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ABSTRACT

A methodology for visualizing analytic and synthetic geometry in R" is presented. It is based on a
system of parallel coordinates which induces a non-projective mapping between N-Dimensional and
2-Dimensional sets. Hypersurfaces are represented by their planar images which have some geometrical
properties analogous to the properties of the hypersurface that they represent. A point — — line duality
when N = 2 generalizes to lines and hyperplanes enabling the representation of polyhedra in R”. The
representation of a class of convex and non-convex hypersurfaces is discussed together with an
algorithm for constructing and displaying any interior point. The display shows some local properties
of the hypersurface and provides information on the point’s proximity to the boundary. Applications
to Air Traffic Control, Robotics, Computer Vision, Computational Geometry, Statistics, Instrumen-
tation and other areas are discussed.

Introduction

hy is our space three-dimensional? The

physicist Paul Ehrenfest found that plan-
etary orbits in N-dimensional Euclidean space RY
are stable if and only if N = 3, precluding other
dimensional universes from having a long career
[18]. Another dimensionality result is that rigid )
bodies rotating in R" have an axis of rotation if \
N is an odd number [40] showing that even the )
parity of the dimension number can have far G
reaching implications! For scientists and others
studying multi-variate relations or data sets, un- \
derstanding the underlying geometry of a problem
can provide crucial insights into what is possible
and what is not. This need to augment our per-
ception, limited as it is by the experience of our
three-dimensional habitation, has attracted con-
siderable attention and various visualization meth-
odologies have been proposed (see for example
(1, 21, 3], 14), [5), (8}, (10}, [12], [22], [23], [26], The polygonal line shown represents the point
(27), 1351, 137}, [41], [42], 43}, [44] and [45)) Cm (€1 Cimtr €1 Cir 1o ).
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Figure 1: — Parallel axes for RV,
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Here a methodology based on a multi-dimensional
system of Parallel Coordinates whose development
began in 1978 is described. Preliminary results on
some representations and construction algorithms
for N-Dimensional Lines and Hyperplanes ap-
peared in 1981 [28]. The results were extended in
[29], [33] and [34]. Interest in this method grew
in recent applications to Robotics ([14], [20], [21]),
Statistics ([6], [13], [26], [24], and [46]), Compu-
tational Geometry [32], and other areas (see [16],
[17), [25], [31], [38)). In conjunction with the de-
sign of the new Air Traffic Control system an
algorithm for early conflict detection and resolu-
tion!, [30], was derived using some results on lines
in PV the projective N-space ([33), [34)).

Parallel Coordinates bears a superficial similarity
with Nomography (9] . It differs from all other
visualization methodologies in a fundamental way.
Parallel Coordinates yield graphical representa-
tions of Multi-Dimensional relations rather than
just finite point sets. These representations have
a rigorous mathematical structure leading to al-
gorithms for synthetic constructions. In short, it
is a system for doing and visualizing analytic and
synthetic multi-dimensional Geometry.

Definitions and Basic Results in
2-dimensions

n the plane with xy-Cartesian coordinates,

and starting on the y-axis, N copies of the
real line, labeled x; , x;, ..., Xy, are placed equi-
distant and perpendicular to the x-axis. They are
the axes of the parallel coordinate system for
Euclidean N-Dimensional Space RV all having
the same positive orientation as the y-axis --see
Figure 1. A point C with coordinates
(1, ¢, ..., cn) is represented by the polygonal
line whose N vertices are at (i — 1, ¢ ) on the
xi-axis for i= 1, ..., N. In effect, a 1-1 corre-

1 Patent Pending.
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Figure 2: — In the plane parallel coordinates in-
duce duality.

Top part shows the family of segments, representing
points on a given line, intersecting at a point. Lower
part shows the duality line £ — — £ point in general.

spondence between points in R N and planar
polygonal lines with vertices on xj, X2, ..., XN
is established.

Points are denoted by capitals and lines (or arcs
of curves) by lower-case letters and planes by
lower case greek letters respectively. In parallel
coordinates, the corresponding symbols are shown
with a bar superscript (i.e. € represents the line
£, P represents the point P etc.).

We have embarked on a program involving the
definition via parallel coordinates of a mapping



Figure 3: — A (point) curve is mapped into a (line)
curve formed by the tangents at each one of its
points.

Here an ellipse is mapped into a hyperbola. In gen-
eral, conics are always mapped to conics.

1:2°Y 5 0P

That is, a relation among N-variables (a subset
of PV } is mapped into a subset of P2, providing
a 2-dimensional image whose properties facilitate
the visualization and study of the corrcspondinﬁ
N-dimensional hypersurface. For a line £ in P
the representation (i.e. 1(£)) is constructed as the
envelope (see [7]) of the family of polygonal lines
in P representing the points of €. In general, a
smooth convex hypersurface S < PV is be repre-
sented by I(S) ; the envelope of its tangent
hyperplanes at each point which in turn is based
on the representation of hyperplanes in PV.

Points on the plane are represented by segments
between the x; and x;-axis and, in fact, by the
line containing the segment. In Figure 2, the dis-
tance between the x; and x; axes is “d”. The line
) L:x,=mx; +b, m<®

is a collection of points 4. They are represented

by the collection of lines A on the xy-plane which
when m # 1 intersect at the point:

2 t:(7=,

363

NS
SN\

7 N

Figure 4: — Interval on a line in P,

given with respect to the xy-Cartesian coordinates.
For lines with m = 1, we consider xy and x1x;
as two copies of the Projective Plane [15] so that
the line £ corresponds to the ideal point € with
tangent direction (i.e. slope) b/d. Conversely, in
the x;x;-projective plane the ideal point with
slope m is mapped into the vertical line at
x = d/(1 — m) of the xy-projective plane. Hence,
we have a duality between points and lines of the
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Figure 5: — Nearly Intersecting Lines




and visually) in parallel coordinates.

Figure 6: — Aircraft flying straight line paths for specified time periods i.e segments in 4-D (3-D space and time).

Here 3 paths (in 3-D space) intersect yet two aircraft actually collide. That is only two aircraft go through the same
point at the same time. Such a situation is impossible to discern in 3-D though itis easily found (both algorithmically
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projective plane. This duality as expressed by
means of homogeneous coordinates is a linear
transformation a--correlation--between the line
coordinates [m, —1, b] of £ and the point co-
ordinates (d, b, 1 — m) of £. By mecans of the
correlation C4 the collection of points on a curve
1s mapped into a collection of lines which can be
considered as tangents to another curve (“line
curve”--see Figure 3). On the plane conics map
into conics but this property is more general.
Sections of a double cone whose base is any
bounded convex, let’s call them gconics, map into
other such sections corresponding, to bounded
and unbounded convex sets as well Astars (gen-
eralized hyperbolas). This yields a new duality
between bounded and unbounded convex sets
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and hstars as well as a duality between Convex
Merge (Convex Union) and Intersection. Based
on these results efficient new algorithms for Con-
vex Hull construction, and the Convex Merge
and Intersection of Convex sets were derived (see
[32]). For non-convex curves there is a duality
between cusps and inflection points.

Multi-Dimensional Lines

line ¢ in PV can, after possibly some ma-
nipulation, be described in terms of N — 1
linearly independent equations of the form:



T=9

Figure 7: — Six aircraft flying at the same altitude.

Initial positions (T = 0 sec.) and circles centered at
each aircraft with radius 2.5 nm (separation standard)
are shown to scale. Arrows represent the velocity vec-
tors.

There is no loss of generality in assuming that
i < j. The gist is that £ is represented in parallel
coordinates by N — 1 points of the xy — plane,
whose homogeneous coordinates are:

@ &= DA —m)+i=j b, 1-m),
indexed by two subscripts so that the point E,-j
represents the linear relation £; When N =2
this reduces to the previous point « — line du-
ality.

In Figure 4 the points € correspond to the adjacent
variables parametrization where j =i+ 1. An-
other common parametrization involves a base
variable such as i=1 and je{2,3,.,N}. A
polygonal line P represents a point Pe ¢ if and
only if the ;e Py, where Py; is the if portion (i..
line) representing the projection of P on the
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X;xj-plane of P. A word of caution on the con-
struction of points of £ based on this representa-
tion; all equations in (3) where m; = 0 need to
be grouped together and the corresponding por-
tion of P constructed first or last. From (4) any
other point say &, representing the linear rela-
tionship between x, and x; can be obtained by a
simple construction. In fact, if P,Qel
%s=P"” n 0" where P’ is the projection of P
on the 2-plane x;x;. Also it turns out that the
points &, £ and €y are always collinear.

There is an easy construction algorithm to find
the intersection of two lines if it exists. The same
construction can be used to discover proximity
when the two lines are nearly intersecting or better
yet when their minimum distance is less than
some specified bound. This can be computed very
efficiently without need for computing the actual
distance. The construction is shown in Figure 5.

T = 300

Figure 8: — Conflicts among the six aircraft.

A conflict occurs when the separation between any
two aircrafl is less than 5 nm (i.e. two circles intersect).
Here several conflicts occur within the first S minutes.
The time elapsed in seconds is indicated in the lower
left hand corner.




Figure 9: — Conflict Parallelograms

Here potential conflicts between aircraft 4 (where the
two dashed lines intersect) and remaining aircraft are
analyzed. An aircraft with the same velocity as 4 in
order to avoid entering a circle must necessarily avoid
the parallelogram(s) associated with that circle.

T = 837

Figure 10: — Three Pairs of Tangent circles
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r=any

Figure 11: — Triple Tangency

Figure 12: — Resolution in 3 dimensions

Aircraft are at different altitudes and protected space
is cylindrical
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Figure 13: — In P3 planes are represented by two
vertical lines and a polygonal line 4

This generalizes to N-dimensions where
hyperplanes are represented by N-1 parallel lines
and a polygonal line representing one of its points.

There is an important application to Air Traffic
Control based on this representation. The trajec-
tory of an aircraft is a function of four variables,
time T and three space variables say x;, x;, x3.
A straight line trajectory for constant vector ve-
locity can be represented by three stationary
points say 7:1, 1:2, 2:3. The time axis can be
thought of as a “clock” . At any given time T,
the position of the aircraft is found by selecting
the value of T on the T-axis. Such a representation
also clarifies the problem of understanding colli-
sion as the intersection in space and time (i.e.
both aircraft must be at the same position at the
same time; a 4-D intersection) as contrasted to
passing through the same position but at different
times. An example is shown in Figure 6.

Based on this methodology an algorithm for Con-
flict Detection and Resolution was derived and
tested on some complex scenarios provided by
the FAA in conjunction with the design of the
new Air Traffic Control system [36]. By way of
illustration a resolution not involving altitude
changes (i.e. in 2 dimensions) for one of these
scenarios (scenario 8) is presented. The initial
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position and constant velocity of the six aircraft
involved is shown in Figure 7. As can be seen
from Figure 8 several conflicts arise. An expert
Air Traffic controller resolved the conflicts with
four (4) aircraft remaining at the same altitude
and changing the altitude of two. It is usually
more desirable to avoid altitude changes. Our
algorithm was able to resolve all conflicts without
altitude changes. There are two key steps.

The first involves the computation of certain par-
allelograms which enclose the circular safety zones
centered on each aircraft. For example in Figure
9 the parallelograms with respect to aircraft 4 and
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Figure 14: — Hypercube Representation in Parallel
Coordinates.

Graph of square (a), cube in 3-D (b) and Cube in
5-D (c) all having unit side.




Figure 15: — On the first 3 axes a set of coplanar
points is shown

The points are not equally spaced with respect to
any of the variables.
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Figure 16: — Coplanarity

The two planar points representing lines on 3-di-
mensional plane form a pencil of lines.
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Figure 17: — A plane in 3-dimensions is repre-
sented by 2 points.

the remaining aircraft are shown. There may be
none, one or two adjacent parallelograms with
each circle and they are computed from the rela- .
tive velocity of that aircraft with respect to aircraft
4. Any aircraft flying with the same velocity as 4
in order to avoid the circles must avoid entering
the parallelograms. The second step involves the
representation of lines in parallel coordinates by
points so that the trajectory information for each
circle is represented by intervals on the same line.
Aircraft 4, in this case, is in conflict with another
aircraft if and only if the points representing the
trajectory of 4 are interior to the intervals associ-
ated with that aircraft. The interval associated
with aircraft k consists of the points representing
all paths parallel to the path of 4 which enter the
parallelogram of k. The closest conflict-free path
for 4, parallel to the original trajectory, is repre-
sented by one of the end-points of the union of
these intervals. If that end-point lies on yet another
interval /; the union is enlarged by including J;
until eventually a free end-point is found. Unfor-
tunately, it is not possible to provide a short
exposition on this interesting application and a
proper one would take us too far afield. The
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Figure 18: — Near coplanarity in “noisy” data that
is points on a slab rather than a plane.

interested reader is referred to two papers currently
in preparation [11] and [30].

Let’s see how this works out. To resolve the
conflicts, at 7= 0 five aircraft start maneuvers
which eventually lead each of them to a new
course parallel, and within Snm of the original
one, where they continue flying at their previous
constant velocity with the circles exquisitely miss-
ing each other. This is shown in Figure 10. There
and also in Figure 11 are seen instances of tangent
circles. This is because the algorithm minimally
disturbs the aircraft from their original paths. In
Figure 12 the resolution is applied in 3-D to cy-
lindrical protected airspaces. The generalization
of this approach to more general Motion Planning
in Robotics is currently being investigated [20],
[21).

Hyperplanes

ince a line in 2-dimensions is represented by
a point whose x-coordinate is 1/ (1 — m) the
set of parallel lines is represented by a vertical

Figure 19: — Points (0-flats) on a "noisy”
hyperplane (i.e. slab) in 6-dimensions

line at x = 1/ (1 — m) in parallel coordinates. On
a hyperplane in PV a coordinate system with
N — 1 axes (and the N-1 sets of parallel lines to
each axis) is represented in parallel coordinates

Figure 20: — Portions of Lines (1-flats) formed
from the previous points. No structure is apparent




Figure 21: — Portions of 4-Flats formed from the
3-flats. The points are very near to a hyperplane
(5-Flat) in 6-dimensions.

by N — 1 vertical lines. Hence, a hyperplane in
PV is represented by N — 1 vertical lines and a
polygonal line P representing one of its points
Figure 13. A feel for the power of the represen-
tation can be gained from Figure 14 from which,
with a bit of practice, the vertices, edges and faces,
and their interrelationship, of the hypercube can
be recognized. A large set of equally spaced points
on a hyperplane will show intersections along the
vertical lines. There is an alternate elegant
hyperplane representation due to Eickemeyer [19].
To motivate it let us look a set of 3-dimensional
points (consider at first only the portion in the
first 3 || axes) shown in Figure 15 which happen
to be on a plane n and are not equally spaced.
So the vertical lines revealing co-planarity of the
previous representation are not seen. In fact, no
discernible “structure” seems evident. Now let us
form lines on the plane n from pairs of these
points. These lines are represented by a pair of
planar points indexed with two subscripts (ie.
two out of the three collinear points €, €53 £;3).
The collection of lines through the £ points for
every line £ on any plane turns out to form a
pencil of lines at a point 7;,3 as shown on Figure
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Figure 22: — Portion of lines formed from a point
set.

16. In fact this turns out to be a necessary and
sufficient condition for coplanarity! Since a planar
point has two independent coordinates more in-
formation is needed to identify the specific plane.

X1 x2 x3

Figure 23: — Histogram showing number of inter-
sections per position
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Figure 24: — Only two points have more than one
intersection.

This shows that the original points belonged to two
different planes. To completely identify the planes
this process may be repeated with another axes per-
mutation to obtain two more points.

This may be done by taking another copy of the
3 parallel coordinate axes as shown on the right-
hand-side of Figure 15 (hence the six axes seen)
and represent the original points on ©t with respect
to these axes which effectively have a different
horizontal distance between them than the original
set, repeating the process and getting another pen-
cil of lines as shown Figure 17 at another point
say 7,31+ which turns out to have the same y-co-
ordinate as 7;,3 so the coordinates of the two
points have enough information between them to
identify the plane n that they represent. It is rather
remarkable that a plane in 3-dimensions, a two
dimensional object technically called 2-flat, can
be represented in terms of two pencils of lines
which in turn represent its lines (1-dimensional
objects called 1-flats) in terms of two planar pencil
of lines. Recall, that a 1-flat (i.e. in 2-dimensions)
is represented by one pencil of lines. To distinguish
the situation where points represent lines we label
them with two indices and points representing

n

Figure 25: — Portions of 4-flats formed from a set
a points in 5-D

planes are labeled with three indices. Altogether
then in order to discover coplanarity of points it
is recommended that lines be formed by appro-
prately sampling the points by pairs. Then
coplanarity can be found independently of the co-

X x2 x3 x4 X5

Figure 26: — Number of intersections per position




X1 X2 X3 X4 x5

Figure 27: — Two ”hits” with more than | intersec-
tion. Points are on two hyperplanes.

ordinate system and VIEWPOINT of the observer
which does not enter in this representation.

It is not difficult to think of situations where
discovering coplanarity is of interest, i.e. Computer
Vision, Statistics, CAD/CAM etc.. In such cases
one would expect the data to have errors so it is
important to see if this representation is numeri-
cally stable with “noisy” data. So a set of points
which is within “20% of coplanarity” in the sense
that given:

(5

M, M, X+ Xy + X3 = ¢t g,

points on the nominal plane n are found with ¢,
while points on the “noisy” plane n,, are computed
by allowing the vanation |c,| = % .2|c| from the
nominal. Repeating the process by forming lines
again two pencils of lines are clearly seen, Figure
18, but now with some variation. It would be
interesting to study the density of the clusters of
intersecting lines picking the two points or better
the two positions where the highest number of
lines intersect as the “best planar fit” to the data
in some reasonable sense.

7

This representation, as well as the numencal sta-
bility, turns out to be completely general. As an
example consider the 6-dimensional points with
the same kind of variation from some nominal
hyperplane shown in the first six axes in Figure
19 Repeating the process as is shown in Figure
20, for the 1-flats by joining successive pairs of
points representing linear objects of increasing di-
mensionality the near coplanarity is discovered
from the pencil of lines formed by the points
representing the 4-dimensional hyperplanes
(4-flats) contained in the hyperplane as shown in
Figure 21. Repeating this process for the successive
axes permutations 234561’, 34561'2', 4561'2'%,
5612'3'4’ yields 4 more such points. The position
of these five points, labeled by the six indices
corresponding to their axes permutation com-
pletely identify the nominal hyperplane. In gen-
eral, in N-dimensions an (N-1)-flat is represented
by N-1 pencils of lines (i.e. points) representing
(N-2)-flats each point labeled with N indices.

Points belonging to several planes may also be
“separated” in this way. Starting with 100 points
in 3-dimensions 100 lines are formed by sampling
pairs of points as shown in Figure 22. The num-
ber of intersecting lines per pixel is recorded, Fig-
ure 23, with only two positions having more that
1 “hits”, Figure 24 indicating that the original
point set was on two different planes. This sepa-
ration method works also in higher dimensions,
see Figure 25, where 4-flats are formed from a set
of 500 points in 5-dimensions, the number of
intersections per position is shown on Figure 26
with two positions having more than one Figure
27 showing that the points are on two separate
hyperplanes.

In general a p — flat in N-space, specified by the
(N-p) linearly independent equations,

ptl

Mipipony 1; GX, = G

(6)

1< SN, ij#i,j*r

is represented by the (N — p)p points, given in
p



homogeneous coordinates, by

p+1 P+l
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where the axes xp,....,xy are followed by the
axes xy’, ...., Xy, d; is distance from the y-axis to

the x;-axis and
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This is a very recent result and its ramifications
are just being explored. The identification of sev-
eral hyperplanes and in fact the subject of Geo-
metric Modeling of polyhedra in N-dimensions
with the very exciting prospect of visualizing
polyhedra in any dimensions in terms of connected
indexed points are now open to investigation.
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Figure 28: - Finding a Feasible Point for a Process Represented by a Hypersurface
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deally one would like to have a display where

any pair of variables would be adjacent and
since there are N(N — 1)/2 pairs it seems like
0(N2) displays with the vanables differently or-
dered are needed. Fortunately this is not the case.
Wegman's Theorem [6] states that for N = 2n
exactly n “well chosen” displays suffice while for
N =2n+ 1, n+ 1 displays suffice. A complete
graph of N vertices can be obtained as a union
of that many “properly chosen” spanning trees
each representing a particular display. Let the
ith-node stand for x; and the edge i for the pair
x;x;. Each of the aforementioned spanning trees
represents a particular display containing all the
variables appearing in the order indicated by the
edges. Altogether then O(N) displays contain all
possible pairs of variables adjacent to each other
since all the corresponding spanning trees yield
the complete graph. For example, for N = 6 the
permutations 126354, 231465, 342516 contain ev-
ery possible pair (independent of the order) of
adjacent subscripts from 1 to 6.

It was mentioned earlier that a convex
hypersurface S = P¥ is represented by *(S) the
envelope of is tangent hypersurfaces. This needs
to be done stagewise one dimension at a time as
for the representation of N-flats in the previous
section. This is currently being investigated. In
the meantime, below a simplified hypersurface
representation and its possible usefulness is illus-
trated.

Here a general convex hypersurface is represented
by computing the envelope of the collection of
polygonal lines representing its points. The rep-
resentation of a convex hypersurface in P20 is
shown in Figure 28. It corresponds to a particular
(nonlinear) relation which for our purpose de-
scribes a process involving 20 parameters labeled
X1, .., Xp0. An N-tuple is a feasible point for the
process if and only if it is interior to the
hypersurface. This is the geometrical equivalent of
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the the statement that a particular combination
of parameter values satisfies all the constraints
imposed on the process. There is an algorithm
for finding interior points to such surfaces which
is illustrated in the figure.

The interval on the x;-axis between the upper and
lower portions of the envelope indicates the range
of parameter x;; When a value for x; = aq; 1is
chosen in the available range of x; the number
of variables in the relation is reduced by one (i.e.
from 20 to 19 variables in our example). Again
with reference to Figure 28 from the fixed value
of x) tangents to the upper and lower portions of
the envelope are drawn (here the points of tan-
gency are not seen since they lie outside the strip
between the x; and x;-axes). The envelope of
the 19-dimensional hypersurface is then obtained
from the (description) of the original hypersurface
with the value x; = a;. The restricted available
range of x,, due to the constraint of fixing the
value of one of the variables, is the interval on
the x,-axis between the upper and lower tangents.
A polygonal line is shown which always lies be-
tween the intermediary envelopes. It represents
an interior point to the hypersurface and a// in-
terior points can be found in this way.

When the value of a variable is fixed, the complete
envelope of the 19-dimensional surface may be
drawn showing at a glance not only the current
value of any of the parameters (in this case x;)
but, unlike a conventional “instrument panel”, the
current available range of all the parameters; this
is due to the interrelationship among them. There
are other salient features of the display. Note that
for the parameters xy3, X4, X5 the available
ranges are the narrowest. This indicates that the
feasible point is closest to the boundary with re-
spect to these critical parameters. Hence, where
there is need for rapid decisions in view of a lot
of information (e.g. as is piloting very fast aircraft),
significant information reduction can be achieved
by controlling the critical parameters whose pri-
ority is decided by their proximity to the boundary.
This also brings out the possibility of displaying
or highlighting only the information desired (pos-
sibly specific subsystems) at any given time. When



a point is not feasible the display shows the cor-
responding polygonal line crossing some of the
intermediate envelopes. It is then evident which
pararmeters must be changed and by how much in
order to bring the polygonal line inside the enve-
lope and the process in control.

Though necessarily brief it is hoped that we have
conveyed the basics of a new geometrical tool for
representing and visualizing multivariate relations.
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