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WHAT IS DRUM TRANSCRIPTION?
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WHAT IS DRUM TRANSCRIPTION?

B Focus on the three major drum instruments:
» bass or kick drum (KD)
» share drum (SD)
» hi-hat (HH)

M Reasons:
» Dominant instruments: most onsets

» Common subset for public datasets
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SYSTEM OVERVIEW
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ISSUES OF CURRENT SYSTEMS
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M Do not produce additional information for transcripts

drum onset detection vs drum transcription

>

>

>

bars lines

tempo

meter

dynamics / accents
stroke / playing technique

TUITE

QoK - 6TRAIGHT 3tHe ¢ = 190

@ (L+L+l+L+5+%)
> >
s w11 DI
FEE= IS e et
1 3 l v 10
4

-

AR

L4

Jxu (c



ISSUES OF CURRENT SYSTEMS
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» stroke / playing technique
M Only three instrument classes
M etc.
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ADDITIONAL INFORMATION FOR TRANSCRIPTS

M Use beat and downbeat tracking to get:
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ADDITIONAL INFORMATION FOR TRANSCRIPTS
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IMPROVE PERFORMANCE

Three components to reach this goal.
1. Leverage beat information
2. Better model for drum detection

3. Dataset with real music for training
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1. LEVERAGE BEAT INFORMATION
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M Beats are highly correlated with drum patterns
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M Beats are highly correlated with drum patterns
B Assume that prior knowledge of beats is helpful for drum transcription

(drum hit locations / repetitive patterns)
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1. LEVERAGE BEAT INFORMATION
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M Beats are highly correlated with drum patterns

B Assume that prior knowledge of beats is helpful for drum transcription
(drum hit locations / repetitive patterns)

M Use multi-task learning for beats and drums
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MULTI-TASK LEARNING

input output
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MULTI-TASK LEARNING

input output

M Three experiments:
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MULTI-TASK LEARNING
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MULTI-TASK LEARNING
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M Three experiments:
» Training on drum targets (DT)
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» Training on drum targets with annotated beats as additional input features (BF)
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MULTI-TASK LEARNING

input output
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M Three experiments:
» Training on drum targets (DT)
» Training on drum targets with annotated beats as additional input features (BF)
» Training on drum and beat targets as multi-task problem (MT)
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MULTI-TASK LEARNING

M Three experiments:

M Expected increase in performance for BF compared to DT
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» Training on drum and beat targets as multi-task problem (MT)
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MULTI-TASK LEARNING

M Three experiments:

M Expected increase in performance for BF compared to DT
M Expected increase in performance for MT compared to DT
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2. NETWORK MODELS — BASELINE MODELS
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B Recurrent neural networks
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2. NETWORK MODELS — BASELINE MODELS

B Recurrent neural networks

» Recurrent connections act as memory A sub-sequence
» Processing of sequential data
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2. NETWORK MODELS — BASELINE MODELS

B Recurrent neural networks

>

>

4

Recurrent connections act as memory
Processing of sequential data

Work well for drum detection and beat tracking

[Bock et al. ISMIR'16]
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2. NETWORK MODELS — BASELINE MODELS

B Recurrent neural networks
» Recurrent connections act as memory
» Processing of sequential data

»  Work well for drum detection and beat tracking
[Bock et al. ISMIR'16]

B RNN with label time shift (EsRNN)
state-of-the-art baseline [Vogl et al. ICASSP’17]

M Bidirectional recurrent NN (BDRNN)
[Vogl et al. ISMIR’16] [Southall et al. ISMIR’16]

» Similar performance tsRNN
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2. NETWORK MODELS — NEW FOR DT
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2. NETWORK MODELS — NEW FOR DT

Bl Convolutional NN (CNN)
» Convolutions capture local correlations
» Acoustic modeling of drum sounds
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2. NETWORK MODELS — NEW FOR DT

Bl Convolutional NN (CNN)
» Convolutions capture local correlations
» Acoustic modeling of drum sounds

Bl Convolutional BDRNN (CRNN)
» "best of both worlds”
» Low-level CNN for acoustic modeling
» Higher-level RNN for repetitive pattern modeling
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NETWORK MODELS

‘ Frames EContexté Conv. Layers

Rec. Layers Dense Layers

TUITE

BDRNN(S)| 100 | — — 2x50 GRU —
400 | — — 3x30 GRU —

CNN (S) — 9 | 2x323x3filt. — 2x256

CNN (L) — 25 i 3x3 max pooling — 2x256
--------------------------------------------------------------------------- 2 X B4 BXBilt, i
CRNN (L) 400 | 13 allw/batchnorm.i  3x60 GRU —

tsSRNN state-of-the-art baseline [Vogl et al. ICASSP’17]
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CLASSIC DATASETS (ONLY DRUMS)
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CLASSIC DATASETS (ONLY DRUMS)

B IDMT-SMT-Drums [Dittmar and Gartner 2014]

» Solo drum tracks, recorded, synthesized, and sampled ﬂ
» 95 tracks, total: 24m, onsets: 8004 + training samples
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CLASSIC DATASETS (ONLY DRUMS)

B IDMT-SMT-Drums [Dittmar and Gartner 2014]
» Solo drum tracks, recorded, synthesized, and sampled ﬂ
» 95 tracks, total: 24m, onsets: 8004 + training samples

B ENST-Drums [Gillet and Richard 2006]

» Recordings, three drummers on different drum kits, optional accompaniment

%
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DT 3-FOLD CV RESULTS ON CLASSIC DATASETS
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3. NEW DATASETS (DRUMS AND BEATS)

RBMA1 3-Drums [http://ifs.tuwien.ac.at/~voqgl/datasets/]
» Free music from the 2013 Red Bull Music Academy, different styles Jj Jj
» 27 tracks, total: 1h 43m, onsets: 24365

» drum, beat, and downbeat annotations
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http://ifs.tuwien.ac.at/~vogl/datasets/

3. NEW DATASETS (DRUMS AND BEATS)

RBMA1 3-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/]
4
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M Multi-task evaluation
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Free music from the 2013 Red Bull Music Academy, different styles
» 27 tracks, total: 1h 43m, onsets: 24365
drum, beat, and downbeat annotations

BF: Drum transcription using annotated beats as additional input features
MT: Drum transcription and beat detection via multi-task learning
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M

DT: Drum transcription / three fold cross-validation (same as on SMT and ENST)
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http://ifs.tuwien.ac.at/~vogl/datasets/
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RESULTS ON RBMA13: BDRNNs
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RESULTS ON RBMA13: BDRNNs
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RESULTS ON RBMA13: BDRNNs
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RESULTS ON RBMA13: CNNs
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RESULTS ON RBMA13: CNNs
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RESULTS ON RBMA13: CNNs
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Impact on CNNs:
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RESULTS ON RBMA13: CRNNs
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RESULTS ON RBMA13: CRNNs
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RESULTS FOR RECURRENT ARCHITECTURES
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http://ifs.tuwien.ac.at/~vogl/models/mirex-17.zip
https://github.com/CPJKU/madmom
http://ifs.tuwien.ac.at/~vogl/datasets/

CONCLUSIONS

M Use beats and downbeats to get meta information for transcripts

B Multi-task learning for drums and beats can be beneficial for recurrent architectures
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CONCLUSIONS

M Use beats and downbeats to get meta information for transcripts

B Multi-task learning for drums and beats can be beneficial for recurrent architectures

B CRNNSs can outperform RNNs
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http://ifs.tuwien.ac.at/~vogl/models/mirex-17.zip
https://github.com/CPJKU/madmom
http://ifs.tuwien.ac.at/~vogl/datasets/

CONCLUSIONS

M Use beats and downbeats to get meta information for transcripts

B Multi-task learning for drums and beats can be beneficial for recurrent architectures
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