a strik-
ing separation. In the attached figure
the first pair of variables z,,z, origi-
nally given is plotted showing no sepa-
ration. In the adjoining plot the best
pair xi1,Z14, as chosen by the classi-
fier’s ordering, shows remarkable sep-
aration. The discovery of this manu-
ally would require constructing and in-
specting a scatterplot with 496 pairs ...!

2He was the recipient of the National Medal
of Science in Mathematics for the year 2000.



Figure 12: The monkey dataset showing the separation achieved by two of the 9
out 32 parameters obtained from the dimensionality selectior..

The result shows that the data consists
of two “banana-like”® clusters in 8-D
one (the complement in this case) en-
closing the other (class for which the
rule was found). Note that the classi-
fier can actually describe highly com-
plex regions. It can build and “carve”
the cavity shown. It is no wonder that
separation attempts in terms of hyper-
planes or mnearest-neighbor techniques

3Perhaps the monkey was dreaming about
bananas during this fateful experiment ...
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can fail badly on such datasets. The
rule gave an error of 3.92 % using train-
and-test with 66 % of the data for train-
ing) and impressed the Yale group — no
an easy feat! -

The geometric formulation combined
with the results on the representation
of multidimensional objects in ||-coords
gave a classifier with remarkably low
computational complexity. This makes
feasible the classification of truly large
in size and number of variable datasets,.



i.e. the scalability problem is overcome,
something we hope to test with suit-
able partners in the near future. The
low complexity, enables the derivation
of the rule in near real-time, and then
apply it to incoming data, rendering the
classifier adaptive to changing condi-
tions. The rules provided are explicit,
and “visualizable” and yield dimension-
ality selection which choses and orders
the minimal set of variables needed to
state the rule without loss of infor-
mation. As it often happens, new
questions have been raised on, termina-
‘tion criteria, automatic approaches to
overfiting, interpretation of the “geom-
etry” of the dataset as described by the
rule and others. :

Visual
Models

& Computational

Finally we illustrate the methodology’s
ability to model multivariate relations
in terms of hypersurfaces — just as we
model a relation between two variables
by a planar region. Then by using the
interior point algorithm, as shown for
example in Fig.7, with the model we
can do trade-off analyses, discover sen-
sitivities, understand the impact of con-
straints, and in some cases do optimiza-
tion. For this purpose we shall use a
dataset consisting of the outputs of var-
ious economic sectors and other expen-
ditures of a particular (and real) coun-
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try. It consists of the monetary values
over several years for the Agricultural,
Fishing, and Mining sector outputs,
Manufacturing and Construction in-
dustries, together with Government,
Miscellaneous spending and resulting
GNP; eight variables altogether. We
will not take up the full ramifications
of constructing a model from data.
Rather, we want to illustrate how |-
coords may be used as a modeling tool.
Using the Least Squares technique we
“fit” a function to this dataset and we
are not concerned at this stage whether
the choice of function is a “good” choice
or not. The function we obtained
bounds a region in R® and.is repre-
sented by the upper and lower curves
shown in Fig. 13.

The picture is in effect a simplistic
visual model of the country’s economy,
incorporating it’s capabilities, limita-
tions and interelationships among the -
sectors etc. A point interior to the
region, satisfies all the constraints si-
multaneously, and therefore represents
(i.e. the 8-tuple of values) a feasible
economic policy for that country. Using
the interior point algorithm we can con-
struct such points. It can be done in-
teractively by sequentially choosing val-
ues of the variables and we see the re-
sult of one such choice in Fig. 13. Once
a value of the first variable is chosen
(in this case the agricultural output)
within it’s range, the dimensionality of
the region is reduced by one. In fact,



the upper and lower curves between the
2nd and 3rd axes correspond to the re-
sulting 7-dimensional hypersurface and
show the available range of the second
variable (Fishing) reduced by the con-
straint. In fact, this can be seen (but
not shown here) for the rest of the vari-
ables. That is, due to the relationship.
between the 8 variables, a constraint on
one of them impacts all the remaining
ones and restricts their range. The dis-
play allows us to experiment and ac-
tually see the impact of such decisions
“downstream”. By interactively vary-
ing the chosen value for the first vari-
able we found, that it not possible to
have a policy that favors Agriculture
without also favoring Fishing and vice
versa. :

Proceeding, a very high value from
the available range of Fishing is cho-
sen and it corresponds to very low val-
ues of the Mining sector. By contrast.

in Fig.13 we see that a low value in
Fishing yields high values for the Min-
ing sector. This inverse correlation was
examined and it was found that the .
country in question has a large num-
ber of migrating semi-skilled workers.
When the fishing industry is doing well
most of them are attracted to it leaving
few available to work in the mines and
vice versa. The comparison between
the two figures shows the competition
for the same resource between Mining
and Fishing. It is especially instructive
to discover this interactively. The con-
struction of the interior point proceeds
in the same way. - :

Let us move over to Fig.7 where
the same construction is shown but for

a more complex 20-dimensional hyper-

surface (“model”).  The intermediate
curves (upper and lower) also provide
valuable information and “previews of
coming attractions”. They indicate a

mas
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Figure 13: Model of a country’s econ-
omy ‘
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Figure 14: Competition for labor be-
tween the Fishing & Mining sectors —
compare with previous figure



neighborhood of the point (represented
by the polygonal line) and provide a feel
for the local curvature. Note the nar-
row strips between X13, X14 and X15
(as compared to the surrounding ones),
indicating that for this choice of values
these 3 are the critical variables where
the point is “bumping the boundary”.
A theorem guarantees that a polygonal
line which is in-between all the inter-
mediate curves / envelopes represents an
interior point of the hypersurface and
all interior points can be found in this
way. If the polygonal line is tangent to
anyone of the intermediate curves then
it represents a boundary point, while if
it crosses anyone of the intermediate
curves it represents an ezterior point.
The later enables us to see, in an appli-
cation, the first variable for which the
construction failed and what is needed
to make corrections. By varying the
choice of value over the available range
of the variable interactively, sensitive
regions (where small changes produce
large changes downstream) and other
properties of the model can be easily
discovered. Once the construction of
a point is completed it is possible to
vary the values of each variable and see
how this effects the remaining variables.
So one can do trade-off analysis in this
way and provide a powerful tool for,
Decision Support, Process Control and
other applications. As new data be-
comes available the model can be up-
dated with the Decision Making being
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based on the most recent information.
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