with Web Services

\\ ,,/ +
SprnsttC: |
Josef Schiefer P \
8¢ 5 SO
Vienna, November 2004 ”
. g
e

Block 1
» Motivation/Introduction
» Orchestration vs Choreography
» BPEL4WS - Basic Constructs
» Partner Links
Main Flow Constructs
Message Correlation
Compensation Handlers
Fault Handlers
Event Handlers
» Q&A

N

N

N

N

N

Block 2

» Details to all BPEL4WS Constructs
» Demo with Oracle BPEL Process Manager
» Conclusion + Future Trends

» Business Process Monitoring
with Senactive InTime

» QEA

» “Diplomarbeitsthemen” in the area of
business process management & monitoring

Please interrupt me if you have questions!!

T Know WHET You
MY HUSBAND IS MEAN ... TLL BET WY
SURFING THE NET HUSBAND 15 ON LINE

¢

Integration...

Coordination...

Motivation/Introduction \

Web
Service 1

Web Services Meet Business Processes

Web
Service 4

Web
Service 2

Web
Service 5

Web
Service 3

Web
Service n

eXtendBank — The OLD Loan Application System

eXtendBank: The new QuickLoan Process

Service Service (WBI Adapter)

Service (Web) (Human Interaction)

Service (JavaMail)

1
1 1
1 1
1
1 ~
Send

. Loan NO Send
> g;eec(l:l; — Officer proveq: Rejection End cr::::it:r " |- Confirmation Next
Approval Email Email
YES
NO
\ i Reserve Assess
Start il L Approved? > > Loan
y A Funds i
Risk
; \ YES
Create ,: ‘\ Send
» Loan |— ‘ \ Risk Rejection End
5 % Email

App

\
\

Service (JavaMail)

%Fﬂj
|
Service (J2EE) Service (Web)

Service (CICS)

Business Process Challenges

» Coordinate asynchronous communication between services
» Correlate message exchanges between parties
» Implement parallel processing of activities

» Manipulate/transform data between partner interactions

» Support for long running business transactions and activities
» Provide consistent exception handling

» ...

10

Recent History of Business Process Standards

BPML BPSS WSCI WS-Choreography
(Intallio et al) (ebXML) (Sun et al) (W3C)

2000/05 2001/03 2001/05 2001/06 2002/03 2002/06 2002/08 2003/01 2003/04

XLang WSFL WSCL BPEL4WS 1.0 BPEL4WS 1.1
(Microsoft) (IBM) (HP) (IBM, Microsoft) (OASIS)

11

Business Process Execution Language for Web Services (BPEL4WS)

Version 1.0 released by IBM, Microsoft and BEA in August 2002

* Accompanied by WS-Coordination, WS-Transaction

Version 1.1 submitted to OASIS April 2003
* BPEL4WS = WS-BPEL

XML language for describing business processes based on Web services
* Convergence of XLANG (Microsoft) and WSFL (IBM)

Unprecedented industry consensus
* [BM, Microsoft, Oracle, Sun, BEA, SAP, Siebel ...

12

Interplay of BPEL4WS, Web Service, UDDI, WSDL, SOAP

Web Service Stack

BPEL4WS is on Top of the Web Service Stack

«— BPEL4WS

WSCI, W3C Web Services
Choreography

WSDL, SOAP, Messaging,

Current Web Services < .
Stack Discovery, etc.

14

Das BPEL4WS Prozessmodell basiert auf dem Service-Modell von WSDL 1.1

WSDL specifies a hierarchy for describing Web Services characteristics in an abstract form:

eg: Purchase Order Interface

eg: Purchase Order Status Query

eg: Submit Purchase Order
Messages Number, Receive Status

eg: Purchase Order Number, Status

Standards Building Blocks of BPEL

Management

Orchestration — BPEL4WS

Business
Choreography - WSCI Processes
Transactions
WS-Reliability || WS-Security || Coordination Quallt.y of
Service
Context
UDDI Discovery
WSDL Description
SOAP
Message
XML
HTTP,IIOP, JMS, SMTP Transport

16

Value Proposition

Portable business processes

» Built on top of an interoperable
infrastructure of Web Services

Industry wide language for business
processes

» Common skill set and language for
developers

Choice of process engines
» Standards lead to competitive offerings

Process Models

ARIS

Adonis

RAD

IDEFX

Workflow Models

SAP
Workflow

TIBCO
(Staffware)

IBM (WBI)

Microsofi
(Biztalk)

BPEL4WS will replace proprietary Workflow Models
will become the preferred choice for process automation

17

Orchestration vs
Choreography

18

Orchestration vs Choreography

Orchestration

» An executable business process describing a flow from the perspective and under control
of a single endpoint (commonly: Workflow)

Choreography

» The observable public exchange of messages, rules of interaction and agreements
between two or more business process endpoints

19

Sample Business Process: Purchase Order

Sample Purchase Order

Purchase Order Request

Business < Business
“A” Purchase Order Acknowledgement “B”

Purchase Order Response

20

From a Choreography Perspective

Public Process

PO Response

r-r-—-——=—=—=777 |
|
Business A I : Business B
Send | | Receive
PO l > I
: PO Request PO
|
I l
Receive PO | | Send
Ack < PO Ack
' PO Acknowledgement 'l ¢
I l
Receive PO : . ' send PO

Choreography — The observable public exchange of messages

21

From an Orchestration Perspective

Private Process
Business A BPEL Workflow
Send

% Transform ———> PO >
From ERP PO Request

!

Receive PO
Ack

!

Receive PO

PO Acknowledgement

To ERP

Transform <= <
Response

PO Response

Orchestration — A private executable business process

22

BPEL4WS
Basic Constructs

23

BPEL Process
Meta Model

CorrelationSet CompensationHandler
name
property:Colection -—
1
Activity
¢ 1
Process
narme
i
Partner
ry Role
name
servicelinkType
Container
mess ageType
name
FaultHandler Reply
faultContainer
faulthame -—————————

BPEL4WS Overall Structure

Process |

parties that interact activities that must

with the business be performed in
process E B response to faults

PartnerLinks/Partners } { FaultHandlers
invoked

data variables used concurrently if the

by the process (D Q corresponding

4 event occurs
Variables EventHandlers
set of properties
shared by ai — el
messages in a @ * a'::tivity
correlated group CJ
CorrelationSets CompensationHandlers
basic or structured
activity * |
J
’ Activity :
\ ;"
\ - //

25

BPEL Scenario Structure

<process>
<!- Definition and roles of process participants -->
<partnerLinks> ... </partnerLinks>
<!- Data/state used within the process -->

<variables> ... </variables>
<!- Properties that enable conversations —-->
<correlationSets> ... </correlationSets>
<!- Exception handling -->
<faultHandlers> ... </faultHandlers>
<!- Error recovery — undoing actions -->
<compensationHandlers> ... </compensationHandlers>
<!- Concurrent events with process itself -->
<eventHandlers> ... </eventHandlers>
<!- Business process flow -->
(activities) *

</process>

26

BPEL Activity
Meta Model

Pick While Switch Assign FaultHandler
createinstance —SCOPE G—;faultCDntainer
Faulthame
Activity K] |
1 *| CompensationHandler
Catch
faultContainer
~ JATART AN raulthiame
Correlation
= initiation
56t
Flow Sequence Recelve Reply Invoke
container Ccontainer inputContainer *
createlnstance faulthame operation
operation operation outputContainer
partner partner partner o—————————— |
potTyoe portType portType
Throw Compensate
faultContainer +3C0pE
faulthame
Terminate Wait Empty

for
uritil

BPEL4WS Basic Activities

Generate a fault from inside the
business process

Do a blocking wait for a matching
message to arrive

Receive Throw

HE

Send a message in reply to a Immediately terminate the behavior of

i [

RePlY | message that was received througha | '™ | a business process instance
Receive
Invoke a one-way or request- Qo

Invoke response operation on a portType Wait Wait for a given time period or until a

offered by a partner certain time has passed

Insert a "no-op" instruction into a
business process

Update the values of variables or
partner links with new data

i
=

Assign Empty

28

BPEL4WS Structured Activities

kS

Collection of activities to be

—
= o . .
sequence | performed sequentially in lexical Block and wait for a suitable message to
order arrive or for a time-out alarm to go off

Select exactly one branch of Specify one or more activities to be

Switch . :
activity from a set of choices performed concurrently

Indicate that an activity is to be (P Define a nested activity with its own
While repeated until a certain success associated variables, fault handlers, and
criteria has been met compensation handler

N

9

BPEL4WS is capable of modeling complex business processes

The following is a BPEL4WS process for handling a purchase order:

“Invoice “Production
| Services” Hocolie Scheduling”
“Purchase portType s portType
Order” ¥)
portType operation
Initiate H
Price
Calculation A
: message

ion
“Initiate
Production
Scheduling”
operation

<portType name="schedulingPT”
<operation name=“requestProductionScheduling”

<input message=“pos:POMessage” />

</operation>
<operation name=“sendShippingSchedule”>
<input message=“pos:scheduleMessage”/>

“Complete

</operation> sPcrr?:::|ti:m”
</portType> opmaﬁog

Partner Links \

31

Partner, Partner Links, Partner Link Types, Endpoint References

»Model peer-to-peer conversational relationships with partners
»Define interaction channels between partners

»Partner Link Types: Characterize relationships between two services
by defining the ,roles” played by each of the services and specifying the
portType provided by each service

»Partner Links: Are used to represent interactions between a service
and each of the parties with which it interacts

»Endpoint Reference: Selection of service providers and invocation of
their operations. Can be used in Partner Links.

»Partners: A subset of the partner links of the process

32

Partner Link Types, Partner Links

BuyerSellerLink Partner Link Types
i i <partnerLinkType
| Buyer Seller name="BuyerSellerLink">

, <role name="Buyer">
i <portType name="BuyerPT"/>
- </role>
<role name="Seller">
<portType name="SellerPT"/>
</role>
</partnerLinkType>

(BuyerPT) (SellerPT)

o T . Partner Links

. : <partnerLinks>
i Seller i <partnerLink
: ! name="buying"
e partnerLinkType="BuyerSellerLink"
: myRole="Buyer"
Process Web Service partnerRole="Seller"/>
</partnerLinks>

33

Partner Links

——

Process

Web Service
(BuyerPT)

(SellerPT)

response

Using partner links in the <invoke> activity:

<invoke
partnerLink="buying"
portType="SellerPT"
operation="buy"
inputVariable="itemid"
outputVariable="response" />

34

Partner Links

selling

getAmount (itemid) _
< Web Service

————————————— > (SellerPT)

Process
(BuyerPT)

Incoming calls with blocking <receive> activity
» Creates a new process instance

<recelve partnerLink="selling” portType="SellerPT"
operation="getAmount" variable="itemid"
createInstance="yes"/>

Result via <reply> activity

<reply partnerLink="selling" portType="SellerPT"
operation="buy" variable="price"/>

35

Partner Links

Partner links define the messages and port types used in the interactions in both directions, along with role names

“Invoicing” g:%ﬂu “Scheduling”
. FUrchase .
partner link rder partner link
13 H kb
Purchasing .
. |
partner link s
-
Initiate —
Frice Crecide
Calculation / _on
T A REar
: /
i
’/
/ -

<partnerLink name="scheduling"

partnerLinkType="1lns:schedulingLT"

—_n 2 C "/
partnerRole="schedulingService"/ The portType

used in the

<plnk:partnerLinkType name="schedulingLT"> partner link

<plnk:role name="schedulingService">
<plnk:portType name="pos:schedulingPT" />

</plnk:role>

</plnk:partnerLinkType>

Endpoint References

BPEL4WS uses “endpoint references” for dynamic selection of service providers and
invocation of their operations

The relevant information about a partner service can be set up as part of business process deployment
® This is a more “static” approach

However, it is also possible to select and assign partner services dynamically

BPEL4WS leverages the WS-Addressing specification for this capability

" WS-Addressing defines a standard representation for endpoint references that incorporates information from a WSDL
description as well as policy information:

<wsa:EndpointReference xmlns:wsa="...">
<wsa:Address>http://www.someendpoint.com</wsa:Address>
<wsa:PortType>PurchaseOrderPortType</wsa:PortType>

</wsa:EndpointReference>

The portType
associated with

the address

Main Flow Constructs \

38

Main BPEL4WS constructs: “Receive”, “Flow” and “Reply” 1/3

The purchase order example uses all three constructs

Recoive “Receive”
FPurchaso
Qrder construct
I
=
d R
Initiste : Initiato
|:Ti¢,;'.' Crecide Froduction
Calculation _on Scheduling
; Shipper T
i T]
i 1]
i] :
: b4 .
Il
v Arrange hd
Completo Logistics -"“'--.__* Complele
_ Frice Froduction
Calculation schoeduling
. : S
1
Y

Imvoice
Frocossing
(1] Reply”

39

Main BPEL4WS constructs: “Receive”, “Flow” and “Reply” 2/3

The receive construct allows a process to do a blocking wait for a
matching message to arrive

Wait to
receive a
purchase
order on the
“Purchasing”
partner link

<receilve partnerLink="purchasing"
portType="1ns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="PO"
</receive>

Represents
the purchase
order
message

The flow construct allows one or more activities
to be performed concurrently

40

Main BPEL4WS constructs: “Receive”, “Flow” and “Reply” 3/3

The reply construct allows a process to send a message in reply
to a message that was received through a <receive>

<reply partnerLink="purchasing" ﬁl‘
portType="1lns:purchaseOrderPT" Send invoice
operationz"sendPurchaseOrder"_/fﬁ _ eubie
able="“T . " Purchasing

</reply>

Represents
the invoice
message

41

Modeling dependencies between activities

There are several dependencies in the purchase order example

Cannot

Cannot Roceive lot
i Furchasc complete
comple_te prlce_ Aclies -or pct'on
calculation until ; p u i _
shipper is Y scheduling until
determined — —) shipping
nitiate akg g
Price Decide Production logistics are
QU Lo _on scheduling arranged
Ampper
i ;
i I
. b
‘il" fl'rnngc
Complete ogistics Complele
Frice -‘EH Froduction
Calculabion Scheduling
. : .

The synchronization dependencies between concurrent tasks are

expressed by using “links” to connect them 1/2

Dependency links have to be defined in the <links> section:

<flow>
<links>
<link name="ship-to-invoice"/>
<link name="ship-to-scheduling" />
</links>

activities use the links as source and targets

</flow>

43

The synchronization dependencies between concurrent tasks are

expressed by using “links” to connect them 2/2

The following represents the dependency of the price calculation on the shipper selected:

This
represents
the “Decide
on Shipper”
activity

<invoke partnerLink=“shipping"
portType="1ns:shippingPT"
operation="requestShipping"
inputVariable="shippingRequest">
outputVariable="shippingInfo">
<source linkName="ship-to-invyoice"/>
</invoke>

The common link
name represents a
dependency
between the two
activities

—\

<invoke partnerLink=%“invoicing"
portType="1lns:computePricePT"
operation="sendShippingPrice"
inputVariable="shippingln
<target linkName="ship-to-invoice
</invoke>

This represents
the “Complete
Price
Calculation”
activity

A4,

Message Correlation

45

Message correlation involves the association of two or more

messages with each other in an asynchronous environment

This may be done by associating contents in a given message with its
correlating message

® For example, in a purchase order/invoice scenario, the invoice may contain the
corresponding purchase order number

Purchase Order: Invoice:
<PurchaseOrder> <|nvoice>
<PurchaseOrderNumber> <InvoiceNumber>
<PurchaseOrderDate <InvoiceDate>

........ <PurchaseOrderNumber>

</PurchaseOrder> N\ \| = |.en..
</Invoice>

Purchase order
number is common
in both messages

~_

BPEL4WS represents message correlations using “correlation sets”

A correlation set contains a set of properties shared by all messages in a correlated group

<receive partnerLink="Buyer" portType="SP:PurchasingPT"
operation="AsyncPurchase" variable="PO">
<correlations>
<correlation set="PurchaseOrder" initiate="yes">
</correlations>

</receive>

<invoke partnerLink="Buyer" portType="SP:BuyerPT"
operation="AsyncPurchaseResponse" inputVariable="POResponse">
<correlations>
<correlation set="PurchaseOrder" initiate="no" pattern="out">
<correlation set="Invoice" initiate="yes'" pattern="out">
</correlations>
</invoke>

<correlationSet name="PurchaseOrder"
properties="cor:customerID cor:orderNumber"/>

<correlationSet name="Invoice"
properties="cor:vendorID cor:invoiceNumber" />

47

Variables \

48

Variables

Messages sent and received from partners
» Persisted for long running interactions
» Defined in WSDL types and messages

Process
Customer <variable> <activity> <activity> <variable> Customer

Service Service

) Persist/
Persist]
Retrieve

I |
Persist/ I Persist/
Retrieve I Retrieve

Variables in BPEL

BPEL.:

<variables>
<variable name=“PO” messageType=“1lns:POMessage” />
<variable name=“Invoice” messageType=“lns:InvMessage”/>
<variable name=“POFault” messageType=“1lns:orderFaultType”/>
</variables>

Purchase Process WSDL.:

<message name="POMessage”’>
<part name=“customerInfo” type=“sns:customerInfo”/>
<part name=“purchaseOrder” type=“sns:purchaseOrder”/>
</message>
<message name='"InvMessage'">
<part name=“IVC” type=“sns:Invoice”/>
</message>
<message name=“‘orderFaultType”>
<part name=“problemInfo” type=“xsd:string”/>
</message>

50

How is Data Manipulation Done?

Using <assign> and <copy>, data can be copied and manipulated between variables
<copy> supports XPath queries to sub-select data

<assign>
<copy>
<from variable="PO" part="customerInfo"/>
<to variable="creditRequest" part="customerInfo"/>
</copy>
</assign>

51

Compensation Handlers \

52

Long Running Transactions and Compensation

<scope> CreditService
Charge " ChargettoldFes
Hold Feel diely | g -Canc?eIHoIdFee
InventoryService
IrI?\?es::;’fy Undo b == === === : * Reservelnventory
» CancelReservelnv
</sc;pe>

53

Long Running Transactions and Compensation Handlers

Consider a situation in which a user cancels a purchase order:

Revert back to original state

Submit Process Check Order
Purchase Purchase I e:: From
Order Order nventory Supplier

In this situation, it is not possible to lock system resources (ex: database
records) for extended periods of time

" Therefore, the partial work must be undone as best as possible

User
Cancels!

54

Compensation Handlers in BPEL

<scope>
<compensationHandler>
<invoke partnerLink="Seller" portType="SP:Purchasing"
operation="CancelPurchase"
inputVariable="getResponse"
outputVariable="getConfirmation">
<correlations>
<correlation set="PurchaseOrder" pattern="out"/>
</correlations>
</invoke>
</compensationHandler>
<invoke partnerLink="Seller" portType="SP:Purchasing"
operation="SyncPurchase"
inputVariable="sendPO"
outputVariable="getResponse">
<correlations>
<correlation set="PurchaseOrder" initiate="yes" pattern="out"/>
</correlations>
</invoke>
</scope>

95

Fault Handlers \

56

Exception Handling in BPEL

<faultHandlers> catch exceptions based on a fault name and fault variables
Fault Handlers can perform arbitrary activities upon invocation

<process>
<scope>
<faultHandlers>
<catch faultName="lns:cannotCompleteOrder"

faultvVariable="POFault">
<reply partnerLink="customer"

portType="1ns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="POFault"

faultName="cannotCompleteOrder" />
</catch>

<catchAll>
<empty/>
</catchaAll>
</faultHandlers>

. other activities
</scope>

</process>

<throw faultName="lns:cannotCompleteOrder"“ variable=“POFault”/> \/ |

-

Event Handlers \

58

Event Handlers in BPEL

<eventHandlers> are invoked concurrently when certain events occur
There are two types of events: Message Events and Alarm Events

Message Events: Event that waits for a message to arrive

<process name="orderCar">

<eventHandlers>
<onMessage partnerLink="buyer" portType="car" operation="cancel"
variable="cancelDetails">
<terminate/>

</onMessage>
</eventHandlers>

</process>

59

Event Handlers in BPEL

Alarm Events: Define timeout events

<process name="orderCar" xmlns:def="http://www.example.com/wsdl/example" ...>

<eventHandlers>
<onAlarm for=
"bpws :getVariableData (orderDetails,processDuration) ">

</onAlarm>
</eventHandlers>

<variable name="orderDetails" messageType="def:orderDetails" />
</wvariable>

<receive name="getOrder"
partnerLink="buyer"
portType="car"
operation="order"
variable="orderDetails"
createInstance="yes" />

</process>

BPEL Lifecycle Management

Creating a process instance
» BPEL4WS business processes represent stateful long-running interactions
» The creation of a process instance in BPEL4WS is always implicit (e.g. with first <invoke>)

» Activities that receive messages (<receive> activities or <pick> activities) can be annotated to
indicate that the occurrence of that activity causes a new instance (createlnstance = ,yes®)

Terminating a process instance

» When the activity that defines the behavior of the process as a whole (in most cases
<sequence> or <flow>) completes.

» When a fault reaches the process scope, and is either handled or not handled
» When a process instance is explicitly terminated by a <terminate> activity.

» If a compensation handler is specified for the business process as a whole, a business process
instance can be compensated after normal completion.

61

» Details on BPEL4WS activities (there are a lot of them...)

» Many examples that show how these activities ,really” work
» Demo with Oracle BPEL Process Manager (former Collaxa)
» The Future of BPEL + Conclusion

» Brief Introduction in Business Process Monitoring
with Senactive InTime

-> Upcoming Week

62

with Web Services

Josef Schiefer

Vienna, November 2004

