DIE PERFEKTE MUSIKEMPFEHLUNG — PERFECT FÜR WEN?
ABOUT ME

- Music Information Retrieval researcher
 - Music search engines and interfaces
 - Music recommender systems
 - Recently: smarter tools for music creation
- PhD and PostDoc at JKU Linz (2005-2016)
- Since 2017: Assistant Professor at TU Wien
SESSION CONTENT

- Music Recommender Systems
 - Sources of data
 - Collaborative filtering
 - Content analysis
- Recommendation use cases
- Biases of platforms
RECOMMENDER CLASSIFICATION SCHEME

- Collaborative Filtering (CF) (based on users/community)
- Content-based Recommenders (based on item’s content)
- Knowledge-based Recommenders (product finder)
- Context-aware Recommenders (based on the usage context)
- Hybrid Recommenders (a mixture of different approaches)
DATA FUELS RECOMMENDERS

Interaction Data
- Listening logs, listening histories
- Feedback ("thumbs"), purchases

User-generated
- Tags, reviews, stories

Curated collections
- Playlists, radio channels
- CD album compilations
DATA FUELS RECOMMENDERS

Content (audio, symbolic, lyrics)
- Machine listening/content analysis
- Human labelling

Meta-data
- Editorial
- Curatorial
- Multi-modal (album covers etc.)
COLLABORATIVE FILTERING

- Exploits interaction data
- "People who listened to track A, also listened to track B"
- Main underlying assumption: users that had similar taste in the past, will have similar taste in the future
- Typical methods
 - Comparing rows/columns in matrix
 - Matrix factorization
THE INTERACTION MATRIX

Can contain number of plays, listening time, rating, etc.

<table>
<thead>
<tr>
<th>Listening</th>
<th>Track 1</th>
<th>Track 2</th>
<th>Track 3</th>
<th>Track 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>3</td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>User 4</td>
<td></td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>User 5</td>
<td>5</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

"user profile"

Similar users found, e.g. by comparing user profiles
FACTORS HIDDEN IN THE DATA

Assumption of matrix factorization-based recommender systems:

- Observed data are interactions of 2 factors: users and items
- Calculate latent factors for users and items from the data
MATRIX FACTORIZATION

- Decompose rating matrix into user and item matrices of lower dimension k
- Learning factors from given ratings using stochastic gradient descent

$$\min_{x_u, y_i} \sum_{r_{u,i} \text{ is known}} (r_{u,i} - x_u^T y_i)^2 + \lambda(\|x_u\|^2 + \|y_i\|^2)$$

- Prediction of rating: inner product of vectors of user u and item i

- Factors not necessarily interpretable (just capture variance in data)
EXAMPLE OF COLLABORATIVE FILTERING OUTPUT

People who liked **Disturbed — The Sound of Silence**, also liked...

1. Bad Wolves – Zombie
2. Five Finger Death Punch – Bad Company
3. Disturbed – The Light
4. Metallica – Nothing Else Matters

Effect/issue: popularity biases
FACTORS HIDDEN IN THE DATA

Assumption of matrix factorization-based recommender systems:

- Observed data are interactions of 2 factors: users and items
- Calculate latent factors for users and items from the data
- But it’s a bit more complex...
FACTORS HIDDEN IN THE DATA

INTRINSIC
“What?”
- Listener Background
- Music Content

GOAL
“Why?”
- Listener Intent
- Music Purpose

CONTEXT
“Where & How?”
- Listener Context
- Music Context

INTERACTIONS
[observed in data]
Beat/downbeat → Tempo: 85 bpm

Timbre
 e.g. for genre classification, “more-like-this” recommendations

Tonal features
 e.g. for melody extraction, cover version identification

Semantic categories via machine learning
 not_danceable, gender_male, mood_not_happy

Effect/issue: no popularity biases, but no personalization
A MIXTURE OF MANY THINGS

- Incorporation of different sources and complementary information
- Machine Learning to fit which recommender/information in which context
- E.g. to control for diversity, exploitation vs exploration, novelty, etc.
- Different types of recommenders and models for different features

Oramas et al., RecSys DLRS 2017
Lean in: Building Playlists

Recommended Songs
Based on the songs in this playlist

ADD Back & Forth Aaliyah Age Ain't Nothing But A Nu... 3:61
ADD Get It On Tonite Montell Jordan Get It On...Tonite 4:36
ADD Wifey - Club Mix/Dirty Ver... Next Work It Out! 4:02
ADD Doin' It Explicit LL Cool J Mr. Smith (Deluxe Edition) 4:54
ADD Freek'n You Jodeci The Show, The After Party... 6:19
Focus on stuff you know you like
Personalized, leaning towards exploit
FOCUS ON: HYPER-PERSONALIZED DISCOVERY

About discovering new stuff. Intended to feel like it’s curated. Just. For. Me.

Leaning towards explore
ONE MORE THING...

INTRINSIC
“What?”

Listener Background

Music Content

GOAL
“Why?”

Listener Intent

Music Purpose

CONTEXT
“Where & How?”

Listener Context

Music Context

INTERACTIONS
[observed in data]
FACTORIZING THE SERVICE INTO THE PICTURE

INTRINSIC
"What?"

LISTENER BACKGROUND

SERVICE

CATALOG

ITEMS

MUSIC CONTENT

GOAL
"Why?"

LISTENER INTENT

LISTENER CONTEXT

SERVICE CONTEXT

MUSIC PURPOSE

CONTEXT
"Where & How?"

MUSIC CONTEXT
THE SERVICE INTRODUCES FURTHER BIASES

- Which content is provided/recommended?
 - e.g. Soundcloud recommends different content than Spotify

 Why is this service in place? What is the purpose/identified market niche?
- What are the identified use cases? (Discovery? Radio? Exclusives? Quality?)
- Do they push their own content (cf. Netflix)?

How do catalog and service aims depend on context?
- Are there licensing issues/restrictions in particular countries?
- Is the service context-aware? (e.g. app vs desktop/browser)
IMPLICATIONS

- Different methods with different biases incorporated
- Algorithmic design choices to deal with biases
- Service design choices and restrictions introduce biases
- Feedback loops amplify popularity biases
- Platforms are in control and can shape recommendations
FAQ

How can I promote my music on Spotify?

How do I get my music on a Spotify playlist?

How do I submit music to your Editorial team?
ALL ABOUT THE MUSIC . . . ?

- Analysis of Spotify playlist dataset
- 1 million US playlists
- Webcrawler to identify record label of tracks
- Information for about 50% of tracks
ALL ABOUT THE MUSIC . . .?

- Investigating playlist diversity wrt. labels
- Entropy-based
- Left: pure
- Right: diverse
- Any comments?
Dr. Peter Knees
Assistant Professor
TU Wien, Institute of Information Systems Engineering

peter.knees@tuwien.ac.at
https://www.ifs.tuwien.ac.at/~knees/
@peter_knees
https://www.linkedin.com/in/peterknees/