
An Extensible Monitoring Framework for

Measuring and Evaluating Tool Performance in
a Service-oriented Architecture

Christoph Becker, Hannes Kulovits, Michael Kraxner, Riccardo Gottardi, and
Andreas Rauber

Vienna University of Technology, Vienna, Austria
http://www.ifs.tuwien.ac.at/dp

Abstract. The lack of QoS attributes and their values is still one of
the fundamental drawbacks of web service technology. Most approaches
for modelling and monitoring QoS and web service performance focus
either on client-side measurement and feedback of QoS attributes, or on
ranking and discovery, developing extensions of the standard web service
discovery models. However, in many cases, provider-side measurement
can be of great additional value to aid the evaluation and selection of
services and underlying implementations.

We present a generic architecture and reference implementation for
non-invasive provider-side instrumentation of data-processing tools ex-
posed as QoS-aware web services, where real-time quality information is
obtained through an extensible monitoring framework. In this architec-
ture, dynamically configurable execution engines measure QoS attributes
and instrument the corresponding web services on the provider side. We
demonstrate the application of this framework to the task of performance
monitoring of a variety of applications on different platforms, thus enrich-
ing the services with real-time QoS information, which is accumulated
in an experience base.

1 Introduction

Service-oriented computing as means of arranging autonomous application com-
ponents into loosely coupled networked services has become one of the primary
computing paradigms of our decade. Web services as the leading technology in
this field are widely used in increasingly distributed systems. Their flexibility and
agility enable the integration of heteregoneous systems across platforms through
interoperable standards. However, the thus-created networks of dependencies
also exhibit challenging problems of interdependency management. Some of the
issues arising are service discovery and selection, the question of service quality
and trustworthiness of service providers, and the problem of measuring quality-
of-service (QoS) attributes and using them as means for guiding the selection of
the optimal service for consumption at a given time and situation.

Measuring quality attributes of web services is inherently difficult due to the
very virtues of service-oriented architectures: The late binding and flexible in-
tegration ideals ask for very loose coupling, which often implies that little is

M. Gaedke, M. Grossniklaus, and O. Dı́az (Eds.): ICWE 2009, LNCS 5648, pp. 221–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ifs.tuwien.ac.at/dp

222 C. Becker et al.

known about the actual quality of services and even less about the confidence
that can be put into published service metadata, particularly QoS information.
Ongoing monitoring of these quality attributes is a key enabler of service-level
agreements and a prerequisite for building confidence and trust in services.

Different aspects of performance measurement and benchmarking of web ser-
vices have been analysed. However, most approaches do not provide concrete
ways of measuring performance of services in a specific architecture. Detailed
performance measurement of web services is particularly important for obtain-
ing quality attributes that can be used for service selection and composition, and
for discovering bottlenecks to enable optimization of composite service processes.

The total, round-trip-time performance of a web service is composed by a num-
ber of factors such as network latency and web service protocol layers. Measuring
only the round-trip performance gives rather coarse-grained measurements and
does not provide hints on optimization options. On the other hand, network
latencies are hard to quantify, and the run-time execution characteristics of the
software that is exposed as a service are an important component of the overall
performance.

Similar to web service quality criteria and service selection, these run-time
execution characteristics of a software tool are also an important criterion for
the general scenario of Commercial-off-the-Shelf (COTS) component selection.
Our motivating application scenario are the component selection procedures in
digital preservation planning. In this domain, a decision has to be taken as to
which tools and services to include for accomplishing the task of keeping spe-
cific digital objects alive for future access, either by converting them to different
representations or by rendering them in compatible environments, or by a combi-
nation of both. The often-involved institutional responsibility for the curation of
digital content implies that a carefully designed selection procedure is necessary
that enables transparent and trustworthy decision making.

We have been working on a COTS selection methodology relying on empir-
ical evaluation in a controlled experimentation setting [2]. The corresponding
distributed architecture, which supports and automates the selection process,
relies on web services exposing the key components to be selected, which are
discovered in corresponding registries [1].

This COTS selection scenario shows many similarities to the general web ser-
vice selection problem, but the service instances that are measured are used
mainly for experimentation; once a decision is taken to use a specific tool, based
on the experimental evaluation through the web service, it might be even pos-
sible to transfer either the data to the code or vice versa, to achieve optimum
performance for truly large-scale operations on millions of objects.

The implications are that

1. Monitoring the round-trip time of service consumption at the client does not
yield sufficient details of the runtime characteristics;

2. Provider-side runtime characteristics such as the memory load produced by
executing a specific function on the server are of high interest;

An Extensible Monitoring Framework for Measuring and Evaluating Tool 223

3. Client-side monitoring is less valuable as some of the main parameters de-
termining it, such as the network connection to the service, are negotiatable
and up to configuration and production deployment.

While client-side measurement is certainly a valuable tool and necessary to
take into account the complete aspects of web service execution, it is not able
to get down to the details and potential bottlenecks that might be negotiable or
changeable, and thus benefits greatly from additional server-side instrumenta-
tion. Moreover, for large-scale library systems containing millions of objects that
require treatment, measuring the performance of tools in detail can be crucial.

In this paper, we present a generic and extensible architecture and framework
for non-invasive provider-side service instrumentation that enables the auto-
mated monitoring of different categories of applications exposed as web services
and provides integrated QoS information. We present a reference implementa-
tion for measuring the performance of data processing tools and instrumenting
the corresponding web services on the provider side. We further demonstrate the
performance monitoring of a variety of applications ranging from native C++ ap-
plications and Linux-based systems to Java applications and client-server tools,
and discuss the results from our experiments.

The rest of this paper is structured as follows. The next section outlines related
work in the areas of web service QoS modelling, performance measurement, and
distributed digital preservation services. Section 3 describes the overall architec-
tural design and the monitoring engines, while Section 4 analyses the results of
practical applications of the implemented framework. Section 5 discusses impli-
cations and sets further directions.

2 Related Work

The initially rather slow takeup of web service technology has been repeatedly
attributed to the difficulties in evaluating the quality of services and the corre-
sponding lack of confidence in the fulfillment of nun-functional requirements. The
lack of QoS attributes and their values is still one of the fundamental drawbacks
of web service technology [21,20].

Web service selection and composition heavily relies on QoS computation [18,6].
A considerable amount of work has been dedicated towards modelling QoS at-
tributes and web service performance, and to ranking and selection algorithms.
A second group of work is covering infrastructures for achieving trustworthiness,
usually by extending existing description models for web services and introduc-
ing certification roles to the web service discovery models. Tian describes a QoS
schema for web services and a corresponding implementation of a description and
selection infrastructure. In this framework, clients specify their QoS requirements
to a broker, who tests them agains descriptions published by service providers
and interacts with a UDDI registry [25]. Industry-wise, IBM’s Web Service Level
Agreement (WSLA) framework targets defining and monitoring SLAs [14].

Liu presents a ranking algorithm for QoS-attribute based service selection [16].
The authors describe the three general criteria of execution duration (round-trip

224 C. Becker et al.

time), execution price, and reputation, and allow for domain-specific QoS crite-
ria. Service quality information is collected through accumulating feedback of the
requesters who deposit their QoS experience. Ran proposes a service discovery
model including QoS as constraints for service selection, relying on third-party
QoS certification [21]. Maximilien proposes an ontology for modelling QoS and an
architecture where agents stand between providers and consumers and aggregate
QoS experience on behalf of the consumers [17]. Erradi presents a middleware
solution for monitoring composite web service performance and other quality
criteria at the message level [7].

Most of these approaches assume that QoS information is known and can be
verified by the third-party certification instance. While this works well for static
quality attributes, variable and dynamically changing attributes are hard to
compute and subject to change. Platzer discusses four principal strategies for the
continuous monitoring of web service quality [20]: provider-side instrumentation,
SOAP intermediaries, probing, and sniffing. They further separate performance
into eight components such as network latency, processing and wrapping time
on the server, and round-trip time. While they state the need for measuring
all of these components, they focus on round-trip time and present a provider-
independent bootstrapping framework for measuring performance-related QoS
on the client-side [22,20].

Wickramage et. al. analyse the factors that contribute to the total round
trip time (RTT) of a web service request and arrive at 15 components that
should ideally be measured separately to optimize bottlenecks. They focus on
web service frameworks and propose a benchmark for this layer [26]. Her et. al.
discuss metrics for modelling web service performance [11]. Head presents a
benchmark for SOAP communication in grid web services [10]. Large-scale client-
side performance measurement tests of a distributed learning environment are
described in [23], while Song presents a dedicated tool for client-side performance
testing of specific web services [24].

There is a large body of work on quality attributes in the COTS component
selection domain [5,4]. Franch describes hierachical quality models for COTS
selection based on the ISO/IEC 9126 quality model [13] in [9].

Different categories of criteria need to be measured to automate the COTS
selection procedure in digital preservation [2].

– The quality of results of preservation action components is a highly complex
domain-specific quality aspect. Quantifying the information loss introduced
by transforming the representation of digital content constitutes one of the
central areas of research in digital preservation [3].

– On a more generic level, the direct and indirect costs are considered.
– For large-scale digital repositories, process-related criteria such as opera-

tional aspects associated with a specific tool are important. To these criteria
pertain also the performance and scalability of a tool, as they can have signif-
icant impact on the operational procedures and feasibility of implementing
a specific solution in a repository system.

An Extensible Monitoring Framework for Measuring and Evaluating Tool 225

In the preservation planning environment described in [1], planning decisions
are taken following a systematic workflow supported by a Web-based application
which serves as the frontend to a distributed architecture of preservation services.

To support the processes involved in digital preservation, current initiatives
are increasingly relying on distributed service oriented architectures to handle
the core tasks in a preservation system [12,8,1].

This paper builds on the work described above and takes two specific steps
further. We present a generic architecture and reference implementation for non-
invasively measuring the performance of data processing tools and instrument-
ing the corresponding web services on the provider side. We demonstrate the
performance monitoring of a variety of applications ranging from native C++
applications on Linux-based systems to Java applications and client-server tools,
and discuss results from our experiments.

3 A Generic Architecture for Performance Monitoring

3.1 Measuring QoS in Web Services

As described in [20], there are four principle methods of QoS measurement from
the technical perspective.

– Provider-side instrumentation has the advantage of access to a known im-
plemementation. Dynamic attributes can be computed invasively within the
code or non-invasively by a monitoring device.

– SOAP Intermediaries are intermediate parties through which the traffic is
routed so that they can collect QoS-related criteria.

– Probing is a related technique where a service is invoked regularly by an
independent party which computes QoS attributes. This roughly corresponds
to the certification concept described in the previous section.

– Sniffing monitors the traffic on the client side and thus produces consumer-
specific data.

Different levels of granularity can be defined for performance-related QoS;
some authors distinguish up to 15 components [26].

In this work, we focus on measuring the processing time of the actual service
execution on the provider-side and describe a non-invasive monitoring frame-
work. In this framework, the invoked service code is transparently wrapped by a
flexible combination of dynamically configured monitoring engines that are each
able of measuring specific properties of the monitored piece of software. While
these properties are not in any way restricted to be performance-related, the
work described here primarily focuses on measuring runtime performance and
content-specific quality criteria.

3.2 Monitoring Framework

Figure 1 shows a simplified abstraction of the core elements of the monitoring
design. A Registry contains a number of Engines, which each specify which

226 C. Becker et al.

Fig. 1. Core elements of the monitoring framework

aspects of a service they are able to measure in their MeasurableProperties.
These properties have associated Scales which specify value types and con-
straints and produce approprate Value objects that are used to capture the
Measurements associated with each property. The right most side of the digram
shows the core scales and values which form the basis of their class hierarchies.

Each Engine is deployed on a specific Environment that exhibits a cer-
tain performance. This performance is captured in a benchmark score, where
a Benchmark is a specific configuration of services and benchmark Data for a
certain domain, aggregating specific measurements over these data to produce a
representative score for an environment. The benchmark scores of the engines’
environments are provided to the clients as part of the service execution meta-
data and can be used to normalise performance data of software across different
service providers.

A registry further contains Services, which are, for monitoring purposes, not
invoked directly, but run inside a monitoring engine. This monitoring execution
produces a body of Experience for each service, which is accumulated through
each successive call to a service and used to aggregate QoS information over
time. It thus enables continuous monitoring of service quality. Bootstrapping
these aggregate QoS data happens through the benchmark scoring, which can
be configured specifically for each domain.

CompositeEngines are a flexible form of aggregating measurements obtained
in different monitoring environments. This type of engine dispatches the service
execution dynamically to several engines to collect information. This is especially
useful in cases where measuring code in real-time actually changes the behaviour
of that code. For example, measuring the memory load of Java code in a profiler
usually results in a much slower performance, so that simultaneous measurement
of memory load and execution speed leads to skewed results. Separating the
measurements into different calls leads to correct results.

The bottom of the diagram illustrates some of the currently deployed perfor-
mance monitoring engines.

1. The ElapsedTimeEngine is a simple default implementation measuring
elapsed (wall-clock) time.

An Extensible Monitoring Framework for Measuring and Evaluating Tool 227

Fig. 2. Exemplary interaction between the core monitoring components

2. The TopEngine is based on the Unix tool top1 and used for measuring the
memory load of wrapped applications installed on the server.

3. The TimeEngine uses the Unix call time2 to measure the CPU time used by
a process.

4. Monitoring the performance of Java tools is accomplished by a combina-
tion of the HProfEngine and JIPEngine, which use the HPROF 3 and JIP4

profiling libraries, for measuring memory usage and timing characteristics,
respectively.

5. In contrast to these performance-oriented engines, the XCLEngine, which is
currently under development, is measuring a very different QoS aspect. It
quantifies the quality of file conversion by measuring the loss of informa-
tion involved in file format conversion. To accomplish this, it relies on the
eXtensible Characterisation Languages (XCL) which provide an abstract in-
formation model for digital content which is independent of the underlying
file format [3], and compares different XCL documents for degrees of equality.

Additional engines and composite engine configurations can be added dynam-
ically at any time. Notice that while the employed engines 1-4 in the current
implementation focus on performance measurement, in principle any category of
dynamic QoS criteria can be monitored and benchmarked.

Figure 2 illustrates an exemplary simplified flow of interactions between ser-
vice requesters, the registry, the engines, and the monitored tools, in the case
of a composite engine measuring the execution of a tool through the Unix tools
time and top. The composite engine collects and consolidates the data; both

1 http://unixhelp.ed.ac.uk/CGI/man-cgi?top
2 http://unixhelp.ed.ac.uk/CGI/man-cgi?time
3 http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
4 http://jiprof.sourceforge.net/

http://unixhelp.ed.ac.uk/CGI/man-cgi?top
http://unixhelp.ed.ac.uk/CGI/man-cgi?time
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://jiprof.sourceforge.net/

228 C. Becker et al.

the engine and the client can contribute to the accumulated experience of the
registry. This allows the client to add round-trip information, which can be used
to deduct network latencies, or quality measurements computed on the result of
the consumed service.

3.3 Performance Measurement

Measuring run-time characteristics of tools on different platforms has always
been difficult due to the many peculiarities presented by each tool and environ-
ment. The most effective way of obtaining exact data on the behaviour of code
is instrumenting it before[19] or after compilation [15]. However, as flexibility
and non-intrusiveness are essential requirements in our application context, and
access to the source code itself is often not even possible, we use non-invasive
monitoring by standard tools for a range of platforms. This provides reliable and
repeatable measurements that are exact enough for our purposes, while not ne-
cessitating access to the code itself. In particular, we currently use a combination
of the following tools for performance monitoring.

– Time. The unix tool time is the most commonly used tool for measuring
actual processing time of applications, i.e. CPU time consumed by a process
and its system calls. However, while the timing is very precise, the major
drawback is that memory information is not available on all platforms. De-
pending on the implementation of the wait3() command, installed memory
information is reported zero on many environments5.

– Top. This standard Unix program is primarily aimed at continuos moni-
toring of system resources. While the timing information obtained is not
as exact as the time command, top measures both CPU and memory us-
age of processes. We gather detailed information on a particular process by
starting top in batch mode and continually logging process information of
all running processes to a file. After the process to be monitored has fin-
ished asynchronously (or timed out), we parse the output for performance
information of the monitored process.

In principle, the following process information provided by top can be
useful in this context.
• Maximum and average virtual memory used by a process;
• Maximum and average resident memory used;
• The used percentage of available physical memory used; and
• The cumulative CPU time the process and its dead children have used.

Furthermore, the overall CPU state of the system, i.e. the accumulated pro-
cessing load of the machine, can be useful for detailed performance analysis
and outlier detection.

As many processes actually start child processes, these have to be monitored as
well to obtain correct and relevant information. For example, when using convert
from ImageMagick, in some cases the costly work is not directly performed by the
5 http://unixhelp.ed.ac.uk/CGI/man-cgi?time

http://unixhelp.ed.ac.uk/CGI/man-cgi?time

An Extensible Monitoring Framework for Measuring and Evaluating Tool 229

convert-process but by one of its child processes, such as GhostScript. Therefore
we gather all process information and aggregate it.

A large number of tools and libraries are available for profiling Java code.6

The following two open-source profilers are currently deployed in our system.

– The HProf profiler is the standard Java heap and CPU profiling library.
While it is able to obtain almost any level of detailed information wanted,
its usage often incurs a heavy performance overhead. This overhead implies
that measuring both memory usage and CPU information in one run can
produce very misleading timing information.

– In contrast to HProf, the Java Interactive Profiler (JIP) incurs a low over-
head and is thus used for measuring the timing of Java tools.

Depending on the platform of each tool, different measures need to be used;
the monitoring framework allows for a flexible and adaptive configuration to
accomodate these dynamic factors. Section 4.1 discusses the relation between
the monitoring tools and which aspects of performance information we gener-
ally use from each of them. Where more than one technique needs to be used
for obtaining all of the desired measurements, the composite engine described
above transparently forks the actual execution of the tool to be monitored and
aggregates the performance measurements.

4 Results and Discussion

We run a series of experiments in the context of a digital preservation scenario
comparing a number of file conversion tools for different types of content, all
wrapped as web services, on benchmark content. In this setting, candidate ser-
vices are evaluated in a distributed SOA to select the best-performing tool. The
experiments’ purpose is to evaluate different aspects of both the tools and the
engines themselves:

1. Comparing performance measurement techniques. To analyse the unavoid-
able variations in the measurements obtained with different monitoring tools,
and to validate the consistency of measurents, we compare the results that
different monitoring engines yield when applied to the same tools and data.

2. Image conversion tools. The ultimate purpose of the system in our applica-
tion context is the comparative evaluation of candidate components. Thus
we compare the performance of image file conversion tools on benchmark
content.

3. Accumulating average experience on tool behaviour. An essential aspect of
our framework is the accumulation of QoS data about each service. We
analyse average throughput and memory usage of different tools and how
the accumulated averages converge to a stable value.

6 http://java-source.net/open-source/profilers

http://java-source.net/open-source/profilers

230 C. Becker et al.

4. Tradeoffs between different quality criteria. Often, a trade-off decision has to
be made between different quality criteria, such as compression speed versus
compression rate. We run a series of tests with continually varying settings
on a sound conversion software and describe the resulting trade-off curves.

Table 1 shows the experiment setups and their input file size distribution.
Each server has a slightly different, but standard x86 architecture, hardware
configuration and several conversion tools installed. Experiment results in this
section are given for a Linux machine running Ubuntu Linux 8.04.2 on a 3 GHz
Intel Core 2 Duo processor with 3GB memory. Each experiment was repeated
on all other applicable servers to verify the consistency of the results obtained.

4.1 Measurement Techniques

The first set of experiments compares the exactness and appropriateness of mea-
surements obtained using different techniques and compares these values to check
for consistency of measurements. We monitor a Java conversion tool using all
available engines on a Linux machine. Figure 3 shows measured values for a
random subset of the total files to visually illustrate the variations between the
engines. On the left side, the processing time measured by top, time, and the
JIP profiler are generally very consistent across different runs, with an empirical
correlation coefficient of 0.997 and 0.979, respectively. Running HProf on the
same files consistently produces much longer execution times due to the pro-
cessing overhead incurred by profiling the memory usage. The right side depicts

Table 1. Experiments

Experiment Files File sizes Total input
volume

Tool Engines

1 110 JPEG
images

Mean: 5,10 MB
Median: 5,12 MB
Std dev: 2,2 MB
Min: 0,28 MB
Max: 10,07MB

534 MB ImageMagick
conversion to PNG

Top, Time

2 110 JPEG
images

Mean: 5,10 MB
Median: 5,12 MB
Std dev: 2,2 MB
Min: 0,28 MB
Max: 10,07MB

534 MB Java ImageIO
conversion to PNG

HProf, JIP

3 110 JPEG
images

Mean: 5,10 MB
Median: 5,12 MB
Std dev: 2,2 MB
Min: 0,28 MB
Max: 10,07MB

534 MB Java ImageIO
conversion to PNG

Time, Top

4 312 JPEG
images

Mean: 1,19 MB
Median: 1,08 MB
Std dev: 0,68 MB
Min: 0,18 MB
Max: 4,32MB

365MB ImageMagick
conversion to PNG

Time, Top

5 312 JPEG
images

Mean: 1,19 MB
Median: 1,08 MB
Std dev: 0,68 MB
Min: 0,18 MB
Max: 4,32MB

365MB Java ImageIO
conversion to PNG

HProf, JIP

6 56 WAV files Mean: 49,6 MB
Median: 51,4 MB
Std dev: 12,4 MB
Min: 30,8 MB
Max: 79,8 MB

2747MB FLAC
unverified conversion to FLAC,
9 different quality/speed settings

Top, time

7 56 WAV files Mean: 49,6 MB
Median: 51,4 MB
Std dev: 12,4 MB
Min: 30,8 MB
Max: 79,8 MB

2747MB FLAC
verified conversion to FLAC,
9 different quality/speed settings

Top, time

An Extensible Monitoring Framework for Measuring and Evaluating Tool 231

(a) Monitoring time (b) Monitoring memory

Fig. 3. Comparison of the measurements obtained by different techniques

different memory measurements for the same experiment. The virtual memory
assigned to a Java tool depends mostly on the settings used to execute the JVM
and thus is not very meaningful. While the resident memory measured by Top
includes the VM and denotes the amount of physical memory actually used dur-
ing execution, HProf provides figures for memory used and allocated within the
VM. Which of these measurements are of interest in a specific component selec-
tion scenario depends on the integration pattern. For Java systems, the actual

Fig. 4. Runtime behaviour of two conversion services

232 C. Becker et al.

memory within the machine will be relevant, whereas in other cases, the virtual
machine overhead has to be taken into account as well.

When a tool is deployed as a service, a standard benchmark score is calcu-
lated for the server with the included sample data; furthermore, the monitoring
engines report the average system load during service execution. This enables
normalisation and comparison of a tool across server instances.

4.2 Tool Performance

Figure 4 shows the processing time of two conversion tools offered by the same
service provider on 312 image files. Simple linear regression shows the general
trend of the performance relation, revealing that the Java tool is significantly
faster. (However, it has to be noted that the conversion quality offered by
ImageMagick is certainly higher, and the decision in our component selection
scenario depends on a large number of factors. We use an approach based on
multi-attribute utility theory for service selection.)

4.3 Accumulated Experience

An important aspect of any QoS management system is the accumulation and
dissemination of experience on service quality. The described framework auto-
matically tracks and accumulates all numeric measurements and provides aggre-
gated averages with every service response. Figure 5 shows how processing time
and memory usage per MB quickly converge to a stable value during the initial
bootstrapping sequence of service calls on benchmark content.

4.4 Trade-off between QoS Criteria

In service and component selection situations, often a trade-off decision has to
be made between conflicting quality attributes, such as cost versus speed or

(a) Processing time per MB (b) Memory usage per MB

Fig. 5. Accumulated average performance data

An Extensible Monitoring Framework for Measuring and Evaluating Tool 233

(a) Compression vs. time (b) Compression rate vs. memory

Fig. 6. QoS trade-off between compression rate and performance

cost versus quality. When using the tool Free Lossless Audio Codec (FLAC)7,
several configurations are available for choosing between processing speed and
achieved compression rate. In a scenario with massive amounts of audio data,
compression rate can still imply a significant cost reduction and is thus a valuable
tweak. However, this has to be balanced against the processing cost. Additionally,
the option to verify the encoding process by on-the-fly decoding and comparing
the output to the original input provides integrated quality assurance and thus
increased confidence at the cost of increased memory usage and lower speed.

Figure 6 projects compression rate achieved with nine different settings
against used time and used memory. Each data point represents the average
achieved rate and resource usage over the sample set from Table 1. It is apparent
that the highest settings achieve very little additional compression while using
excessive amounts of time. In terms of memory, there is a consistent overhead
incurred by the verification, but it does not appear problematic. Thus, in many
cases, a medium compression/speed setting along with integrated verification
will be a sensible choice.

5 Discussion and Conclusion

We have described an extensible monitoring framework for enriching web services
with QoS information. Quality measurements are transparently obtained through
a flexible architecture of non-invasive monitoring engines. We demonstrated the
performance monitoring of different categories of applications wrapped as web ser-
vices and discussed different techniques and the results they yield.

While the resulting provider-side instrumentation of services with quality in-
formation is not intended to replace existing QoS schemas, middleware solutions
and requester-feedback mechanisms, it is a valuable complementary addition
that enhances the level of QoS information available and allows verification of
7 http://flac.sourceforge.net/

234 C. Becker et al.

detailed performance-related quality criteria. In our application scenario of com-
ponent selection in digital preservation, detailed performance and quality infor-
mation on tools wrapped as web services are of particular value. Moreover, this
provider-side measurement allows service requesters to optimize access patterns
and enables service providers to introduce dynamic fine-granular policing such
as performance-dependant costing.

Part of our current work is the extension to quality assurance engines which
compare the output of file conversion tools for digital preservation purposes using
the XCL languages [3], and the introduction of flexible benchmark configurations
that support the selection of specifically tailored benchmarks, e.g. to calculate
scores for data with certain characteristics.

Acknowledgements

Part of this work was supported by the European Union in the 6th Framework
Program, IST, through the PLANETS project, contract 033789.

References

1. Becker, C., Ferreira, M., Kraxner, M., Rauber, A., Baptista, A.A., Ramalho,
J.C.: Distributed preservation services: Integrating planning and actions. In:
Christensen-Dalsgaard, B., Castelli, D., Ammitzbøll Jurik, B., Lippincott, J. (eds.)
ECDL 2008. LNCS, vol. 5173, pp. 25–36. Springer, Heidelberg (2008)

2. Becker, C., Rauber, A.: Requirements modelling and evaluation for digital preser-
vation: A COTS selection method based on controlled experimentation. In: Proc.
24th ACM Symposium on Applied Computing (SAC 2009), Honolulu, Hawaii,
USA. ACM Press, New York (2009)

3. Becker, C., Rauber, A., Heydegger, V., Schnasse, J., Thaller, M.: A generic XML
language for characterising objects to support digital preservation. In: Proc. 23rd
ACM Symposium on Applied Computing (SAC 2008), Fortaleza, Brazil, vol. 1, pp.
402–406. ACM Press, New York (2008)

4. Carvallo, J.P., Franch, X., Quer, C.: Determining criteria for selecting software
components: Lessons learned. IEEE Software 24(3), 84–94 (2007)

5. Cechich, A., Piattini, M., Vallecillo, A. (eds.): Component-Based Software Quality.
Springer, Heidelberg (2003)

6. Dustdar, S., Schreiner, W.: A survey on web services composition. International
Journal of Web and Grid Services 1, 1–30 (2005)

7. Erradi, A., Maheshwari, P., Tosic, V.: Ws-policy based monitoring of composite
web services. In: ECOWS 2007: Proceedings of the Fifth European Conference on
Web Services, Washington, DC, USA, pp. 99–108. IEEE Computer Society, Los
Alamitos (2007)

8. Ferreira, M., Baptista, A.A., Ramalho, J.C.: An intelligent decision support system
for digital preservation. International Journal on Digital Libraries 6(4), 295–304
(2007)

9. Franch, X., Carvallo, J.P.: Using quality models in software package selection. IEEE
Software 20(1), 34–41 (2003)

An Extensible Monitoring Framework for Measuring and Evaluating Tool 235

10. Head, M.R., Govindaraju, M., Slominski, A., Liu, P., Abu-Ghazaleh, N., van En-
gelen, R., Chiu, K., Lewis, M.J.: A benchmark suite for soap-based communication
in grid web services. In: Proceedings of the ACM/IEEE SC 2005 Conference Su-
percomputing, 2005, p. 19 (November 2005)

11. Her, J.S., Choi, S.W., Oh, S.H., Kim, S.D.: A framework for measuring performance
in service-oriented architecture. In: International Conference on Next Generation
Web Services Practices, pp. 55–60. IEEE Computer Society, Los Alamitos (2007)

12. Hunter, J., Choudhury, S.: PANIC - an integrated approach to the preservation
of complex digital objects using semantic web services. International Journal on
Digital Libraries: Special Issue on Complex Digital Objects 6(2), 174–183 (2006)

13. ISO: Software Engineering – Product Quality – Part 1: Quality Model (ISO/IEC
9126-1). International Standards Organization (2001)

14. Keller, A., Ludwig, H.: WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network and Systems Management 11(1),
57–81 (2003)

15. Larus, J.R., Ball, T.: Rewriting executable files to measure program behavior.
Software: Practice and Experience 24(2), 197–218 (1994)

16. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation and policing in dynamic web
service selection. In: WWW Alt. 2004: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pp. 66–73. ACM, New
York (2004)

17. Michael Maximilien, E., Singh, M.P.: Toward autonomic web services trust and
selection. In: ICSOC 2004: Proceedings of the 2nd international conference on
Service oriented computing, pp. 212–221. ACM, New York (2004)

18. Menascé, D.A.: Qos issues in web services. IEEE Internet Computing 6(6), 72–75
(2002)

19. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

20. Platzer, C., Rosenberg, F., Dustdar, S.: Enhancing Web Service Discovery and
Monitoring with Quality of Service Information. In: Securing Web Services: Prac-
tical Usage of Standards and Specifications, Idea Publishing Inc. (2007)

21. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4(1), 1–10
(2003)

22. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-
ability attributes of web services. In: International Conference on Web Services
(ICWS 2006), pp. 205–212 (2006)

23. Saddik, A.E.: Performance measurements of web services-based applications. IEEE
Transactions on Instrumentation and Measurement 55(5), 1599–1605 (2006)

24. Song, H.G., Lee, K.: Performance Analysis and Estimation Tool of Web Services. In:
Business Process Management, sPAC (Web Services Performance Analysis Center).
LNCS, vol. 3649, pp. 109–119. Springer, Heidelberg (2005)

25. Tian, M., Gramm, A., Ritter, H., Schiller, J.: Efficient selection and moni-
toring of qos-aware web services with the ws-qos framework. In: Proceedings.
IEEE/WIC/ACM International Conference on Web Intelligence, WI 2004, pp. 152–
158 (September 2004)

26. Wickramage, N., Weerawarana, S.: A benchmark for web service frameworks. In:
2005 IEEE International Conference on Services Computing, July 2005, vol. 1, pp.
233–240 (2005)

	An Extensible Monitoring Framework for Measuring and Evaluating Tool Performance in a Service-oriented Architecture
	Introduction
	Related Work
	A Generic Architecture for Performance Monitoring
	Measuring QoS in Web Services
	Monitoring Framework
	Performance Measurement

	Results and Discussion
	Measurement Techniques
	Tool Performance
	Accumulated Experience
	Trade-off between QoS Criteria

	Discussion and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

