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Knowledge Graphs on the Web

Which information can we find in them
– and which can we not?

Heiko Paulheim
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Introduction

• You’ve seen this, haven’t you?

Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, 
Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/ 
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Introduction

• Knowledge Graphs on the LOD Cloud

• Everybody talks about them, but what is a Knowledge Graph?

– I don’t have a definition either...
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Introduction

• Knowledge Graph definitions

• Many people talk about KGs, few give definitions

• Working definition: a Knowledge Graph

– mainly describes instances and their relations in a graph

• Unlike an ontology

• Unlike, e.g., WordNet

– Defines possible classes and relations in a schema or ontology

• Unlike schema-free output of some IE tools

– Allows for interlinking arbitrary entities with each other

• Unlike a relational database

– Covers various domains

• Unlike, e.g., Geonames
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Introduction

• Knowledge Graphs out there (not guaranteed to be complete)

public

private

Paulheim: Knowledge graph refinement: A survey of approaches and evaluation 
methods. Semantic Web 8:3 (2017), pp. 489-508
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Finding Information in Knowledge Graphs

• Find list of science fiction writers in DBpedia

select ?x where 
{?x a dbo:Writer .
 ?x dbo:genre dbr:Science_Fiction} 

order by ?x



08/22/17 Heiko Paulheim 7 

Finding Information in Knowledge Graphs

• Results from DBpedia

Arthur C. Clarke?

H.G. Wells?

Isaac Asimov?
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Finding Information in Knowledge Graphs

• Questions in this talk

– What can we find in different Knowledge Graphs?

– Why do we sometimes not find what we expect to find?

– What can be done about this?

• ...and:

– What new Knowledge Graphs are currently developed?
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Outline

• How are Knowledge Graphs created?

• What is inside public Knowledge Graphs?

– Knowledge Graph profiling

• Addressing typical problems

– Errors

– Incompleteness

• New Kids on the Block

– WebIsALOD

– DBkWik

• Take Aways
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Knowledge Graph Creation: CyC

• The beginning

– Encyclopedic collection of knowledge

– Started by Douglas Lenat in 1984

– Estimation: 350 person years and 250,000 rules 
should do the job
of collecting the essence of the world’s knowledge

• The present

– >900 person years

– Far from completion

– Used to exist until 2017
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Knowledge Graph Creation

• Lesson learned no. 1:

– Trading efforts against accuracy

Min. efforts Max. accuracy
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Knowledge Graph Creation: Freebase

• The 2000s

– Freebase: collaborative editing

– Schema not fixed

• Present

– Acquired by Google in 2010

– Powered first version of Google’s Knowledge Graph

– Shut down in 2016

– Partly lives on in Wikidata (see in a minute)
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Knowledge Graph Creation

• Lesson learned no. 2:

– Trading formality against number of users

Max. user involvement Max. degree of formality
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Knowledge Graph Creation: Wikidata

• The 2010s

– Wikidata: launched 2012

– Goal: centralize data from Wikipedia languages

– Collaborative

– Imports other datasets

• Present

– One of the largest public knowledge graphs
(see later)

– Includes rich provenance



08/22/17 Heiko Paulheim 15 

Knowledge Graph Creation

• Lesson learned no. 3:

– There is not one truth (but allowing for plurality adds complexity)

Max. simplicity Max. support for plurality
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Knowledge Graph Creation: DBpedia & YAGO

• The 2010s

– DBpedia: launched 2007

– YAGO: launched 2008

– Extraction from Wikipedia 
using mappings & heuristics

• Present

– Two of the most used knowledge graphs
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Knowledge Graph Creation

• Lesson learned no. 4:

– Heuristics help increasing coverage (at the cost of accuracy)

Max. accuracy Max. coverage
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Knowledge Graph Creation: NELL

• The 2010s

– NELL: Never ending language learner

– Input: ontology, seed examples, text corpus

– Output: facts, text patterns

– Large degree of automation, occasional human feedback

• Today

– Still running

– New release every few days
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Knowledge Graph Creation

• Lesson learned no. 5:

– Quality cannot be maximized without human intervention

Min. human intervention Max. accuracy
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Summary of Trade Offs

• (Manual) effort vs. accuracy

• User involvement (or usability) vs. degree of formality

• Simplicity vs. support for plurality and provenance
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Non-Public Knowledge Graphs

• Many companies have their
own private knowledge graphs

– Google: Knowledge Graph,
Knowledge Vault

– Yahoo!: Knowledge Graph

– Microsoft: Satori

– Facebook: Entities Graph

– Thomson Reuters: permid.org
(partly public)

• However, we usually know only little about them
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Comparison of Knowledge Graphs

• Release cycles

Instant updates:
DBpedia live,

Freebase
Wikidata

Days:
NELL

Months:
DBpedia

Years:
YAGO

Cyc

• Size and density

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

Caution!
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Comparison of Knowledge Graphs

• What do they actually contain?

• Experiment: pick 25 classes of interest

– And find them in respective ontologies

• Count instances (coverage)

• Determine in and out degree (level of detail)
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Comparison of Knowledge Graphs

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Comparison of Knowledge Graphs

• Summary findings:

– Persons: more in Wikidata 
(twice as many persons as DBpedia and YAGO)

– Countries: more details in Wikidata

– Places: most in DBpedia

– Organizations: most in YAGO

– Events: most in YAGO

– Artistic works:

• Wikidata contains more movies and albums

• YAGO contains more songs

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Caveats

• Reading the diagrams right…

• So, Wikidata contains more data on countries, but less countries?

• First: Wikidata only counts current, actual countries

– DBpedia and YAGO also count historical countries

• “KG1 contains less of X than KG2” can mean

– it actually contains less instances of X

– it contains equally many or more instances, 
but they are not typed with X (see later)

• Second: we count single facts about countries

– Wikidata records some time indexed information, e.g., population

– Each point in time contributes a fact
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Overlap of Knowledge Graphs

• How largely do knowledge graphs overlap?

• They are interlinked, so we can simply count links

– For NELL, we use links to Wikipedia as a proxy

DBpedia

YAGO
Wikidata

NELL Open
Cyc

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• How largely do knowledge graphs overlap?

• They are interlinked, so we can simply count links

– For NELL, we use links to Wikipedia as a proxy

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Links between Knowledge Graphs are incomplete

– The Open World Assumption also holds for interlinks

• But we can estimate their number

• Approach: 

– find link set automatically with different heuristics

– determine precision and recall on existing interlinks

– estimate actual number of links

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Idea:

– Given that the link set F is found

– And the (unknown) actual link set would be C

• Precision P: Fraction of F which is actually correct

– i.e., measures how much |F| is over-estimating |C|

• Recall R: Fraction of C which is contained in F

– i.e., measures how much |F| is under-estimating |C|

• From that, we estimate |C|=|F|⋅P⋅
1
R

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Mathematical derivation:

– Definition of recall: 

– Definition of precision: 

• Resolve both to            , substitute, and resolve to 

R=
|Fcorrect|

|C|

P=
|F correct|

|F|

|Fcorrect| |C|

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017

|C|=|F|⋅P⋅
1
R
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Overlap of Knowledge Graphs

• Experiment:

– We use the same 25 classes as before

– Measure 1: overlap relative to smaller KG (i.e., potential gain)

– Measure 2: overlap relative to explicit links 
(i.e., importance of improving links)

• Link generation with 16 different metrics and thresholds

– Intra-class correlation coefficient for |C|: 0.969

– Intra-class correlation coefficient for |F|: 0.646

• Bottom line: 

– Despite variety in link sets generated, the overlap is estimated reliably

– The link generation mechanisms do not need to be overly accurate

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Overlap of Knowledge Graphs

• Summary findings:

– DBpedia and YAGO cover roughly the same instances
(not much surprising)

– NELL is the most complementary to the others

– Existing interlinks are insufficient for out-of-the-box parallel usage

Ringler & Paulheim: One Knowledge Graph to Rule them All? KI 2017
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Common Errors in Knowledge Graphs

• Using DBpedia as an Example

– ...but most of those hold for other KGs as well

– ...each KG has its own advantages and shortcomings

• Recap: using mappings & heuristics for extraction from Wikipedia

• Something to keep in mind:

– Wikipedia is made for humans

– Not necessarily: for facilitating easy Knowledge Graph creation
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Common Errors in Knowledge Graphs

• What reasons can cause incomplete results?

• Two possible problems:

– The resource at hand is not of type dbo:Writer

– The genre relation to dbr:Science_Fiction is missing

select ?x where 
{?x a dbo:Writer .
 ?x dbo:genre dbr:Science_Fiction} 

order by ?x
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Common Errors in Knowledge Graphs

• Various works on Knowledge Graph Refinement

– Knowledge Graph completion

– Error detection

• See, e.g., 2017 survey in
Semantic Web Journal

Paulheim: Knowledge Graph Refinement – A Survey 
of Approaches and Evaluation Methods. SWJ 8(3), 2017



08/22/17 Heiko Paulheim 38 

Common Errors in Knowledge Graphs

• Missing types

– Estimate (2013) for DBpedia: at least 2.6M type statements are missing

– Using YAGO as “ground truth”

• “Well, we’re semantics folks, we have ontologies!”

– CONSTRUCT {?x a ?t} 
WHERE { {?x ?r ?y . ?r rdfs:domain ?t} 
UNION   {?y ?r ?x . ?r rdfs:range  ?t} }

Bizer & Paulheim: Type Inference on Noisy RDF Data. In: ISWC 2013
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Common Errors in Knowledge Graphs

• Experiment of RDFS reasoning for typing Germany

• Results:

– Place, PopulatedPlace, Award, MilitaryConflict, City, 
Country, EthnicGroup, Genre, Stadium, Settlement, 
Language, MontainRange, PersonFunction, Race, 
RouteOfTransportation, Building, Mountain, Airport, 
WineRegion

• Bottom line: RDFS reasoning accumulates errors

– Germany is the object of 44,433 statements

– 15 single wrong statements can cause those 15 errors

– i.e., an error rate of only 0.03% (that is unlikely to achieve)

Bizer & Paulheim: Type Inference on Noisy RDF Data. In: ISWC 2013
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Common Errors in Knowledge Graphs

• Required: a noise-tolerant approach

• SDType (meanwhile included in DBpedia)

– Use statistical distributions of properties and object types

• P(C|p) → probability of object being of type C when observing 
property p in a statement

– Averaging scores for all statements of a resource

– Weighting properties by discriminative power

• Since DBpedia 3.9: typing ~1M untyped resources 
at precision >0.95

• Refinement:

– Filtering resources of non-instance pages and list pages

Bizer & Paulheim: Type Inference on Noisy RDF Data. In: ISWC 2013
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Common Errors in Knowledge Graphs

• Recap

– Trade-off coverage vs. accuracy
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Common Errors in Knowledge Graphs

• The same idea applied to identification of noisy statements

– i.e., a statement is implausible if the distribution 
of its object’s types deviates from 
the overall distribution for the predicate

• Removing ~20,000 erroneous statements from DBpedia

• Error analysis

– Errors in Wikipedia account for ~30%

– Other typical problems: see following slides

Bizer & Paulheim: Improving the quality of linked data using statistical distributions. 
In: IJSWIS 10(2), 2014
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Common Errors in Knowledge Graphs

• Typical errors

– links in longer texts are not interpreted correctly

– dbr:Carole_Goble dbo:award dbr:Jim_Gray

Paulheim & Gangemi: Serving DBpedia with DOLCE – 
More than Just Adding a Cherry on Top. ISWC 2015
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Common Errors in Knowledge Graphs

• Typical errors

– Misinterpretation of redirects

– dbr:Ben_Casey dbo:company dbr:Bing_Cosby

Paulheim & Gangemi: Serving DBpedia with DOLCE – 
More than Just Adding a Cherry on Top. ISWC 2015
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Common Errors in Knowledge Graphs

• Typical errors

– Metonymy

– dbr:Human_Nature_(band) dbo:genre dbr:Motown,

– Links with anchors pointing to subsections in a page

– First_Army_(France)#1944-1945

Paulheim & Gangemi: Serving DBpedia with DOLCE – 
More than Just Adding a Cherry on Top. ISWC 2015
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Common Errors in Knowledge Graphs

• Identifying individual errors is possible with many techniques

– e.g., statistics, reasoning, exploiting upper ontologies, …

• ...but what do we do with those efforts?

– they typically end up in drawers and abandoned GitHub repositories

Paulheim & Gangemi: Serving DBpedia with DOLCE – More than Just Adding a 
Cherry on Top. ISWC 2015
Paulheim: Data-driven Joint Debugging of the DBpedia Mappings and Ontology. 
ESWC 2017
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Motivation

• Possible option 1: Remove erroneous triples from DBpedia

• Challenges

– May remove correct axioms, may need thresholding

– Needs to be repeated for each release

– Needs to be materialized on all of DBpedia

DBpedia 
Extraction
FrameworkWikipedia

DBpedia Mappings Wiki

Post 
Filter
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Motivation

• Possible option 2: Integrate into DBpedia Extraction Framework

• Challenges

– Development workload

– Some approaches are not fully automated (technically or conceptually)

– Scalability

DBpedia 
Extraction
Framework
plus filter
module

Wikipedia

DBpedia Mappings Wiki

DBpedia 
Extraction
Framework
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Common Errors in Knowledge Graphs

• Goal: a third option

– Find the root of the error and fix it!

Wikipedia

DBpedia Mappings Wiki

DBpedia 
Extraction
Framework

Inconsistency
DetectionIdentification

of suspicious
mappings  and 

ontology 
constructs

Paulheim: Data-driven Joint Debugging of the DBpedia Mappings and Ontology. ESWC 2017
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Common Errors in Knowledge Graphs

• Case 1: Wrong mapping

• Example:

– branch in infobox military unit 
is mapped to dbo:militaryBranch

• but dbo:militaryBranch 
has dbo:Person as its domain

– correction: dbo:commandStructure

– Affects 12,172 statements 
(31% of all dbo:militaryBranch)
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Common Errors in Knowledge Graphs

• Case 2: Mappings that should be removed

• Example:

– dbo:picture

– Most of the are inconsistent (64.5% places, 23.0% persons)

– Reason: statements are extracted from picture caption

dbr:Brixton_Academy 
dbo:picture 
dbr:Brixton .

dbr:Justify_My_Love 
dbo:picture 
dbr:Madonna_(entertainer) .
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Common Errors in Knowledge Graphs

• Case 3: Ontology problems (domain/range)

• Example 1:

– Populated places (e.g., cities) are used both as place and organization

– For some properties, the range is either one of the two

• e.g., dbo:operator (see introductory example)

– Polysemy should be reflected in the ontology

• Example 2:

– dbo:architect, dbo:designer, dbo:engineer etc. 
have dbo:Person as their range

– Significant fractions (8.6%, 7.6%, 58.4%, resp.) 
have a dbo:Organization as object

– Range should be broadened
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Common Errors in Knowledge Graphs

• Case 4: Missing properties

• Example 1:

– dbo:president links an organization to its president

– Majority use (8,354, or 76.2%): 
link a person to the president s/he served for

• Example 2:

– dbo:instrument links an artist 
to the instrument s/he plays

– Prominent alternative use (3,828, or 7.2%):
links a genre to its characteristic instrument
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Common Errors in Knowledge Graphs

• Introductory example:

Arthur C. Clarke?

H.G. Wells?

Isaac Asimov?

select ?x where 
{?x a dbo:Writer .
 ?x dbo:genre dbr:Science_Fiction} 

order by ?x
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Common Errors in Knowledge Graphs

• Incompleteness in relation assertions

• Example: Arthur C. Clarke, Isaac Asimov, ...

– There is no explicit link to Science Fiction in the infobox

– i.e., the statement for 
... dbo:genre dbr:Science_Fiction
is not generated



08/22/17 Heiko Paulheim 56 

Common Errors in Knowledge Graphs

• Example for recent work (ISWC 2017): 
heuristic relation extraction from Wikipedia abstracts

• Idea:

– There are probably certain patterns:

• e.g., all genres linked in an abstract about a writer 
are that writer’s genres

• e.g., the first place linked in an abstract about a person 
is that person’s birthplace

– The types are already in DBpedia

– We can use existing relations as training data

• Using a local closed world assumption for negative examples

– Learned models can be evaluated and only used at a certain precision

Heist & Paulheim: Language-agnostic relation extraction from Wikipedia Abstracts. 
ISWC 2017
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Common Errors in Knowledge Graphs

• Results:

– 1M additional assertions can be learned for 100 relations 
at 95% precision

• Additional consideration:

– We use only links, types from DBpedia, and positional features

– No language-specific information (e.g., POS tags)

– Thus, we are not restricted to English!

Heist & Paulheim: Language-agnostic relation extraction from Wikipedia Abstracts. 
ISWC 2017
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Common Errors in Knowledge Graphs

• Cross-lingual experiment:

– Using the 12 largest language editions of Wikipedia

– Exploiting inter-language links

Heist & Paulheim: Language-agnostic relation extraction from Wikipedia Abstracts. 
ISWC 2017
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Common Errors in Knowledge Graphs

• Analysis

– Is there a relation between the language and the the country 
(dbo:country) of the entities for which information is extracted?

Heist & Paulheim: Language-agnostic relation extraction from Wikipedia Abstracts. 
ISWC 2017
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Common Errors in Knowledge Graphs

• So far, we have looked at relation assertions

• Numerical values can also be problematic…

– Recap: Wikipedia is made for human consumption

• The following are all valid representations of the same height value
(and perfectly understandable by humans)

– 6 ft 6 in, 6ft 6in, 6'6'', 6'6”, 6´6´´, …

– 1.98m, 1,98m, 1m 98, 1m 98cm, 198cm, 198 cm, …

– 6 ft 6 in (198 cm), 6ft 6in (1.98m), 6'6'' (1.98 m), …

– 6 ft 6 in[1], 6 ft 6 in [citation needed], …

– ...

Wienand & Paulheim: Detecting Incorrect Numerical Data in DBpedia. ESWC 2014
Fleischhacker et al.: Detecting Errors in Numerical Linked Data Using Cross-Checked 
Outlier Detection. ISWC 2014



08/22/17 Heiko Paulheim 61 

Common Errors in Knowledge Graphs

• Approach: outlier detection

– With preprocessing: finding meaningful subpopulations

– With cross-checking: discarding natural outliers

• Findings: 85%-95% precision possible

– depending on predicate

– Identification of typical parsing problems

Wienand & Paulheim: Detecting Incorrect Numerical Data in DBpedia. ESWC 2014
Fleischhacker et al.: Detecting Errors in Numerical Linked Data Using Cross-Checked 
Outlier Detection. ISWC 2014
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Common Errors in Knowledge Graphs

• Errors include

– Interpretation of imperial units

– Unusual decimal/thousands separators

– Concatenation (population 28,322,006)

Wienand & Paulheim: Detecting Incorrect Numerical Data in DBpedia. ESWC 2014
Fleischhacker et al.: Detecting Errors in Numerical Linked Data Using Cross-Checked 
Outlier Detection. ISWC 2014
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Common Errors in Knowledge Graphs

• Got curious? Want to get your hands dirty?

– 2017 Semantic Web Challenge revolves around 
knowledge graph completion and correction

– Using permid.org

https://iswc2017.semanticweb.org/calls/iswc-semantic-web-challenge-2017/
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New Kids on the Block

Subjective age:
Measured by the fraction 

of the audience
that understands a reference

to your young days’
pop culture...
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New Kids on the Block

• Wikipedia-based Knowledge Graphs will remain 
an essential building block of Semantic Web applications

• But they suffer from...

– ...a coverage bias

– ...limitations of the creating heuristics
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Work in Progress: DBkWik

• Why stop at Wikipedia?

• Wikipedia is based on the MediaWiki software

– ...and so are thousands of Wikis

– Fandom by Wikia: >385,000 Wikis on special topics

– WikiApiary: reports >20,000 installations of MediaWiki on the Web
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Work in Progress: DBkWik

• Back to our original example...
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Work in Progress: DBkWik

• Back to our original example...
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Work in Progress: DBkWik

• The DBpedia Extraction Framework consumes MediaWiki dumps

• Experiment

– Can we process dumps from arbitrary Wikis with it?

– Are the results somewhat meaningful?
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Work in Progress: DBkWik

• Example from Harry Potter Wiki

http://dbkwik.webdatacommons.org/
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Work in Progress: DBkWik

• Differences to DBpedia

– DBpedia has manually created mappings to an ontology

– Wikipedia has one page per subject

– Wikipedia has global infobox conventions (more or less)

• Challenges

– On-the-fly ontology creation

– Instance matching

– Schema matching
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Work in Progress: DBkWik

Dump 
Downloader

Extraction
Framework

Interlinking
Instance
Matcher

Schema
Matcher

MediaWiki Dumps Extracted RDF

Internal Linking
Instance
Matcher

Schema
Matcher

Consolidated
Knowledge Graph

DBkWik
Linked
Data
Endpoint

1 2

345

• Avoiding O(n²) internal linking:

– Match to DBpedia first

– Use common links to DBpedia as blocking keys for internal matching
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Work in Progress: DBkWik

• Downloaded ~15k Wiki dumps from Fandom

– 52.4GB of data, roughly the size of the English Wikipedia

• Prototype: extracted data for ~250 Wikis

– 4.3M instances, ~750k linked to DBpedia

– 7k classes, ~1k linked to DBpedia

– 43k properties, ~20k linked to DBpedia

– ...including duplicates!

• Link quality

– Good for classes, OK for properties (F1 of .957 and .852)

– Needs improvement for instances (F1 of .641)
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Work in Progress: WebIsALOD

• Background: Web table interpretation

• Most approaches need typing information

– DBpedia etc. have too little coverage
on the long tail

– Wanted: extensive type database
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Work in Progress: WebIsALOD

• Extraction of type information using Hearst-like patterns, e.g.,

– T, such as X

– X, Y, and other T

• Text corpus: common crawl

– ~2 TB crawled web pages

– Fast implementation: regex over text

– “Expensive” operations only applied once regex has fired

• Resulting database

– 400M hypernymy relations

Seitner et al.: A large DataBase of hypernymy relations extracted from the Web.  
LREC 2016
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Work in Progress: WebIsALOD

• Back to our original example...

http://webisa.webdatacommons.org/
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Work in Progress: WebIsALOD

• Initial effort: transformation to a LOD dataset

– including rich provenance information

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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Work in Progress: WebIsALOD

• Estimated contents breakdown

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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Work in Progress: WebIsALOD

• Main challenge

– Original dataset is quite noisy (<10% correct statements)

– Recap: coverage vs. accuracy

– Simple thresholding removes too much knowledge

• Approach

– Train RandomForest model for predicting correct vs. wrong statements

– Using all the provenance information we have

– Use model to compute confidence scores

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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Work in Progress: WebIsALOD

• Current challenges and works in progress

– Distinguishing instances and classes

• i.e.: subclass vs. instance of relations

– Splitting instances

• Bauhaus is a goth band

• Bauhaus is a German school

– Knowledge extraction from pre and post modifiers

• Bauhaus is a goth band → genre(Bauhaus, Goth)

• Bauhaus is a German school → location(Bauhaus, Germany)

Hertling & Paulheim: WebIsALOD: Providing Hypernymy Relations extracted 
from the Web as Linked Open Data. ISWC 2017
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Take Aways

• Knowledge Graphs contain a massive amount of information

– Various trade offs in their creation

• We can find it if...

– ...it is in there

– ...the clues we need to find it are in it and correct

• Various methods exist for

– ...completing knowledge graphs

– ...identifying errors

– ...lately also: identifying the roots of errors

• New kids on the block

– DBkWik and WebIsALOD

– Focus on long tail entities
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Credits & Contributions
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Knowledge Graphs on the Web

Which information can we find in them
– and which can we not?

Heiko Paulheim
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