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TOWARDS MULTI-INSTRUMENT 
DRUM TRANSCRIPTION
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WHAT IS DRUM TRANSCRIPTION?
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Input:       popular music containing drums 
Output:    symbolic representation of notes played by drum instruments



Current state-of-the-art systems:  

‣ End-to-end / activation-function-based approaches 

‣ NN based approaches and NMF approaches 

Overview Article 
Wu, C.-W., Dittmar, C., Southall, C.,Vogl, R., Widmer, G., Hockman, J., Müller, M., Lerch, A.:  
“An Overview of Automatic Drum Transcription,” IEEE TASLP, vol. 26, no. 9, Sept. 2018.

STATE OF THE ART
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SotA works focus bass drum (BD) snare (SD) and hi-hat (HH)
‣ Make up majority of notes in datasets
‣ Beat defining / most important
‣ Well separated spectral energy distribution

FOCUS OF THIS WORK
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Other instruments are important! 
→ Increase number of instruments for drum transcription



SYSTEM OVERVIEW
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NETWORK ARCHITECTURES
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CNN train data sample

NETWORK ARCHITECTURES

Convolutional NN (CNN)
‣ Convolutions capture local correlations
‣ Acoustic modeling of drum sounds

!6



NETWORK ARCHITECTURES

Convolutional NN (CNN)
‣ Convolutions capture local correlations
‣ Acoustic modeling of drum sounds

Convolutional RNN (CRNN)
‣ ”best of both worlds”
‣ Low-level CNN for acoustic modeling 
‣ Higher-level RNN for repetitive pattern modeling
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CRNN train data sample



NETWORK ARCHITECTURES
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2 x conv: 32 x 3x3 (batch norm)

max pool: 1x3

2 x conv: 64 x 3x3 (batch norm)

max pool: 1x3

2 x dense: 256 

CNN

2 x conv: 32 x 3x3 (batch norm)

max pool: 1x3

2 x conv: 64 x 3x3 (batch norm)

max pool: 1x3

3 x RNN: 50 BD GRU 

CRNN

frames context conv. layers rec. layers dense layers
CNN — 25

see figure
— 2x256

CRNN 400 13 3 x 50 BD GRU —

Early stopping 
Batch normalization 
L2 norm  
Dropout (30%) 
ADAM optimizer



DATASETS
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‣ 64 tracks, total duration: 1h
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Follows the same relative instrument 
distribution

−  same bias for instruments

    same problems during training

+  datasets are representative samples

SYNTHETIC DATASET
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BALANCING OF  
SYNTHETIC DATASET
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RESULTS ON SYNTHETIC DATA
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Overall performance for MIDI bal. 
is worse 
‣ It is a harder task 

Performance of underrepresented 
instruments improves 
‣ Providing more samples forces 

the network to learn formerly 
sparsely used instruments
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Model trained on synthetic data performs well on real-world data (ENST + MDB + RBMA)

OVERALL PERFORMANCE ON REAL DATA
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Performance decreases, but not drastically

RESULTS FOR DIFFERENT SIZES
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pretrain MIDI pt. MIDI bal.

PERFORMANCE FOR INSTRUMENTS
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Improvements observed on balanced synthetic data do not translate to real-world data
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Improvements observed on balanced synthetic data do not translate to real-world data
Small improvements using pre-training

pretrain MIDI pt. MIDI bal.

PERFORMANCE FOR INSTRUMENTS
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INSTRUMENT CONFUSIONS
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confusions hidden onsets additional onsets

trained on:      real+MIDI 
evaluated on: real+MIDI 
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♫

♫

hi-hat 
splash cymbal 
crash cymbal 
Chinese cymbal 
ride cymbal

?

♫

♫

1: low tom 
2: bass drum 
3: bass drum

1: crash  
2: ride 
3: China



CONCLUSIONS

Publicly available large scale synthetic dataset 
‣ Optional with balanced instruments 
‣ Generalizes well to real data 

Dataset size important but not that critical 
Balancing did not improve performance on real-world data 
‣ Recurrent layers learn untypical patters 

Pre-training with synthetic data provides small improvement 
Mistakes are understandable 
‣ Focus more on context
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http://ifs.tuwien.ac.at/~vogl/dafx2018/


