
Statistical Semantics with Dense Vectors
Word Representation Methods from Counting to Predicting

Navid Rekabsaz
rekabsaz@ifs.tuwien.ac.at

3rd KEYSTONE Training School
Keyword search in Big Linked Data

24/Aug/2017 Vienna, Austria

Semantics

§ Understanding the semantics in language is a fundamental
topic in text/language processing and has roots in
linguistics, psychology, and philosophy
- What is the meaning of a word? What does it convey?
- What is the conceptual/semantical relation of two words?
- Which words are similar to each other?

Semantics

§ Two computational approaches to semantics:

Knowledge base Statistical (Data-oriented) methods

word2vec
LSA

Auto-encoder decoder

GloVe
RNN LSTM

Statistical Semantics with Vectors

§ A word is represented with a vector of d dimensions
§ The vector aim to capture the semantics of the

word
§ Every dimension usually reflects a concept, but may

or may not be interpretable

𝑤 𝒙𝟎 𝒙𝟏 𝒙𝟐 … 𝒙𝒅
𝒅

Statistical Semantics – From Corpus to
Semantic Vectors

Word
Representation

Black-box

𝑤(
𝑤)

𝑤*

𝒅

Semantic Vectors for
Ontologies

§ Enriching existing ontologies
with similar words

§ Navigating semantic horizon
Gyllensten and Sahlgren [2015]

Semantic Vectors for Gender Bias Study

work in progress

§ The inclinations of 350 occupations to female/male factors
as represented in Wikipedia

Semantic Vectors for Search

Gain of the evaluation results of document retrieval using semantic
vectors expanding query terms

Rekabsaz et al.[2016]

Semantic Vectors in Text Analysis

Historical meaning shift Kulkarni et al.[2015]

Semantic vectors are the building blocks of many applications:
§ Sentiment Analysis
§ Question answering
§ Plagiarism detection
§ …

Terminology

Various names:

§ Semantic vectors
§ Vector representations of words
§ Semantic word representation
§ Distributional semantics
§ Distributional representations of words
§ Word embedding

Agenda

§ Sparse vectors
- Word-context co-occurrence matrix with term frequency

or Point Mutual Information (PMI)

§ Dense Vectors
- Count-based: Singular Value Decomposition (SVD) in

the case of Latent Semantic Analysis (LSA)
- Prediction-based: word2vec Skip-Gram, inspired from

neural network methods

Intuition

“You shall know a
word by the company
it keeps!”

J. R. Firth, A synopsis of
linguistic theory 1930–1955
(1957)

Intuition

“In most cases, the
meaning of a word is
its use.”

Ludwig Wittgenstein,
Philosophical
Investigations (1953)

Nida[1975]

Tesgüino
on the table

out of corn

make

Heineken
pale

red star

brew

Tesgüino ←→ Heineken

Algorithmic intuition:
Two words are related when they have similar context words

Thanks for your attention!
Sparse Vectors

Word-Document Matrix

§ D is a set of documents (plays of Shakespeare)
§ V is the set of words in the collection
§ Words as rows and documents as columns
§ Value is the count of word w in document d: 𝑡𝑐-,/
§ Matrix size |V|✕|D|

§ Other word weighting models: 𝑡𝑓, 𝑡𝑓𝑖𝑑𝑓, 𝐵𝑀25
[1]

𝑑(𝑑) 𝑑7 𝑑8
As You Like It Twelfth Night Julius Caesar Henry V

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

... ... …

Word-Document Matrix

§ Similarity between the vectors of two words:

𝑠𝑖𝑚 soldier, clown = cos 𝑊GHIJKLM,𝑊NIHOP =
𝑊GHIJKLM Q 𝑊NIHOP

𝑊GHIJKLM||𝑊NIHOP|

𝑑(𝑑) 𝑑7 𝑑8
As You Like It Twelfth Night Julius Caesar Henry V

battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0

Context

§ Context can be defined in different ways
- Document
- Paragraph, tweet
- Window of some words (2-10) on each side of the

word

§ Word-Context matrix
- We consider every word as a dimension
- Number of dimensions of the matrix:|V|
- Matrix size: |V|✕|V|

Word-Context Matrix

19.1 • WORDS AND VECTORS 3

tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the

𝑐(𝑐) 𝑐7 𝑐8 𝑐S 𝑐T
aardvark computer data pinch result sugar

𝑤(apricot 0 0 0 1 0 1
𝑤) pineapple 0 0 0 1 0 1
𝑤7 digital 0 2 1 0 1 0
𝑤8 information 0 1 6 0 4 0

[1]

§ Window context of 7 words

Co-occurrence Relations

§ First-order co-occurrence relation
- Each cell of the word-context matrix
- Words that appear near each other in the language
- Like drink to beer or wine

§ Second-order co-occurrence relation
- Cosine similarity between the semantic vectors
- Words that appear in similar contexts
- Like beer to wine, or knowledge to wisdom

𝑐(𝑐) 𝑐7 𝑐8 𝑐S 𝑐T
aardvark computer data pinch result sugar

𝑤(apricot 0 0 0 1 0 1
𝑤) pineapple 0 0 0 1 0 1
𝑤7 digital 0 2 1 0 1 0
𝑤8 information 0 1 6 0 4 0

Point Mutual Information

§ Problem with raw counting methods
- Biased towards high frequent words (“and”, “the”)

although they don’t contain much of information

§ We need a measure for the first-order relation to
assess how informative the co-occurrences are

§ Use the ideas in information theory
§ Point Mutual Information (PMI)

- Probability of the co-occurrence of two events, divided by
their independent occurrence probabilities

𝑃𝑀𝐼 𝑋, 𝑌 = log)
𝑃(𝑋, 𝑌)
𝑃 𝑋 𝑃(𝑌)

Point Mutual Information

§ Positive Point Mutual Information (PPMI)

𝑃𝑀𝐼 𝑤, 𝑐 = log)
𝑃(𝑤, 𝑐)
𝑃 𝑤 𝑃(𝑐)

𝑃 𝑤, 𝑐 =
#(𝑤, 𝑐)

∑ ∑ #(𝑤^, 𝑐_)
|`|
_a(= 𝑆|`|

^a(

𝑃 𝑤 =
∑ #(𝑤, 𝑐_)	
|`|
_a(

𝑆
𝑃 𝑐 =

∑ #(𝑤^, 𝑐)	
|`|
^a(

𝑆

𝑃𝑃𝑀𝐼 𝑤, 𝑐 = max(𝑃𝑀𝐼, 0)

Point Mutual Information

𝑃 𝑤 = information, 𝑐 = data = 6
19m = .32

𝑐(𝑐) 𝑐7 𝑐8 𝑐S
computer data pinch result sugar

𝑤(apricot 0 0 1 0 1
𝑤) pineapple 0 0 1 0 1
𝑤7 digital 2 1 0 1 0
𝑤8 information 1 6 0 4 0

𝑃 𝑤 = information = 11
19m = .58

𝑃 𝑐 = data = 7
19m = .37

𝑃𝑃𝑀𝐼 𝑤 = information, 𝑐 = data = max(0,
.32

.58 ∗ .37) = .57

Point Mutual Information

PPMI matrix

Co-occurrence raw count matrix

𝑐(𝑐) 𝑐7 𝑐8 𝑐S
computer data pinch result sugar

𝑤(apricot - - 2.25 - 2.25
𝑤) pineapple - - 2.25 - 2.25
𝑤7 digital 1.66 0.00 - 0.00 -
𝑤8 information 0.00 0.57 - 0.47 -

𝑐(𝑐) 𝑐7 𝑐8 𝑐S
computer data pinch result sugar

𝑤(apricot 0 0 1 0 1
𝑤) pineapple 0 0 1 0 1
𝑤7 digital 2 1 0 1 0
𝑤8 information 1 6 0 4 0

Thanks for your attention!
Dense Vectors

Sparse vs. Dense Vectors

§ Sparse vectors
- Length between 20K to 500K
- Many words don’t co-occur; ~98% of the PPMI matrix is 0

§ Dense vectors
- Length 50 to 1000
- Approximate the original data with lower dimensions ->

lossy compression

§ Why dense vectors?
- Easier to store and load (efficiency)
- Better for machine learning algorithms as features
- Generalize better by removing noise for unseen data
- Capture higher-order of relation and similarity: car and

automobile might be merged into the same dimension and
represent a topic

Dense Vectors

§ Count based
- Singular Value Decomposition in the case of Latent

Semantic Analysis/Indexing (LSA/LSI)
- Decompose the word-context matrix and truncate a

part of it

§ Prediction based
- word2vec Skip-Gram model generates word and context

vectors by optimizing the probability of co-occurrence of
words in sliding windows

Singular Value Decomposition

§ Theorem: An m ´ n matrix C of rank r has a
Singular Value Decomposition (SVD) of the form

C = UΣVT

- U is an m ´ m unitary matrix (U T U = UU T = I)

- Σ is an m ´ n diagonal matrix, where the values
(eigenvalues) are sorted, showing the importance of each
dimension

- VT is an n ´ n unitary matrix

Singular Value Decomposition

§ It is conventional to represent Σ as an r ´ r matrix
§ Then the rightmost m - r columns of U are omitted

or the rightmost n - r columns of V are omitted

Applying SVD to Term-Context
Matrix

§ Start with a sparse PPMI matrix of the size |V|✕|C| where
|V|>|C| (in practice |V|=|C|)

§ Apply SVD

|V|✕|C|words

contexts

= |V|✕|C|

|C|✕|C| |C|✕|C|

Word vectors (U)

Eigenvalues (Σ) Context vectors (𝑉t)

Applying SVD to Term-Context Matrix

§ Keep only top d eigenvalues in Σ and set the rest to zero
§ Truncate the U and 𝑉t matrices based on the changes in Σ
§ If we multiply the truncated matrices, we have a least-

squares approximation of the original matrix
§ Our dense semantic vectors is the truncated U matrix

|V|✕|C|words

contexts

= |V|✕|C|

|C|✕|C| |C|✕|C|

d d

d

Word vectors (U)

Eigenvalues (Σ) Context vectors (𝑉t)

Prediction instead of Counting

§ Instead of counting, we want to predict the probability of
occurrence of a word, given another word

§ The prediction approach has roots in language modeling:
- E.g.: I order a pizza with … (mashroom: 0.1, lizard: 0.001)

§ We want to calculate the probability of appearance of a
context word c in a window context given the word w:

𝑃(𝑐|𝑤)
§ Based on this probability, we define an objective function
§ We aim to learn word representations by optimizing the error

of the objective function on a training corpus
§ word2vec [6,7] introduces an efficient and also effective

method
§ We study the Skip-Gram architecture, CBOW is very similar

Skip-Gram

§ The Neural Network is trained by feeding it word pairs found
in the text within a context window

§ Below is an example with a window size of 2

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

w Î V and
c Î V are a
word and its
context

A Neural Network Model for Prediction
of Context Word

https://web.stanford.edu/~jurafsky/slp3/

§ The network predicts 𝑃(𝑐|𝑤) i.e. w at input and c at output layer
§ Two sets of vectors: word vectors W and context vector C

Linear
activation
function

Softmax
function

The Prediction Results after Training

§ After training, given the word fox, the network outputs the
probability of appearance of every word in its window context

What is Softmax at the Output Layer

§ Given the pair of (w,c), the output value of the last layer in
this network is in fact the dot product of the word vector to
the context vector:

𝑊- Q 𝐶v

§ In order to turn this output into probability distribution, the
outputs are normalised using the Softmax function:

𝑝(𝑐|𝑤) =
exp 𝑊- Q 𝐶v

∑ exp 𝑊- Q 𝐶y�
y⊂`

How to Train the Neural Network Model

1. The W and C vectors are randomly initialized
2. Slide the window over the corpus:
(w,c) = (fox, forest)
3. Input w with a one-hot vector
4. Calculate output layer for the context word:

𝑝 c 𝑤 = 𝑝(forest|fox) =
exp 𝑊|H} Q 𝐶|HMLG~
∑ exp 𝑊|H} Q 𝐶y�
y⊂`

How to Train the Neural Network Model

4. Calculate the cross entropy cost function for each batch with T
instances:

		𝐽 = −
1
𝑇�log 𝑝(𝑐|𝑤)

t

(
5. Minimize the cost function:

- Need to increase 𝑊|H} Q 𝐶|HMLG~
- Update both 𝑊|H} and 𝐶|HMLG~ vectors by adding a portion of
𝑊|H} to 𝐶|HMLG~ and other way around

6. Continue training on the next (w,c) pairs:
(w,c)=(wolf, forest)
(w,c)=(resistor, circuit)
(w,c)=(wolf, tree)
(w,c)=(fox, tree)
…

Embedding Space

§ Vectors associated
with words that occur
in the same context
become more similar
to each other

wolf

fox

The Neural Network Prediction Model -
Summary

§ Prediction probability

𝑝(𝑐|𝑤) =
exp 𝑊- Q 𝐶v

∑ exp 𝑊- Q 𝐶y�
y⊂`

§ Cross entropy cost function

		𝐽 = −
1
𝑇�log 𝑝(𝑐|𝑤)

t

(
§ Problem: the calculation of the denominator in the prediction

probability is very expensive!

§ One approach to tackle the efficiency problem is using
Negative Sampling, introduced in the word2vec toolbox

word2vec: Probability of a Genuine Co-occurrence

§ Let’s introduce a binary variable y, measuring how genuine
the probability of co-occurrence of w and c is:

𝑝 𝑦 = 1 𝑤, 𝑐

§ This probability is estimated by the sigmoid function of the
dot product of the word vector and context vector:

𝑝 𝑦 = 1 𝑤, 𝑐 =
1

1 + exp −𝑊- Q 𝐶v
= σ(𝑊-Q 𝐶v)

§ For example, we expect to have:
- 𝑝 𝑦 = 1 fox, forest = 0.98
- 𝑝 𝑦 = 0 fox, forest = 1 − 0.98 = 0.02
- 𝑝 𝑦 = 1 fox, tree = 0.96
- 𝑝 𝑦 = 1 fox, chair = 0.01
- 𝑝 𝑦 = 1 fox, circuit = 0.001

word2vec: Negative Sampling

§ If we only use 𝑝 𝑦 = 1 𝑤, 𝑐 , we lack comparison or normalization
over other words!!

§ Instead of a complete normalization, we use Negative Sampling
§ Negative Sampling intuition:

§ Since many words don’t co-occur, any sampled word can be
assumed as a negative sample

§ We randomly sample k (2-20) words from the collection
distribution

§ We aim to increase 𝑝 𝑦 = 1 𝑤, 𝑐 and decrease 𝑝 𝑦 = 1 𝑤, 𝑐̌

The word w should attracts the context c when
they appear in the same context and repeals some
other context words 𝑐̌ that do not co-occur with w
i.e. negative samples

word2vec: Negative Sampling

§ For example with k=2

(w,c) = (fox, forest)
negative samples: [bluff, guitar]

𝑝 𝑦 = 1 fox, forest 	 ↑
𝑝 𝑦 = 1 fox, bluff 	 ↓ 							⇛ 				𝑝 𝑦 = 0 fox, bluff ↑
𝑝 𝑦 = 1 fox, guitar ↓ ⇛ 			𝑝 𝑦 = 0 fox, guitar ↑

(w,c) = (wolf, forest)
negative samples: [blooper, film]

𝑝 𝑦 = 1 wolf, forest 	 ↑
𝑝 𝑦 = 0 wolf, blooper ↑
𝑝 𝑦 = 0 wolf, film ↑

Random words from https://www.textfixer.com/tools/random-words.php

word2vec with Negative Sampling

§ Genuine co-occurrence probability
𝑝 𝑦 = 1 𝑤, 𝑐 = σ(𝑊-Q 𝐶v)

§ Negative sampling of k context words 𝑐̌
𝑝 𝑦 = 0 𝑤, 𝑐̌

§ Cost function

		𝐽 = −
1
𝑇� log 𝑝(𝑦 = 1|𝑤, 𝑐) +�log 𝑝(𝑦 = 0|𝑤, 𝑐̌)

�

^a(

t

(

co-occurrence probability Negative sampling

word2vec with Negative Sampling

(w,c) = (fox, forest)
negative samples: [bluff, guitar]

𝑝 𝑦 = 1 fox, forest 	 ↑
𝑝 𝑦 = 0 fox, bluff ↑
𝑝 𝑦 = 0 fox, guitar ↑

(w,c) = (wolf, forest)
negative samples: [blooper, film]

𝑝 𝑦 = 1 wolf, forest 	 ↑
𝑝 𝑦 = 0 wolf, blooper ↑
𝑝 𝑦 = 0 wolf, film ↑

word2vec with Negative Sampling

(w,c) = (fox, forest)
negative samples: [bluff, guitar]

𝑝 𝑦 = 1 fox, forest 	 ↑ 𝑊|H}	attracts	𝐶|HMLG~
𝑝 𝑦 = 0 fox, bluff ↑ 𝑊|H}	repeals	𝐶�I�||
𝑝 𝑦 = 0 fox, guitar ↑ 𝑊|H}	repeals	𝐶��K~�M

(w,c) = (wolf, forest)
negative samples: [blooper, film]

𝑝 𝑦 = 1 wolf, forest 	 ↑ 𝑊OHI|	attracts	𝐶|HMLG~
𝑝 𝑦 = 0 wolf, blooper ↑ 𝑊OHI|	repeals	𝐶�IHH�LMG
𝑝 𝑦 = 0 wolf, film ↑ 𝑊OHI|	repeals	𝐶|KI�

Embedding Space

§ Eventually words with similar
contexts (like fox and wolf or
apple and apricot) become
more similar to each other
and different from the rest

wolf

fox

word2vec: More Ingredients

§ Very frequent words dominant the model and
influence the performance of the vectors.
Solutions:

§ Subsampling
- When creating the window, remove the words with

frequency f higher than t with the following probability

𝑝 = 1 −
𝑡
𝑓

�

§ Context Distribution Smoothing
- Dampens the values of the collection distribution for

negative sampling with 𝑓� �⁄ 𝑓 = 10000 → 	𝑓� �⁄ = 1000
- Prevents domination of very frequent words in sampling

References

[1] Jurafsky, Dan, and James H. Martin. Speech and language processing. Vol. 3.
London: Pearson, 2014.
[2] Exploration of a Threshold for Similarity based on Uncertainty in Word Embedding.
Navid Rekabsaz, Mihai Lupu, Allan Hanbury, Guido Zuccon In Proceedings of the
European Conference on Information Retrieval Research
[3] Navigating the semantic horizon using relative neighborhood graph. Amaru Cuba
Gyllensten and Magnus Sahlgren. In Proceedings of EMNLP 2015.
[4] Generalizing Translation Models in the Probabilistic Relevance Framework Navid Rekabsaz,
Mihai Lupu, Allan Hanbury, Guido Zuccon Proceedings of ACM International Conference on
Information and Knowledge Management (CIKM 2016)
[5] Kulkarni, Vivek, et al. "Statistically significant detection of linguistic change." Proceedings of the
24th International Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 2015.
[6] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their
compositionality." Advances in neural information processing systems. 2013.
[7] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv
preprint arXiv:1301.3781 (2013).

Thanks!

Questions?

@NRekabsaz rekabsaz@ifs.tuwien.ac.at

