
RC22327 (W0202-020) February 7, 2002
Computer Science

IBM Research Report

A State Machine Based Approach for a Process Driven
Development of Web-Applications

Rakesh Mohan, Mitchell A. Cohen, Josef Schiefer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A State Machine Based Approach for a Process Driven
Development of Web-Applications

Rakesh Mohan, Mitchell A. Cohen, Josef Schiefer

IBM Watson Research Center
PO Box 704, Yorktown Heights, NY 10598

{rakeshm, macohen,josef.schiefer}@us.ibm.com

Abstract. Traditional workflow systems are not suited for highly interactive
online systems. We present a state machine based workflow system, named
FlexFlow, which formally describes Internet applications using statecharts. The
FlexFlow engine uses these descriptions to directly control the execution of
web applications. FlexFlow helps in generating controls for user interactions on
web pages. Different versions of an application can be generated by visually
editing its FlexFlow description, with minimal incremental effort in rewriting
application code or related web pages. FlexFlow provides an efficient way to
customize online systems and supports different versions of business processes
in the same e-business system for different sets of industries, organizations,
users, or devices. We demonstrate FlexFlow’s use for rapid prototyping of
business processes and describe how we have used FlexFlow in commercial
platforms for B2B e-commerce.

1 Introduction

In business systems, abstraction of the process logic from the embedded task logic
enables the business processes to be modified independent of application code. The
implementation of an e-commerce platform at a company often requires a
customization of processes, such as an order process or a Request for Quotes, to the
existing environment of that company. Workflow technology is prevalent for the
modeling, analysis and execution of business processes [4], [13].

Business process management is critical in a three- or multi-tier environment of e-
business systems. Business rules and process information is extracted from the
business logic tier and is presented in a workflow-based environment, which manages
the execution of the business processes. Consequently, this approach greatly
simplifies the application logic at each step. Business rules become explicit, visible,
and rapidly changeable. System changes are stimulated and can be easily
communicated between the development team and the business, and between the
business and its partners, i.e., the customers and suppliers.

Business processes vary with a company’s business model, and its industry sector.
In e-commerce systems, trading mechanisms, such as auctions and negotiations are
varied to suit particular business partners, product categories or market conditions.
Business processes are customized to the role of the user and the terms and conditions

1

of a contract with the user’s organization. For example, the registration process for an
administrator may be different from that of a buyer, and whether payment precedes or
follows order confirmation may depend on the terms of a contract. E-commerce
platforms thus need to provide both an easy way to modify business processes and to
maintain variations of business processes. The separation of process and task logic
allows both the easy customization of business process and reuse of the task logic in
the variants of a business process.

In most current e-commerce systems, the steps of a business process, or the actions
a system takes in response to user requests, are not made explicit, but are buried in
software code for both the dynamic pages and the application server. This makes the
modification of implemented business processes extremely difficult and fragile. For
example, to change the ordering of the process steps requires substantial rewriting of
the software for the application and the web pages for the user interface. For e-
commerce platforms made to be used by different companies, this presents a big
problem as most companies’ business processes differ from those of other companies
to a small or large extent. Thus, deployment of such e-commerce platforms incurs a
large overhead in terms of time and money required to rewrite the business processes.
Often, this overhead actually forces companies to adjust their business processes to
conform to an e-commerce system instead of modifying the system to match their
preferred processes.

In this paper, we present a state machine based approach for managing web-based
business processes that is more suited for the interactive nature of online systems than
traditional workflow systems. We introduce a system which facilitates
communication about system change with a descriptive model in which “as-is” and
“as-to-be” models represent business processes. Since the e-business environment is
so dynamic, change often overtakes models before delivering any significant results.
Business people, rather than information technology experts, must be able to develop
and extend the business process model. Hence, tools are required that facilitate
business experts in communicating their vision and insights via a descriptive model.

Additionally, we show how to employ the formal method of statecharts [6], [7] for
the specification of processes for e-commerce platforms. By using statecharts as our
specification method, we are able to model business processes which can be
automatically executed by a workflow engine. Our contribution is the introduction of
process state diagrams, which use the statechart notation for modeling business
processes. Furthermore, we introduce the FlexFlow system, which supports the formal
specification of process state diagrams, including the simulation and execution of
processes modeled with these diagrams. FlexFlow is suited for interactive
applications and is lightweight. It uses state machines to (a) describe the actions that
can be taken by a particular user at particular points in a process based on the role of
the user, (b) to enforce the validity of user requests, (c) to track the execution of
actions within an instance of the business process, (d) to provide the user interface
with a list of actions available to a user working on an instance of the business
process, (e) to provide coordination between state machines, and (f) to allow different
organizations to have varied business processes.

First, we discuss existing related work. Then, we give an overview of the FlexFlow
system, introduce the FlexFlow process model, and explain how defining business

2

processes with FlexFlow can drive e-commerce development. We wrap up with our
real world experiences using FlexFlow and where we can go with it next.

2 Related Works

Business Process (Re-)Engineering [5] is an important driving force for workflow
management. It aims to make business processes more efficient and quickly
adjustable to the ever-changing needs of customers. In contrast to specifications of
business processes, workflow specifications serve as a basis for the largely automated
execution of processes. Workflow specifications are often derived from business
process specifications by refining the business process specification into a more
detailed and more concrete form. Automated and computer-assisted execution means
that a workflow management system (WfMS) [4], [9], [12] controls the processing of
activities, which have to be performed in the workflow. Some activities may have a
manual or intellectual part, to be performed by a human. But the workflow
management system is in charge of determining the (partial) invocation order of these
activities. In contrast to business process specifications, this requires a formal
specification of control flow and data flow.

Workflow specifications based on script languages contain control flow and data
flow constructs which are specifically tailored to workflow applications. Such script
languages are popular in current WfMS products. They provide a compact
representation making them easy to use. A drawback of most script languages is their
lack of a formal foundation. Their semantics is mostly ’defined’ by the code of the
script interpreter used.

Leymann argues in [11] that state transition nets are a good choice when a
graphical visualization of workflow specifications has high priority. In state transition
nets, activities are represented by nodes, and control flow is represented by edges. In
fact, almost all WfMS products provide means for graphical specifications similar to
state transition nets.

Considering only net-based methods with a formal foundation, we have to restrict
ourselves more or less to statecharts [6] and Petri nets [3], [15]. Variants of Petri nets,
especially predicate transition nets, are used in a number of research prototypes as
well as in several WfMS products [2], [14]. Some workflow management systems use
variants of Petri nets for the internal representation of the workflow engine, e.g., [16].
Statecharts [6], [7] have received little attention in workflow management, but they
are well established in software engineering, especially for specifying reactive
systems. In the MENTOR project [21], statecharts are used as a formal foundation for
workflow specification.

Event-Condition-Action-Rules (ECA) rules are used in active database systems
and have been adopted by a number of projects in the workflow area (e.g., [10]). ECA
rules are used to specify the control flow between activities. Like for other methods
that are not based on nets, the graphical visualization of sets of ECA rules is a non-
trivial task. Large sets of ECA rules are hard to handle, and a step-wise refinement is
not supported [17]. In terms of their formal foundation, ECA rules are typically

3

mapped to other specification methods, especially variants of Petri nets or temporal
logic.

The pattern of user interaction with e-commerce business processes is very
different from that of traditional workflow systems. Online business systems are
highly interactive. Internet applications follow the request-response model. In online
business systems, a user takes an action, such as clicking a submit button on a web
page. This results in the form data on that page being sent to the system and the
system acting on it and presenting another page to the user. For example, a user goes
to a shopping web site, fills out the login page and clicks the submit button. This
results in her user name and password being sent to the system, which authenticates
the user and returns the catalog page. Then the system waits until the user selects
products to fill the shopping basket. This interactive, conversational pattern of the
system acting based on a user request and then waiting for the user to initiate the next
step is not well modeled by existing workflow systems. This modeling difficulty is a
major reason why online e-business applications do not use workflow systems.

Another problem is the complexity, cost, and size of workflows systems cause a
high cost of deployment and limit the responsiveness when servicing a large number
of concurrent requests. Microflows [1] have been proposed to address this drawback
of workflow systems. Microflows are small footprint workflow systems crafted for a
particular class of applications. They provide minimal or no support for services
provided by full workflow systems such as transaction management, guaranteed
messaging and worklists. Microflows provide the benefits of abstracting process logic
from task logic while at the same time improving the responsiveness and reducing the
cost as compared to industrial strength workflow systems.

State machines are widely used for implementation of network protocols to
describe the conversation between a sender and receiver. Business processes for e-
commerce platforms also interact frequently with each other. Examples are
negotiation scenarios between buyers and sellers, where the current state determines
the next available actions to each. State machines have been also used to model
negotiations [18]. They have been used for real-time systems; a system reacts or
responds to events with a quick, nearly instantaneous response [19]. Thus, there is
strong evidence to support that state machines would be useful for interactive,
conversational and responsive online business systems.

3 Flexflow Overview

Fig. 1 shows the lifecycle of business processes in the FlexFlow system. A visual
modeling tool is used to design business processes as process state diagrams. The
visual modeling tool generates from the process state diagrams an XML
representation, which is a full description of the business process. It contains all the
information required by the FlexFlow engine to control the execution of the business
process. This XML description is compiled and loaded into the FlexFlow system
database tables. An additional table is used to store the current state of each instance
of a business process running at a given time in the business system. The FlexFlow

4

engine uses these tables to control the execution of business processes as well as the
user interface.

The visual modeling tool is also used to modify definitions of business processes.
Different versions of the business process are stored in the business flow storage.
Business processes can be changed with limited or no change to the task logic or
computer programs that are implementations of the business actions. Simply
reconfiguring its corresponding state machine reconfigures a commerce function.

The FlexFlow system also includes a component for simulating business processes.
Thereby, users and developers can explore process variations to reach a common
vision of how the user might interact with the system to perform a task.

4 The Flexflow Process Model

FlexFlow models e-commerce business processes as Unified Modeling Language
(UML) state diagrams [20], which are an adaptation of Harel’s statecharts [6], [7].

S1

S2S3

S5S4

C1

C2

C3C3

C4

C
om

pile

Sim
ulate

Fig. 1: FlexFlow - Lifecycle of a Business Process

5

UML uses state diagrams to describe the behavior of objects, whereas, FlexFlow uses
statecharts to describe processes. We adopt the UML state diagram notation for the
FlexFlow.

Fig. 2: FlexFlow State Diagrams

UML state diagrams are directed graphs with nodes called states and the directed

edges between them called transitions (see Fig. 2). FlexFlow models interactive
online business processes with these state diagrams. However, unlike UML, where
state diagrams describe the behavior of objects, FlexFlow state diagrams describe
processes. In addition to the functionality of Harel statecharts and UML state
diagrams, FlexFlow adds three key features: 1) the concept of roles, 2) the
coordination of interactions of multiple parties, and 3) the ability to allow different
organizations to use different versions of the business process. Business processes are
versioned as different state diagrams. Versions can be selected based on membership
at the organization level. Versions can also be selected based on other factors
including the mode of interaction, such as device, browser, and messaging method.
The UML notation used by FlexFlow consists of states, transitions, events, guards,
and context.

Actions

Actions correspond to task logic being executed at the application server. For
FlexFlow they are atomic units of business work. Actions can appear in states and
transitions. An action can be used to interface to an external system, such as a
workflow system handling its own set of functionality. An action can be a
conglomeration, or sequence, of pre-defined internal commerce actions. All actions
caused by the processing of an event are run within the same transaction.

States

States correspond to stages in a business process. A state identifies a precise point
within the process. In a given business process at a given state, the actions that can be

6

taken by various parties are completely defined by the set of outgoing transitions. A
state may have an entry action, an action that is executed upon entering the state, and
an exit action, an action that is executed upon leaving the state. In FlexFlow, entry
actions are allowed to trigger new events, which in turn get processed by FlexFlow.

Transitions

A transition represents a change of the process state. It connects two states, a source
state it exits and a target state it enters. A transition corresponds to an action that is
taken in response to an event. Additionally, the transitions may have guards on them.
These guards are checked, and the transition is taken only if they are true. Only one
transition out of a state is taken in response to an event. In UML state diagrams, the
actions on the transitions are assumed to be instantaneous. In FlexFlow most of the
processing activity happens on the transition actions. Given the interactive nature of
the applications, these usually take a very short time, but are not instantaneous.

Events

An event is a named message needing to get processed. In Internet applications, an
event is usually an HTTP client request generated by a user pressing a hyperlink,
button, etc. on a web page. It can also be an incoming Simple Object Access Protocol
(SOAP) request or a Java Message Service (JMS) message. It can also be an event
generated by another process such as a scheduler or another FlexFlow process. It can
even be an event generated in the same FlexFlow process by a transition or a state
entry action.

Guards

A guard is a set of conditions that need to be true before the action can be taken.
Conditions are Boolean computations on the context of the business process and/or
the parameters of the event. In general, the guards can be rules. In our
implementation, an access control condition is always present in the guard. Thus, the
action on a transition is taken only if access is allowed. If no access control policy is
explicitly specified, the default access control mechanism is used.

Context

Context is data associated with a business process. It consists of
− The session information that includes information about the user including roles

and permissions, and

7

− The data submitted by the user such as form entries and the data stored in the form
such as the identification of the process and the business object. For example, if a
user submits a bid for an auction, the context would contain the username and roles
as well as the amount of the bid. The event would include an identifier for the
auction on which the bid is made. Also included in the context is more general
information about the process such as auction start and end time, number of bids,
etc.

This context can be referenced in guards as well as read and updated in actions. Fig. 3
shows a FlexFlow model for a simple bilateral negotiation process between a buyer
and a seller. The top right transition shows that on the event “Offer” the action
“RecordOffer” is taken. The guard checks that the user making the offer is the
“Buyer”. As the action for the other “Offer” transitions is also “RecordOffer” we do
not show it here for simplicity. There is no action corresponding to the “Accept” or
“Reject” events. On entry to the final state “Deal” a “RecordDeal” action is taken.

Fig. 4 shows two variations of the bilateral negotiation process shown in Fig 3. The
process in Fig. 3 forces the buyer and seller to alternate their bids, i.e., once a
participant makes an offer, she has to wait for the other party to make a counter offer.
In Fig. 4 (a), the parties can improve their offers without waiting for a counter offer.
In Fig. 4 (b), the parties can make a final offer which forces the other party to either
accept of reject the offer but does not allow them to counter offer. As is obvious from
the process diagrams, the three variants of the business process reuse the code for just
three actions “RecordOffer”, “RecordDeal” and “RecordNoDeal”.

Fig. 3: A simple state diagram for bilateral negotiation

8

5 User Interaction with FlexFlow

We have observed that a common practice for designing web sites, such as e-
commerce sites, is to first mock-up the flow of web pages for user interactions, and
then to use this flow to drive the development of application logic. This practice
works when the business process is simple and when only one party (the user) is
interacting with the system. However, this design practice does not scale to complex
business processes, especially where multiple parties are participating in the business
process, such as two users in a bilateral negotiation or a buyer and multiple sellers in
an RFQ, along with schedulers for timeouts etc. Another drawback of this design
practice is that process logic gets embedded both in web pages and application code
further complicating any modification of the business process.

Fig. 4: Two variations of the bilateral negotiation process.

9

Process Reflection

The FlexFlow process model has sufficient information for deriving user interactions
from the state diagram. The process reflection mechanism of FlexFlow allows clients
to discover or query process information at run time. This mechanism can be used to
drive the user interface or the future user interaction. Thus, with FlexFlow, the design
practice is to first design the process and then to automatically derive the flow of user
interactions. As the user interaction information is added dynamically to the web
pages at run time, the modifications of the business process get automatically
reflected in the web pages.

Process reflection allows users to query a list of actions that are valid for a given
user role at the current state of the business process. At each given state, the FlexFlow
system knows the next possible set of actions a particular user can perform by using
the guards on all the outgoing transitions. Thus, FlexFlow can provide relevant
information for the rendering of the user output (i.e, FlexFlow can determine whether
buttons should be enabled or disabled). If web designers use this reflection
mechanism, web pages can be shared among different process versions. Using
reflection also reduces the effort for modifying FlexFlow processes [8].

make
offer

make
offer

accept
reject
offer

deal no
deal

accept
reject
offer

Seller's
 Offer

Buyer's
Offer

No
DealDeal

offer-seller
offer-buyer

offer-buyer

offer-seller

accept-buyer

reject-buyer reject-seller

Start

Fig. 5: Controls on web forms for user interactions are created using FlexFlow. The blue
outlined page is for the seller, the green for the buyer. The text in black corresponds to buttons
on the forms.

We illustrate this in Fig. 5 for a simple bilateral negotiation. There is web page for

each state for each user where the user can take an action. The seller’s pages are
outlined in blue and the buyer’s pages are outline in green. At the start state, either
party can make an offer to start the negotiation so the both the buyer’s and seller’s

10

page show a button (or other control) for making an offer. If the seller makes an offer,
the process moves to the “Seller Offered” state and the page for the seller will show
no buttons (corresponding to this instance of the bilateral negotiation) while the
buyer’s page will display the options to make a counter offer or to accept or reject the
current offer. As the controls are generated dynamically via reflection on the process
model, when the process is changed, for example as shown in Fig. 4, the controls on
the web pages will show the correct set of actions without any rewriting.

6 Visual Modeling & Simulation

The FlexFlow engine uses an XML representation of the process definition. To allow
business managers to easily create and change FlexFlow processes, we extended
popular COTS (commercial off-the-shelf) modeling tools. Since statecharts are a part
of the popular UML notation, a number of graphical tools are available. For managing
FlexFlow processes, we have added extensions to both Microsoft Visio® and
Rational Rose®. Therefore, business managers can use a familiar modeling
environment, which provides the following key functionalities:
− Easy-to-use modeling interface for creating or modifying business processes by

changing, adding, and/or removing states and transitions from the process state
diagram.

− XML generation of the process definition based on the process state diagram.
− Import / Export of the XML process definition
− Management of different versions of process state machines.
− Simulation of the FlexFlow processes

The states and transitions of FlexFlow state diagrams have additional attributes like

response views, additional guard properties and priorities. Business managers can
import and export XML process definitions via a file or a web-service.

Different versions of a business process can be maintained based on membership at
the organization level. Versions can also be selected based on the mode of interaction,
such as device, browser, and messaging. Fig. 6 shows the default version of a RFQ
process. By specifying new flows, the modeling tool allows administrators to manage
several variations of a RFQ process. This way, business managers can model and
maintain several RFQ processes (for instance a “Normal RFQ” process, and a “Fast
RFQ” process, which is a more compact version of the normal RFQ process).

11

Fig. 6: Visio Modeling Tool for FlexFlow

Process Simulation

In a typical web application, users can navigate to a limited number of web pages
based on the actions they take. The number of possible navigation paths can be very
large in a complex graphical user interface, but the number is finite and the options
usually are known. User interfaces also must stay in sync with the underlying
business process. Therefore, process state diagrams reflect the navigation paths of the
user at a high level of abstraction.

12

Process state diagrams can be used to explore hypothetical process models and user
interface concepts based on the understanding of the requirements. Users and
developers can study a process state diagram to reach a common vision of how the
user might interact with the system to perform a task. The business process, business
rules and the user experience can be incrementally and iteratively optimized by
simulating the business process with user scenarios. These simulations can occur
without implementing the business logic. This way, conflicts between the business
process and the user interface can be easily discovered.

Process state diagrams capture the essence of the user-system interactions and task
flow without getting one bogged down too soon in specifying the details of web pages
or data elements. Users can trace through a process state diagram to find missing,
incorrect, or superfluous transitions, and hence missing, incorrect, or superfluous
requirements.

The FlexFlow modeling tool includes a simulation component that allows
development of a horizontal prototype which displays the facades of user interface
screens from the web application, possibly allowing some navigation between them.
The tool does not show real data and contains little or no real functionality. The
information that appears in response to a client’s request is faked or static, and report
contents are hard-coded. Nevertheless, the simulation component allows a process-
oriented navigation through the web application. It allows users to change the status
of the current process by selecting one of the available actions on the simulation
panel. For the simulation, we can include web pages of existing web solutions or new
web pages, which can be instantly created and modified. Fig. 7 shows the simulation
of the RFQ process. The buttons in the simulation panel at the bottom of the screen
show the available navigations paths based on the RFQ process state diagram.

Note, that not all page flows are represented by the control flows of a process. For
instance, wizards, like in Fig., or other UI facilitators which have a predefined
sequence of processing steps, are implemented solely in the presentation layer and
have no impact the process itself. UI components of the presentation layer use the
process reflection mechanism to determine functionality, which should be available to
the user.

This type of simulation is often sufficient to give the users a feeling for the web
application and lets them judge whether any functionality is missing, wrong, or
unnecessary. The simulation prototypes represent the concepts to the developers of
how the business process might be implemented. The user’s evaluation of the
prototype can point out alternative courses for a business process, new missing
process steps, previously undetected exception conditions, or new ways to visualize
information.

By modeling and executing business processes as state machines, FlexFlow
enables its process to be modified with minimal changes to the underlying
implementation of the business processes. A commerce process can be modified
simply by reconfiguring its corresponding state diagram.

13

Fig. 7: Simulation of a RFQ Process

7 Conclusion & Future Work

Web applications are difficult to build with traditional workflow management
systems. In this paper, we presented an approach for managing web-based business
processes and introduced a state machine based model for the specification of these
business processes. Since e-commerce environments are highly dynamic, we argued
that a descriptive model in which business processes are represented “as-is” and “as-
to-be” models is advantageous compared to workflow management systems, where
separate models are used.

14

We have shown the FlexFlow system, which supports the modeling, simulation
and execution of process state machine. Using the FlexFlow system, developers start
the development of a web application with a business process model and afterwards,
they can incrementally and iteratively implement all functionalities for this process.
Furthermore, web applications remain with FlexFlow customizable and extendible.

Further problems we want to consider in the future include the management of
hierarchical states as well as the concurrent execution of FlexFlow processes:
− FlexFlow state machines can be denoted as super-states, whereby each super-state

corresponds to a state machine. We want to extend our model to allow states to be
nested an arbitrary number of times. Nested states would also allow a notional
simplicity for handling duplicate transitions and interrupts.

− Concurrent process state machines sometimes need to be synchronized with each
other. Web applications with many business processes demand the ability to start
business processes together, run them independently until a certain state and finally
re-synchronize them. Forks and joins will allow us to specify more complex
transitions to allow this kind of synchronization.

− Besides forks and joins, we want to include a sync vertex in our process model in
order to synchronize concurrent regions in a process state machine. A sync vertex
is different from a state in the sense that it is not mapped to a Boolean value
(active, not active), but an integer. It is used in conjunction with forks and joins to
insure that one region of a state machine leaves particular states before another
region can enter particular states.

References

1. Dragos A. Molescu, Ralph E. Johnson, A Micro Workflow Framework for Compositional
Object Oriented Software Development, OOPSLA, 1999

2. Ellis, C.A., Nutt, G.J., Modeling and Enactment of Workflow Systems, 14th International
Conference on Application and Theory of Petri Nets, 1993

3. Genrich, H.J., Predicate/Transition Nets. In: Advances in Petri Nets, 1986, Springer,
LNCS 254

4. Georgakopolaus, Diimitiros and Hornik, Mark, An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure, Distributed and Parallel
Databases, 3, 119-153, 1995

5. Hammer, M., Champy, J., Reengineering the Cooperation, A Manifesto for Business
Revolution, New York, 1993

6. Harel D., Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, Vol. 8, 1987

7. Harel, D., On Visual Formalisms, Communications of the ACM Vol.31 No.5, 1988
8. Ian Horrocks, Constructing the User Interface with Statecharts, Addison-Wesley, 1999
9. Jablonski, S., Bussler, C., Workflow-Management, Modelling Concepts, Architecture, and

Implementation, International Thomson Computer Press, 1996
10. Kappel, G., Lang, P., Rausch-Schott, S., Retschitzegger, W.: Workflow Management

Based on Objects, Rules, and Roles, IEEE Bulletin of the Technical Committee on Data
Engineering, Vol. 18/1, March 1995, pp. 11-17

11. Leymann, F., Altenhuber, W., Managing Business Processes as an Information Resource,
IBM Systems Journal Vol.33 No.2, 1994

15

12. Mohan, C.: State of the Art in Workflow Management Research and Products, SIGMOD,
Montreal, Canada, 1996

13. Mohan, C., Recent Trends in Workflow Management Products, Standards and Research,
NATO, 1997

14. Oberweis, A., Modeling and Execution of Workflows with Petri-nets, Teubner, 1996
15. Reisig, W., Petri Nets: An Introduction, Springer, 1985
16. Reuter, A., Schwenkreis, F., ConTracts - A Low-Level Mechanism for Building General-

Purpose Workflow Management Systems, IEEE Computer Society, Bulletin of the
Technical Committee on Data Engineering, 18(1):4-10, 1995

17. Simon, E., Kotz-Dittrich, A.: Promises and Realities of Active Database Systems,
International Conference on Very Large Data Bases, Zurich, 1995

18. J. Sprinkle, C.P. van Buskirk and G. Karsai, Modeling Agent Negotiation, Proceedings of
the IEEE Systems, Man, and Cybernetics Conference, October 2000

19. Tsai J.J.P., Yang, S., Bi, Y., Smith, R., Distirbuted Real-Time Systems, John Wiley and
Sons Inc., 1996

20. Unified Modeling Language Specification, version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm, 2001

21. Weißenfels, J., Wodtke, D., Weikum, G., Kotz Dittrich, A., The MENTOR Architecture
for Enterprise-wide Workflow Management, Workflow and Process Automation in
Information Systems, 1996

16

