
Abstract. The web services paradigm provides organizations with an
environment to enhance B2B communications. The aim is to create
modularized services supporting the business processes within their organi-
zation and also those external entities participating in these same business
processes. Current web service frameworks do not include the functionality
required for web service execution performance measurement from an
organization perspective. As such, a shift to this paradigm is at the expense
of the organization’s performance knowledge, as this knowledge will become
buried within the internal processing of the web service platform. This
research introduces an approach to reclaim and improve this knowledge for
the organization establishing a framework that enables the definition of web
services from a performance measurement perspective, together with the
logging and analysis of the enactment of web services. This framework
utilizes web service concepts, DSS principles, and agent technologies, to
enable feedback on the organization’s performance measures through the
analysis of the web services. A key benefit of this work is that the data is
stored once but provides information both to the customer and the supplier
of a web service, removing the need for development of internal web service
performance monitoring.

Key words: j

1 Introduction

The emergence of e-business has dramatically changed the context in which
decision-making takes place. While the fundamental human and organiza-
tional processes that take place remain largely unaffected, e-business places
new constraints and demands on the decision maker to provide better service
to the customers. Because of the increased rate of change possible in
e-business, decisions must be made more quickly than in the past. Process
participants must have instant access to information which is relevant for the

1 0 2 5 7 0 2 7
Journal number Manuscript number B Dispatch: 16.2.2004 Journal : ISeB No. of pages: 22

Author’s disk received 4 Used 4 Corrupted Mismatch Keyed

ISeB (2003) 1:1–22

DOI 10.1007/s10257-003-0027-x

A Web service based framework for analyzing and
measuring business performance

Carolyn McGregor
1
, Josef Schiefer

2

1Centre for Advanced Systems Engineering, University of Western Sydney, Locked Bag 1797

Penrith South DC, NSW, 1797, Australia (e-mail: c.mcgregor@uws.edu.au)
2IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10606, USA

(e-mail: josef.schiefer@us.ibm.com)

Received: j j j / Accepted: j j j

Information
Systems

and
e-Business

Management
� Springer-Verlag 2004

current business context. All these factors imply that the traditional decision
support solutions that are focused simply on the provision of information
and analysis tools are no longer sufficient. Traditional data warehouse
solutions, report generators, OLAP and data mining tools typically do not
allow monitoring of business processes on a continuous basis. To be
effective, decision support must take a broader view of the whole process of
decision-making that is embedded in business processes.
For a long time it was assumed that data in the data warehouse can lag at

least a day if not a week or a month behind the actual operational data. That
was based on the assumption that business decisions do not require up-to-
date information but very rich historical data. Existing ETL (Extraction,
Transformation, Loading) tools often rely on this assumption and achieve
high efficiency in loading large amounts of data periodically into the data
warehouse system. While this still holds true for a wide range of data
warehouse applications, the new desire for monitoring information about
business processes in near real-time is breaking the long-standing rule that
data in a data warehouse is static except during the downtime for data
loading. Workflow audit trial information is a good example for this trend
because it provides the most value to the users and process analysts if it is
available with minimal delays. A traditional data warehouse focuses on
strategic decision support. A well-developed strategy is critical, but the
ultimate value to an organization is only as good as its execution. Therefore,
tactical decision support is also becoming increasingly important. A variety
of architectural frameworks – such as Active Data Warehousing [20], the
Corporate Information Factory [21], and Zero-Latency Enterprises [22] –
have emerged recognizing the importance of tactical decision support as an
extension of traditional data warehouse capabilities.
In this paper, we introduce a web-service based framework that aims to

provide involved parties of the business process and decision makers with
comprehensive information about the status and performance of business
processes independent from the type of systems that are used to execute the
business process. Our approach supports a near real-time integration of audit
trail data from the executed processes and thereby decreases the latency for key
performance indicators and the time it takes to make the business decisions.
The remainder of this paper is organized as follows. In Sect. 2, we discuss the

contributionof this paper and relatedwork. InSect. 3,wepresent aweb-service
based architecture for monitoring and analyzing business processes. Section 4
discusses in detail the web-services of the proposed architecture and
introduces the concept of an Event Processing Container (EPC) which is the
core component for the integrationofworkflowevents. Section 5demonstrates
the application of this framework within the context of a travel agent case
study. Finally, in Sect. 6 we present our conclusion and discuss our future
work.

2 Related work

Although monitoring and analysis are considered important tasks of the
workflow management system and business process management (e.g. [15]),
and the Workflow Management Coalition (WfMC) has already drafted a
standard for workflow logs [16], little work has been done in developing a

2 Carolyn McGregor, Josef Schiefer

solution for integrating and analyzing the workflow audit trail information.
Some approaches emphasize the need for integrating audit trail into data
warehouse systems (e.g. the process data warehouse in), others are limited
to a smaller set of workflow history that is managed within a workflow
management system.
Sayal et al. present in [17] a set of integrated tools that support business and

IT users in managing process execution quality. These tools are able to
understand and process theworkflow audit trail from theHPProcessManager
(HPPM), and can load via a loader component into the process data
warehouse. Sayal et al. provide a high-level architecture and a data model for
the process data warehouse, but they do not address the problem of integrating
and analyzing the workflow audit trail in near real-time. An approach for
history management of audit trail data from a distributed workflow system is
also discussed in [18]. The paper describes the structure of the history objects
determined according to the nature of the data and the processing needs, and
the possible query processing strategies on these objects. These strategies show
how to write queries for retrieving audit trail information. Unlike our
approach, neither the transformation and aggregation of audit trail data, nor
the analytical processing of this data are considered.
Geppert and Tombros introduce in [19] an approach for the logging and

post-mortem analysis of workflow executions that uses activate database
technology. The post-mortem analysis is accomplished through querying the
event history which is stored in an active database system which supports
Event-Condition-Action (ECA) rules. Various types of events (e.g., database
transitions, time events, and external signals) can trigger in the event history
the evaluation of a condition and if the condition evaluates to true, the action
is executed.
All the related work detailed above support the monitoring of intraorgan-

isational processes only. One of the key benefits of the framework detailed in
this research is its ability to support the monitoring of interorganisational
processes through the use of a web services based approach.
Kreger [4] defines a web service as an interface that describes a collection of

operations that are network-accessible through standardized XML messag-
ing. A web service provides a mechanism for organizations to carry out
inter and intra organizational business processes through an XML based
information exchange. Web services enable the componentization and reuse
of traditional web applications. By exposing components of applications as
web services and enabling businesses to invoke these components, businesses
can fundamentally transform their ability to interact and engage with both
current as well as potential customers and partners [1]. Web Service
Definition Language (WSDL) supports the implementation of web services
by providing a standard XML format for describing network services as a set
of endpoints operating on messages containing either document-oriented or
procedure-oriented information [11]. Recent research into web services [1, 3]
has focused on the frameworks to develop web services, but there has been
little research in the area of analyzing the performance of the web service for
the business performance monitoring.
McGregor and Kumaran [10] details a Solution Management frame-

work that analyzes workflow, workflow audit logs, utilizing decision
support system principles and agent technologies to feedback performance

A Web service based framework for analyzing and measuring business performance 3

measures. McGregor and Kumaran [13] builds on the work of McGregor
and Kumaran [10] by applying these principles to the web services
environment.
Lambros et al [6] describes the initial use of process management

technology in the context of IBM web services. While that research provides
significant depth in the area of publishing, locating and enacting web
services, it does not provide a mechanism to enable the measurement of the
performance of the web service.

3 Solution management web service architecture

Solution Management is emerging as a key component in B2B e-commerce
systems. It refers to the methods and techniques used to support the
monitoring of the enactment of business processes. To date, the primary
role of Solution Management has been to provide visibility and control at
business process level to authorized users, such as system administrators
[5]. Based on our experience in working with B2B systems in real customer
engagements, we have identified the need to extend solution management
capabilities to include trading partner management. If we have a network
architecture in which several organizations are connected via web services,
then the solution management problem is complex. In the current B2B
model, solution management is contained within each organization. This is
not feasible in the web services model. A request triggers other requests and
so on. Traditional models of solution management fail in this model.
McGregor and Kumaran [10] define an agent-based solution manager

architecture that focuses on the use of workflow enactment audit logs,
utilizing decision support system (DSS) principles and agent technologies to
feed back information to measure organization performance. McGregor and
Kumaran [13] extend that research by transforming the interfaces to web
services. They describe the principles of a Solution Management Web Service
framework that provides web services to define another web service from a
performance measurement perspective, and to log and analyze the enactment
of that web service. A key benefit of this approach is that the data is stored
once but provides information both to the organization acting as the
customer and the organization acting as the supplier.
Lambros et al [6] describe the web service model by defining the interactions

between the service registry, service requestor and service provider to establish
and commence a web service relationship. In publishing the web service, the
organization provides a service description containing the interface and
implementation details including its data types, operations, binding infor-
mation and network location. This definition is constructed using WSDL.
Once published, potential customers, known also as service requestors use a
find operation to retrieve the service description. Customers deciding to
commence trading with a chosen supplier, found in the service registry, use
the details contained in the service description to use that web service.
This web services model is extended in Fig.1 to incorporate the Solution

Manager Service Interface provided by the Solution Manager Service [13].
Once customers commence using web services, the Solution Manager Service
provides a mechanism for any of the participants to analyze the web service
performance.

4 Carolyn McGregor, Josef Schiefer

In this paper we describe how process definition information can be used
to execute the define web service to identify a web service, its owner and
performance measurement information such as service level cycle times and
cost to the solution manager service. This is distinct from the role of
publishing a web service, which details the interface and implementation of
the service. The solution management define web service is one of three web
service categories provided by the Solution Management Web Service
(SMWS) [13] architecture as shown in Fig. 2.

Supplier

Organisation

Customer

Service
Registry

Publish

Publish

Find

Find

Use

Use

Solution
Manager
Service

Define

Analyse

Analyse

Log

Defin
e

Log

Analy
se

Fig. 1. Solution manager web services [13]

Web
Service

Interfaces

Define
Web

Service

Log
Web

Service

Analyze
Web

Service

Define

Log

Analyze

Solution Manager Service

Data Warehouse

Definition
Data

Audit Log
Data

Audit
Summary Data

Model DataEvent
Adapters

ETLets Evaluators

Event Processing Container (EPC)

Agent Server

U
se

r
A

ge
nt

s

Service
Agents

Model
Construction

Agents

Model
Improving
Agents

Model
Destroyer
Agents

Data
Construction

Agents

Service
Agents

Fig. 2. SMWS architecture

A Web service based framework for analyzing and measuring business performance 5

The Solution Management Web Services Interface provides a mechanism
for organizations to define, log and analyze the web services that they
participate in. The Solution Management Data Warehouse (SMDW) serves
as the data repository. The Definition Data tables store data received as a
result of the enactment of a define web service. Data received as a result of a
log web service is stored in Audit Log Data table and, together with the
definition data, is used by Data Constructor Agents to create Audit
Summary Data. The Solution Management Agent Server stores the software
agents that exploit the data and model data to implement solution
management functions. The Event Processing Container (EPC) is responsible
for integrating log data from business processes in near real-time and
provides services for the parsing, translation and evaluation of workflow
events. The EPC translates on-the-fly the workflow events into business
process metrics which are stored in the Audit Log Data and Audit Summary
Data tables.
The Solution Management Service architecture enhances the security

mechanisms that exist within the web services stack [4] to ensure that the
following styles of security are supported:

– Confidentiality – to ensure that the contents of messages are not disclosed
to unauthorised individuals.

– Authorisation – to ensure that the sender is authorised to send the message
– Data Integrity – to ensure that messages are not modified accidentally or
deliberately in transit

– Proof of Origin – to ensure the identity of the originator of a message or
data

Of particular interest is an Access Control module that assigns entitlements
based on the user credentials. The access control allows an authenticated
enterprise user to have access to business process monitoring information
spread across enterprise boundaries while maintaining the confidentiality
requirements.
In the following section we discuss the three solution management web

services in detail.

4 Solution management web services

Web services within the three solution management web service type
categories of define, log and analyze, are registered within the Service
Registry using WSDL.

Define web service provides services to identify a web service, its owner and
performance measurement information such as service level cycle times
and cost. In addition, the organization may wish to establish volume targets
and service prices that relate to individual customer relationships, which
would also be established using one of these services. This functionality is
different to that offered by the service registry as this records business level
information relating to the service.

Log web service provides services to capture audit trail data from business
processes. This service logs instance changes of the activity states of a
workflow such as request, commencement and completion for a specific
workflow instance.

6 Carolyn McGregor, Josef Schiefer

Analyze web services provides a mechanism for the supplier and customer to
request web service performance information.As such, two organizations have
access to the same information, one as the supplier and the other, the customer.

4.1 Solution management define web service

Figure 3 provides a high level sequence diagram for the publishing and
definition of a web service established by the Service Supplier to enable its
customers to place orders. In publishing the web service, they provided a
service description containing the details of its data types, operations,
binding information and network location. This definition was constructed
WSDL. In addition, this organization is required to define its web service to
the Solution Management Service using WSDL to establish the performance
measurement information associated with this web service. The Service
Supplier may define the web service to the Solution Management Service
more than once based on differing criteria as detailed below.
The define web service supports two separate functions. Firstly, it provides

the environment to define general performance measures for the web service.
Second, it enables the definition of performance measures for a customer or
customer group that will use the web service. The define web service details
shown in Table 1 are an example of fields used when it is used to define the
web service in general.
When establishing the general definition for a web service, the definition

contains the name and owner of the web service, a list of the valid states for
this web service and the associated transition rules for the valid state
transitions to assist with the logging process. It may also contain measures
relating to that web service, for example: the web service cost, price, cycle
time service level and/or rework targets.
Each measure has a start and end date to enable multiple values for each

measure over time to be recorded where required. The define web service will
return a flag confirming that the definition has been successful. Data
constructor agents in the solution management service are triggered by the
define web service to load this definition information into the appropriate
data definition tables. This information may also be used to establish a base

Service
Registry

Service
Supplier

Solution
Management

Request to Publish Web Service

Request to Define Web Service

Notification if successful else failure msg

Notification if successful else failure msg

Fig. 3. Web service registration and definition

A Web service based framework for analyzing and measuring business performance 7

set of analyse web services that will provide information based on these
established performance measures.
The define web service details shown in Table 2 are an example of fields

used when the define web service is used to define the web service for a
customer or customer group. Customer based web service definitions can be
established for individual customers or groups of customers. Customer
groups can be defined so as to construct customer group hierarchies and
customers can belong to multiple customer groups if required.

Table 1. Define web service (General)

Name: DefineWebService

Input: WebServiceDefinition

WebServiceDescription

Web Service ID

Description

Owner

OwnerID

Name

Address

WebServiceStates

StateList

StateTransitionRules

Product

ProductGroup

Product Description

Measures

CostDetails

– Cost

– StartDate

– EndDate

PriceDetails

– Price

– StartDate

– EndDate

CycleTime

– CycleTimeID

– ServiceLevel

– ServicePercent

– StartDate

– EndDate

Throughput

– ThroughputID

– Target

– Frequency

– StartDate

– EndDate

Rework

– ReworkID

– Target

– StartDate

– EndDate

Output: WebServiceDefinitionResponse

ResultNotification (Boolean)

8 Carolyn McGregor, Josef Schiefer

A customer or customer group definition for a web service contains the
name and owner of the web service together with details for the customer or
customer group for which this definition relates. Similar to the general
definition, it may also contain measures relating to that web service, for
example: the price, the cycle time service level, and/or rework targets. Each
of which can contain multiple values over time. Where a measure is defined
for a customer or customer group, this overrides any values defined in the
general definition in relation to that customer or customer group only.

4.2 Solution management log web service

The log web service provides the mechanism to gather audit trail information
about business processes during execution. The captured audit-trail is a time-
sequenced record of all status changes of a business process.

Table 2. Define web service – customer group

Name: DefineWebService

Input: WebServiceDefinition

WebServiceDescription

Web Service ID

Owner

OwnerID

Product

ProductGroup

CustomerGroup

CustomerGroupID

Name

Description

Measures

PriceDetails

– Price

– StartDate

– EndDate

CycleTime

– CycleTimeID

– ServiceLevel

– ServicePercent

– StartDate

– EndDate

Throughput

– ThroughputID

– Target

– Frequency

– StartDate

– EndDate

Rework

– ReworkID

– Target

– StartDate

– EndDate

Output: WebServiceDefinitionResponse

ResultNotification (Boolean)

A Web service based framework for analyzing and measuring business performance 9

BPEL4WS flows essentially implement a layer on top of WSDL, with
WSDL defining the specific operations allowed and BPEL4WS defining
how the operations can be sequenced. A BPEL4WS document leverages
WSDL in three ways: 1) Every BPEL4WS process is exposed as a web
service using WSDL. The WSDL describes the entry points for external
services to interact with the process, 2) WSDL data types are used within a
BPEL4WS process to describe the information that passes between
requests, and 3) WSDL might be used to reference external services
required by the process.
BPEL4WS processes specify stateful interactions involving the exchange of

messages between partners. The state of a business process includes the
messages that are exchanged as well as intermediate data used in business
logic and in composing messages sent to partners. Variables (formerly called
Containers) provide the means for holding messages that constitute the state
of a business process. The messages held are often those that have been
received from partners or are to be sent to partners. Variables can also hold
data that are needed for holding state information related to the process and
never exchanged with partners. Variables identify the specific data exchanged
in a message flow, which typically maps to a WSDL message type. When
a BPEL4WS process receives a message, the appropriate variables are
populated so that subsequent requests can access the data.
For auditing BPEL4WS processes, there are principally three options: 1)

include the auditing mechanism as a partner within the BPEL4WS process,
2) instrumentation of web service requests of the BPEL4WS process, or 3)
utilizing the auditing service of a workflow engine used for enacting the
BPEL4WS process. All three options have advantages and disadvantages.

4.2.1Auditing mechanism as a partner within the BPEL4WS process

McGregor [23] introduces a method to enable the Solution Management
Service to be used within BPEL4WS process definition, by establishing it as a
partner. Business processes defined using BPEL4WS are then able to log
audit information to a Solution Management Log Web Service. This
approach is detailed further here and demonstrates that this is one of the
three options as outlined above that could be used to capture the logging
details.
Figure 4 shows an example with BPEL4WS flows with embedded auditing

operations that invoke the log web service of the solution manager. Using
that approach, a log request can be executed at any stage within BPEL4WS
process definition process structure through the use of the assign construct to
assign values to the webservicelogitem message and the inclusion of the
following invoke request:

<invoke partner¼‘‘ SolutionManager’’
portType¼‘‘ lns:auditlogPT’’
operation¼‘‘ outputlogitem’’
outputContainer¼‘‘ LogOutput’’>

<=invoke>

10 Carolyn McGregor, Josef Schiefer

To enable the acknowledgement of the receipt of the log item, the invoke
must be followed by a receive of the form:

< receive partner ¼ ‘‘SolutionManager’’

portType ¼ ‘‘lns:auditlogresponsePT’’

operation ¼ ‘‘logresponse’’

inputContainer ¼ ‘‘LogResponse’’ >

< =receive >

The major advantage of this approach is the seamless integration of audit
trail information from various business partners. Multiple business partners
can utilize the log web service for centrally capturing audit trail information
about their BPEL4WS processes.
Although this approach enables seamless integration of the solution

management services, there are also some trade-offs. Since the WFMS has to
invoke the log web service for every state change of a business process, the
overhead for web service request can become a potential bottleneck. For
instance, an order process with the magnitude of thousands of process
instances a day can result in potentially millions of log requests. Therefore,
the log web service might be not suitable for very large-scale solutions. As an
alternative, other mechanisms should be considered to capture and propa-
gate the audit trial information (see following options). However, in the
remainder of this paper, we want to focus our discussion on this approach
for logging audit trails.

Service Provider TypeService Provider Type

BPEL4WS
Process

BPEL4WS
Process

<invoke>

<receive>

<invoke>

<receive>

<reply>

Port Type

audit

<invoke>

audit

<invoke>

...

...

BPEL4WS
Process

BPEL4WS
Process

<receive>

<reply>

...

<receive>

<reply>

<receive>

...

Solution Manager
Service Provider Type

Log Web
Service

log item

Data
Warehouse

Event
Processing
Container

(EPC)

Fig. 4. Web service logging of BPEL4WS processes

A Web service based framework for analyzing and measuring business performance 11

4.2.2 Instrumentation of web service requests

Using this option, we intercept any web service request of the WFMS
and extract the data needed for monitoring purposes. The major
advantage of this option is that the web service monitoring is fairly
straightforward and existing web service tools can be utilized to intercept
web service requests (e.g. IBM Web Service Gateway) of BPEL4WS
processes. However, the web service requests of BPEL4WS processes have
a limited visibility to internal process information. For instance, the web
service requests don’t include details about the process instances, or
variables used by the workflow engine. Therefore, this option often results
in a more complex audit trail processing in order to retain the process
information.

4.2.3 Auditing service of WFMSs

This option relies heavily on the auditing capabilities of the workflow engine.
The auditing services can vary significantly between WFMSs. Although the
Workflow Management Coalition has already defined standards for work-
flow logs [16], the major vendors of WFMSs still use proprietary audit trails.
However, using the auditing services of WFMSs directly has also some
advantages over the previously discussed options. If we are able to directly
instrument BPEL4WS flows in a workflow engine, we can extract more
contextual information about the business process. This may include state
information about the process instance or information about the assigned
resources to an activity. In the following we describe three methods of
extracting audit trail information from WFMSs:

� Observer component: An observer component implements a listener
interface for sniffing process activities, and can be plugged into the
workflow engine. It gets invoked by the workflow engine on various flow-
related events, e.g., when a process is started or completed, or when an
activity is started or completed. Observer components have full access to
the runtime information of a business process and can decide during
process execution which runtime data is selected for the audit trail.
Although, this option is the most flexible one for extracting and
propagating audit trail data with minimal latency, only very few WFMSs
support observer components.

� Database Triggers: Many WFMSs store audit trails into databases.
Database triggers on audit trail tables can automatically generate flow-
related events each time a new audit record is inserted. Although the
delays for extracting and propagating the audit trail data are minimal,
audit trail tables often don’t capture all runtime data of a business process
(e.g. data of business objects).

� Logging Daemons: Some WFMSs use files for storing the audit trail.
Logging daemons can extract information from the log files on a
scheduled basis and generate flow-related events. Due to the scheduled
data extraction, this option causes some latency for the audit trail
processing. Furthermore, the available audit trail information is also
limited to the data that is written by the WFMS to the log files.

12 Carolyn McGregor, Josef Schiefer

4.2.4 Web service logging

Once the definition of the web service is complete, logging can commence by
capturing the information using one of the three methods for audit logging as
detailed in the previous section. A sequence diagram for the logging process
of a defined web service is shown in Fig. 5
Upon receipt of a request from a customer to commence a web service, a

request to log web service state is triggered by the supplier to log the request
of their web service with the Solution Management Service.
When the supplier commences that instance of the web service, a request

to log web service state is triggered by the supplier to log the
commencement of that instance of their web service with the Solution
Management Service. As this web service instance continues towards
completion, a request to log web service state is triggered by the supplier to
log each new status of that instance of their web service, as per the
definition of the web service. When the supplier completes that instance of
the web service, a request to log web service state is triggered by the
supplier to log the completion of that instance of their web service with
the Solution Management Service.
The structure of the log web service input, shown in Table 3 caters for

multiple WebServiceLogItems to be contained within the one WebS-
erviceLogDetails input. This enables suppliers of web services to batch their
log details for performance if required.
After the log web service receives the log item information from various

sources, the logging information is forwarded to the Event Processing
Container (EPC). The EPC translates the raw logging data into standardized
events and transforms these events into useful business information that is
stored in the Audit Log Data and Audit Summary Data tables. The EPC
provides a robust, scalable data staging environment for integrating audit
trail data. The container approach allows a large number of events that can
require complex processing logic to be handled.

Customer
Service
Supplier

Solution
Management

Request Web Service

Request to Log Request

Notification if successful else failure msg

Notification if successful else failure msg

Request to Log Commencement

Notification if successful else failure msg

Request to Log Other State (s)

Notification if successful else failure msg

Request to Log Completion

Notification if successful else failure msg

Fig. 5. Web service logging

A Web service based framework for analyzing and measuring business performance 13

Similar to Java technology for web applications, where servlets and JSPs
took the place of traditional CGI scripts, our approach uses Event Adapter,
ETLet, and Evaluator (see Fig. 6) components that replace traditional ETL
(Extraction, Transformation, Loading) solutions which very often use scripts
that are hard to maintain, scale, and reuse. ETL scripts are not suitable for
an event-driven environment where data extracts and data transformations
are very small and frequent, because the overhead for starting the processes
and combining the processing steps can dominate the execution time.
Another limitation of ETL scripts is that they are written for a specific task in
a self-sustaining manner, and don’t provide any kind of interfaces for data
inputs and outputs. Because of this constraint in the traditional approach, we
use a container to manage and optimize the event processing. The EPC is a
part of a Java application server and provides services for the execution and

Table 3. Log web service

Name: LogWebService

Input: WebServiceLogDetails

WebServiceLogItem

Web Service ID

Customer ID

Owner ID

Web Service Instance ID

DateTimeStamp

From State ID

To State ID

Data of Business Objects

Output: WebServiceLogResponse

ResultNotification (Boolean)

Event Processing Container (EPC)

Metric Evaluation

Event Flow
Management

Notifications &
Alerting

Event Correlation

Event Condensation

Event Standization
Metric Calculation

Event and Metric
Persistence

EPC Services

Receive/Unify Events Event Processing Evaluation/Alerting

Event Stream
Querying

Log Web
Service 1

Log Web
Service 2

Log Web Services

Log Web
Service 3

Log Web
Service 4

Event Adapters ETLets Evaluators

BPEL4WS
Process

BPEL4WS
Process

BPEL4WS
Process

BPEL4WS
Process

Raw Logging Items

Fig. 6. EPC architecture

14 Carolyn McGregor, Josef Schiefer

monitoring of event processing tasks. The core services are responsible for
creating, initializing, executing and destroying the managed components that
are responsible for the processing of the logging data.
The EPC handles each event with a lightweight Java thread, rather than a

heavyweight operating system process. Figure 7 shows the internal event
processing of the EPC. The components shown with round boxes are
components that are managed by the EPC. The components shown with
square boxes are internal EPC components that are used to bind all managed
EPC components together. Please note that the developers never see or have
to deal with the internal components. We show these internal components
for illustration purposes only.
This approach also simplifies the programming tasks for developers who

have to implement the logic for the event processing, since the EPC takes
responsibility for various system-level services (such as threading, resource
management, transactions, caching, persistence, and so on). In our approach,
we extend this concept by adding new container services, which are useful for
the event processing which are not provided by other containers (e.g. EJB
containers) and can be leveraged by the developers. Examples of EPC services
are the event correlation service, which can be utilized for gathering a set of
related events for the processing (e.g. the calculation of the cycle time
requires the collection of the event pair PROCESS_STARTED and
PROCESS_COMPLETED from a process instance), or the evaluation
service, which significantly reduces the effort for evaluating calculated process
metrics. This arrangement leaves the developer with a simplified development
task and allows the implementation details of the system and container
services to be reconfigured without changing the components.
Figure 7 also shows the core components (shown as round boxes) that are

managed by the EPC: 1) Event Adapters, 2) ETLets, and 3) Evaluators. The
lifecycle of all components includes an init, running and destroyed state. Only
the Event Adapters have an additional stopped state which enables the EPC

Event Processing Container (EPC)

E
ve

nt
A

da
pt

er Thread 1

Thread 2

Thread 3

Event
Handler

ETLet Service

ETLet 1

ETLet 2

ETLet 3 ...

Evaluation
Service

Evaluator 1

Evaluator 2

Evaluator 3

Metric
Handler

Metric
Dispatcher

Even t 1

Event 3

Event 2
E

ve
nt

 D
is

pa
tc

he
r -- Processing of BPEL4WS Events --

E
ve

nt
A

da
pt

er
E

ve
nt

A
da

pt
er

Data Warehouse

Audit Log Data

Audit Summary
Data

Fig. 7. Multithreading within the EPC

A Web service based framework for analyzing and measuring business performance 15

to stop the processing of incoming events. Each of these components must
implement a certain interface that is used by the EPC in order to manage the
component’s lifecycle. The EPC automatically instantiates these components
and calls upon the interface methods during the components’ lifetime. In the
following subsection we discuss the managed EPC components in detail.

4.2.5 Event adapters

The purpose of Event Adapters is to receive the raw logging items from
various sources and to translate the logging items (with different logging
formats) into a unified event format. Event Adapters can receive raw
logging items in two ways: 1) asynchronously via messaging software, or 2)
synchronously via socket connection (e.g. via request to the logging web
service). The first option is more scalable because it provides the ability to
totally decouple the logging web-service from the actual processing of the
logging data with the EPC. Every log web service must provide the raw
logging data to one of the Event Adapters from the EPC. A typical solution
can have several Event Adapters running in parallel. They receive and
dispatch events in parallel.
In order to address overload situations, where not enough resources are

available to instantiate ETLets for the event processing, the EPC can block
an event adapter temporarily. For instance, if there is no thread available for
the processing of an incoming event within a specified timeout period, the
event adapter is notified of the overload situation and can react to this
situation individually. Figure 8 shows the lifecycle and interface of event
adapters. All container components include an init, running and destroyed
state. Only the event adapters have an additional stopped state which enables
the EPC to temporary stop the event processing.

4.2.6 ETLets

After the dispatching of the workflow events in the Event Adapter the EPC
invokes all ETLets, which are subscribed to the incoming event type. The

init

running

destroyed

stopped WebserviceAdapter

+init:void
+start:void
+stop:void
+destroy:void

interface
Event Adapter

+init:void
+start:void
+stop:void
+destroy:void

JCAAdapter

+init:void
+start:void
+stop:void
+destroy:void

JMSAdapter

+init:void
+start:void
+stop:void
+destroy:void

Fig. 8. Lifecycle, Interface/Classes (Event Adapters)

16 Carolyn McGregor, Josef Schiefer

subscription to event types and the configuration of ETLets can be done via
a deployment descriptor. ETLets run in multiple threads in parallel.
However, all processing tasks of a particular event run within the same
thread. For one event type (e.g. activity events) there can be several ETLets
that are executed. Note, that for the execution of all event processing steps
no intermediary storage is required.
The EPC manages three types of ETLets: event-driven ETLets, scheduled

ETLets and exception ETLets. All ETLet types have a processEvent()
method with a different signature. Developers have to implement this
method with the event processing logic. The processing logic can include any
type of data transformation, the calculation of process metrics, and storing
the metrics in the Audit Log Data or Audit Summary Data tables. ETLets
can also publish the process metrics to allow the container to pass these
metrics to the evaluator components that have subscribed to the metric type.

Event-driven ETLets can subscribe to a number of process events that are
dispatched by the event adapters and that are relevant to the processing logic
in the processEvent() method. For the subscription, the ETLet has to define
the event-IDs of interest in the deployment descriptor.
For instance, the ActivityDurationETLet shown in Fig. 9 determines the

duration of process activities by subscribing to the ACTIVITY_STARTED
and ACTIVITY_COMPLETED events. The processEvent() method calcu-
lates the activity duration by extracting the timestamp information from the
events and determining the time differences. The timestamp of the ACTIV-
ITY_STARTED event is stored in a session in order to be retrieved at a later
point in time. When the ACTIVITY_COMPLETED event is received, the
activity duration is calculated. The calculated activity duration is also
published which allows other managed components of the container to
receive this metric (e.g. components that evaluate the metric). Please note
that the management of the sessions is a service of the EPC which is
configurable via the deployment descriptor and which significantly reduces
the effort of developers for correlating event data.

Scheduled ETLets are triggered by the EPC in intervals at specific points in
time. The schedule for the triggering is also configurable in the deployment

Fig. 9. ETLet example

A Web service based framework for analyzing and measuring business performance 17

descriptor of the ETLet. Scheduled ETLets can be used to perform recurring
tasks, for instance aggregating the sales after a business day.

Exception ETLets are a special kind of ETLets that are invoked when an
exception is thrown within an ETLet and this exception cannot immediately
be handled by the ETLet itself. For instance, this happens if a manual step is
required in order to resolve the problem of the exception. Exception ETLets
are used to store these exceptions and the triggering events that caused the
exception in a file or database for a later manual correction of the problem.
They also can be used for sending out notifications. For instance, an
administrator can be notified via email that an unhandled exception occurred
in the EPC. Exception ETLets are also configured in the deployment
descriptor.
ETLets are very reusable components because 1) they are configurable via

the deployment descriptor, 2) they receive the incoming data as standardized
events, and 3) existing ETLets can be easily extended via class inheritance.

4.2.7 Evaluators

The Evaluator components can be either implemented by developers or act
as proxy by forwarding the evaluation requests to rule engines for more
sophisticated evaluations. In the first case, developers have to implement the
evaluate(String metricName, Object metricValue, Map metricMetadata)
method with the evaluation logic. An Evaluator can subscribe to various
metric types that are defined in the deployment descriptor. The EPC makes
sure that an Evaluator receives the correct metrics from the ETLets. Please
note, that an Evaluator isn’t aware of how a metric was calculated or which
events triggered the metric calculation. Therefore, the EPC enables a clean
separation of extraction/receiving logic (Event Adapter), transformation
logic (ETLets), and evaluation logic (Evaluators).

4.3 Solution management analyze web service

To enable performance analysis by the web service supplier and customers,
the architecture supports the establishment of a series of analyze web services.
Suppliers may access information relating to all their web service enactments,
whereas customers may only access information relating to their web service
enactments. Examples of questions that suppliers of a web service would like
to be able to answer are:

1. Within what timeframe are we responding to tasks allocated through the
initiation of a web service?

2. What web services are outside the service levels set during the definition of
the web service?

3. What web services have an average response time that is degrading over
time?

4. What is the volume throughput for the web service?
5. How much rework is required for the web service?
6. What is the productivity per web service?

18 Carolyn McGregor, Josef Schiefer

Examples of questions by web service customers are:
1. Within what timeframe are suppliers responding to initiated web service
tasks?

2. What suppliers are not responding within the service levels set during the
definition of the web service?

3. What suppliers have an average response time that is degrading over time?
4. What rework is required for a web service instance?
5. How does services quality compare between similar web service suppliers,
based on actual usage?

Figure 10 illustrates a sequence diagram for the request to analyze the
performance of defined web services.
As previously detailed, a core set of analyse web services can be established

upon receipt of the performance measurement information received when the
define web services are invoked.
The ActivityDurationAnalysis web service shown in Table 4 requires as

input the name and owner of the web service. An individual customer or
customer group may also be defined. Information returned may also be
restricted based on a given time interval. A key benefit of this architecture is
that this same analyze web service can be used by both the supplier and
customer of the same web service. The supplier of the web service may
request information relating to all customers or select customers or customer

Customer Service
Supplier

Solution
Management

Request Analyse Web Service

Analysis data as per service registry definition else failure msg

Request Analyse Web Service

Analysis data as per service registry definition else failure msg

Fig. 10. Web services analysis

Table 4. Activityduration analysis web service

Name: ActivityDurationAnalysis

Input: ActivityDurationAnalysisInput

WebServiceDescription

Web Service ID

Owner

OwnerID

CustomerGroup

CustomerGroupID

Time Interval

StartDate

EndDate

Output: ActivityDurationAnalysisResponse

OutputDataSet

A Web service based framework for analyzing and measuring business performance 19

groups. The customer however, is only able to specify themselves as the
customer and may only receive information relating to their use of the web
service. This access is controlled by the user’s credentials controlled by the
Access Control module.

5 Example – Monitoring of a travel booking process

In this section, we describe a scenario from the travel industry and show how
the solution manager can monitor inter-organizational business processes.
The planning and reservation of a travel package can require a network of
organizations that needs to be coordinated in order to function efficiently. A
travel agency plays the coordinator role and has to interact with other
organizations such as hotels, airlines, rental car places and so forth to
provide services that are part of a travel package. The Solution Management
Service shown in Fig. 11 supports this widened scope in an efficient manner
and provides users and managers of involved organizations with perfor-
mance data about their own organization and also information about their
business partners. Access to information about their business partners is
managed through the use of security policies that detail what level of
information they can access and these security policies are defined by the
business partners.
In our example, we assume that the travel agency is an intermediary

organization that is the owner of the solution management infrastructure.
Therefore, the travel agency uses the define web service to 1) capture

Customer

<receive>

<reply>

...

Travel Agency

Tavel
Booking
Process

<invoke>

<receive>

<invoke>

Port Type

<invoke>

...

<receive>
<reply>

...

<receive>

Business
Process

Log
Web Service

log item

Analyze
Web Service

Request Response

audit

<invoke>

audit

<invoke>

report

<receive>

analysis

<invoke>

...
Analytical
Business
Process

Define
Web Service

ConfirmationParameters

Web
Service

InterfacesEvent Processing Container Agent Server

Solution
Management

Service

Travel
Data Warehouse

Airline

<receive>

<reply>

...

Hotel
Reservation

Process

audit

<invoke>

Hotel Chain

<receive>

Flight
Reservation

Process

Message

Fig. 11. Travel booking - monitoring with the solution manager service

20 Carolyn McGregor, Josef Schiefer

the web service states and state transition rules for the travel booking,
2) define the performance objects such cycle time, transaction costs,
availability of a service, and 3) define access policies for business partners
and customers that are allowed to monitor and analyze the performance
data.
In our example, the customer organization has access to the analysis web

service, which can be used to retrieve recent and historic performance data
(e.g. cycle times) about the travel arrangements they have made based on the
security policies defined by the travel agency.
Also the travel agency utilizes the analysis web service for retrieving

performance data about the service levels of hotels and airlines. For instance,
when a customer requests airline tickets to be sent to her home, the travel
agency might be interested in the delay for sending out the plane tickets in
order to better evaluate the customer service level.
In our example, we further assume that the customer organization has a

human resource process for making travel arrangements. This process is
supported by a web-based application that can be used by employees for
browsing travel offers and also for booking a travel package. The web
application uses web services for the communication between the customer
organization and the travel agency.
For the travel booking all participating organizations have to extend their

business processes with additional auditing steps which get automatically
invoked by the workflow engine or the operational system when transactions
are performed. Each time an organization makes a log web service request to
the Solution Manager, the EPC receives the logging data and transforms it
into event and performance data, and stores them in the data warehouse.
Finally, the Agent Server is used by the analysis web service in order to

retrieve and filter the performance data from the data warehouse that is
requested by the customer or the travel agency.

6 Conclusion and future work

This paper has described a framework to use process definition information
to define a web service to the solution manager service. In addition, this
paper describes an architecture that is capable of supporting the log web
service. We introduced the concept of the Event Processing Container
providing a robust, scalable and high-performance event processing envi-
ronment able to handle a large number of process events in near real-time.
This paper described the application of that framework within a travel
agency case study context. The work described in this paper can be extended
in several ways for future research. Firstly, the development of an explicit
link between the Workflow Management Coalition (WfMC) [7] XPDL
Interface 1 [8] output and the define web service structure has begun. That
research also includes the explicit link between the WFMC XPDL Interface 5
[9] output and the log web service. Second, we have commenced further
analysis of the analyze web service categories based on the Balanced
Scorecard [2] approach to organization management. Third, McGregor
(2003) details initial research to link this research with the Business Process
Execution Language for Web Services (BPEL4WS) [14].

A Web service based framework for analyzing and measuring business performance 21

References

Bosworth A (2001) Developing Web Services, Proceedings of the 17th International Conference

on Data Engineering, Heidelberg, Germany

Kaplan RS, Norton DP (1992) The Balanced Scorecard - Measures That Drive Performance,

Harvard Business Review, pp 71–79

IBM, Web Services Development Concepts, IBM Software Group, IBM T.J. Watson Center,

Yorktown, NY, 2001

Kreger H (2001) Web Services Conceptual Architecture (WSCA 1.0), IBM Software Group

Kumaran S, Bhaskaran K, Chung J, Das R, Heath T, Nandi P (2001) An e-Business Integration

Collaboration Platform for B2B e-Commerce, 3rd International Workshop on Advanced

Issues of E-Commerce and Web-Based Information Systems, IEEE Computer Society Press

Lambros P, Schmidt M, Zentner C (2001) Combine Business Process Management Technology

and Business Services to Implement Complex Web Services

WorkflowManagement Coalition Workflow Reference Model, Document Number WFMC-TC-

1003, 1995

Workflow Management Coalition Workflow Process Definition Interface – XML Process

Definition Language, Document Number WFMC-TC-1025, 2002

Workflow Management Coalition Audit Data Specification, Document Number WFMC-TC-

1015, 1998

McGregor C, Kumaran S (2002) An Agent-Based System for Trading Partner Management in

B2B Commerce, Proceedings of the 12th International Workshop on Research Issues on Data

Engineering (RIDE-2EC’2002), San Jose, USA

W3C, Web Services Description Language (WSDL) 1.1, 2001

IBM, Business Process Execution Language for Web Services, Version 1.0, 2002

McGregor C, Kumaran S (2002) Business Process Monitoring Using Web Services in B2B

Commerce, IEEE 2002, Proc. 2nd International Workshop on Internet Computing and E-

Commerce(ICEC’02), Fort Lauderdale, USA

Business Process Execution Language for Web Services, Version 1.0, 2002

Jablonski S, Bussler C (1996) Workflow Management. Modeling Concepts, Architecture, and

Implementation. Intl. Thomson Computer Press, London

Workflow Management Coalition Audit Data Specification, Document Number WFMC-TC-

1015, 1998

Sayal M, Casati F, Dayal U, Shan M (2002) Business Process Cockpit, VLDB 2002, Peking

Koksal P, Alpinar SN, Dogac A (1998) Workflow History Management, ACM Sigmod Record

27(1): 67–75

Geppert A, Tombros D (1997) Logging and Post-Mortem Analysis of Workflow Executions

based on Event Histories. Proc. 3rd Intl. Conf. on Rules in Database Systems (RIDS), LNCS

1312, Springer Verlag, Heidelberg, Germany, pp 67–82

Brobst SA, Ballinger C (2000) Active Data Warehousing, Whitepaper EB-1327, NCR

Inmon WH, Imhoff C, Sousa R (2001) Corporate Information Factory, Second Edition, J.Wiley

and Sons, New York

Gartner Group, Introducing the Zero-Latency Enterprise, Research Note COM-04-3770, 1998

McGregor C (2003) A Method to extend BPEL4WS to enable Business Performance

Measurement, Proceedings of the 1st International Conference on Web Services, ICWS’03,

Las Vegas

22 Carolyn McGregor, Josef Schiefer

