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DRUM TRANSCRIPTION VIA  
JOINT BEAT AND DRUM MODELING 
USING CONVOLUTIONAL RNNs
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WHAT IS DRUM TRANSCRIPTION?
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Input:       western popular music containing drums 
Output:    symbolic representation of notes played by drum instruments



WHAT IS DRUM TRANSCRIPTION?

Focus on the three major drum instruments:  
‣ bass or kick drum (KD) 
‣ snare drum (SD) 
‣ hi-hat (HH) 

Reasons: 
‣ Dominant instruments: most onsets 
‣ Common subset for public datasets
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HH  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KD

t

1 2 3 4 143beats 2Use beat and downbeat tracking to get:
‣ bars lines
‣ tempo
‣ meter      ✔

ADDITIONAL INFORMATION FOR TRANSCRIPTS

6



IMPROVE PERFORMANCE

Three components to reach this goal: 

1.  Leverage beat information 

2.  Better model for drum detection 

3.  Dataset with real music for training
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1. LEVERAGE BEAT INFORMATION

Beats are highly correlated with drum patterns
Assume that prior knowledge of beats is helpful for drum transcription  
(drum hit locations / repetitive patterns)
Use multi-task learning for beats and drums
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MULTI-TASK LEARNING

Three experiments:
‣ Training on drum targets (DT)
‣ Training on drum targets with annotated beats as additional input features (BF)
‣ Training on drum and beat targets as multi-task problem (MT)

Expected increase in performance for BF compared to DT
Expected increase in performance for MT compared to DT
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Recurrent neural networks
‣ Recurrent connections act as memory
‣ Processing of sequential data
‣ Work well for drum detection and beat tracking  

[Böck et al. ISMIR’16] 

RNN with label time shift (tsRNN)  
state-of-the-art baseline [Vogl et al. ICASSP’17] 

Bidirectional recurrent NN (BDRNN)  
[Vogl et al. ISMIR’16] [Southall et al. ISMIR’16]

‣ Similar performance tsRNN

2. NETWORK MODELS — BASELINE MODELS
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2. NETWORK MODELS — NEW FOR DT

Convolutional NN (CNN)
‣ Convolutions capture local correlations
‣ Acoustic modeling of drum sounds
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2. NETWORK MODELS — NEW FOR DT

Convolutional NN (CNN)
‣ Convolutions capture local correlations
‣ Acoustic modeling of drum sounds

Convolutional BDRNN (CRNN)
‣ ”best of both worlds”
‣ Low-level CNN for acoustic modeling 
‣ Higher-level RNN for repetitive pattern modeling
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NETWORK MODELS
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Frames Context Conv. Layers Rec. Layers Dense Layers

BDRNN (S) 100 — — 2x50 GRU —
BDRNN (L) 400 — — 3x30 GRU —

CNN (S) — 9 2 x 32 3x3 filt. 
3x3 max pooling  

2 x 64 3x3 filt. 
3x3 max pooling 
all w/ batch norm.

— 2x256
CNN (L) — 25 — 2x256

CRNN (S) 100 9 2x50 GRU —
CRNN (L) 400 13 3x60 GRU —

tsRNN state-of-the-art baseline [Vogl et al. ICASSP’17]



CLASSIC DATASETS (ONLY DRUMS)

13



IDMT-SMT-Drums [Dittmar and Gärtner 2014]

‣ Solo drum tracks, recorded, synthesized, and sampled
‣ 95 tracks, total: 24m, onsets: 8004 + training samples

CLASSIC DATASETS (ONLY DRUMS)

13

♫



IDMT-SMT-Drums [Dittmar and Gärtner 2014]

‣ Solo drum tracks, recorded, synthesized, and sampled
‣ 95 tracks, total: 24m, onsets: 8004 + training samples

CLASSIC DATASETS (ONLY DRUMS)

13

♫



IDMT-SMT-Drums [Dittmar and Gärtner 2014]

‣ Solo drum tracks, recorded, synthesized, and sampled
‣ 95 tracks, total: 24m, onsets: 8004 + training samples

ENST-Drums [Gillet and Richard 2006]

‣ Recordings, three drummers on different drum kits, optional accompaniment
‣ 64 tracks, total: 1h, onsets: 22391 + training samples

CLASSIC DATASETS (ONLY DRUMS)

13

♫

♫ ♫



IDMT-SMT-Drums [Dittmar and Gärtner 2014]

‣ Solo drum tracks, recorded, synthesized, and sampled
‣ 95 tracks, total: 24m, onsets: 8004 + training samples

ENST-Drums [Gillet and Richard 2006]

‣ Recordings, three drummers on different drum kits, optional accompaniment
‣ 64 tracks, total: 1h, onsets: 22391 + training samples

CLASSIC DATASETS (ONLY DRUMS)

13

♫

♫ ♫



IDMT-SMT-Drums [Dittmar and Gärtner 2014]

‣ Solo drum tracks, recorded, synthesized, and sampled
‣ 95 tracks, total: 24m, onsets: 8004 + training samples

ENST-Drums [Gillet and Richard 2006]

‣ Recordings, three drummers on different drum kits, optional accompaniment
‣ 64 tracks, total: 1h, onsets: 22391 + training samples

CLASSIC DATASETS (ONLY DRUMS)

13

♫

♫ ♫



DT 3-FOLD CV RESULTS ON CLASSIC DATASETS
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RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/] 
‣ Free music from the 2013 Red Bull Music Academy, different styles 
‣ 27 tracks, total: 1h 43m, onsets: 24365 
‣ drum, beat, and downbeat annotations 

Multi-task evaluation 
‣ DT: Drum transcription / three fold cross-validation (same as on SMT and ENST) 
‣ BF: Drum transcription using annotated beats as additional input features 
‣ MT: Drum transcription and beat detection via multi-task learning
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RESULTS FOR RECURRENT ARCHITECTURES
No improvement because of  

beat tracking results?
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