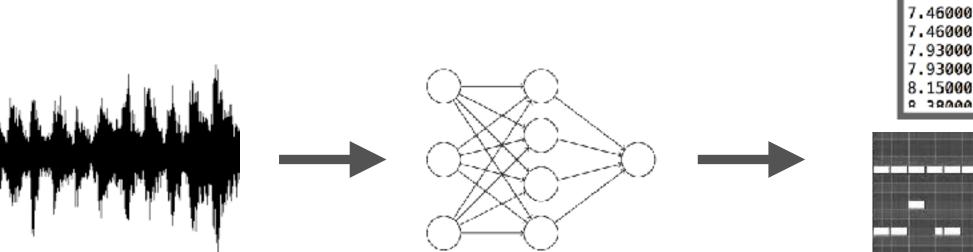
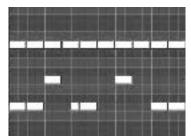
FROM DRUM TRANSCRIPTION TO DRUM PATTERN VARIATION

Richard Vogl

richard.vogl@tuwien.ac.at




PART 1 AUTOMATIC DRUM TRANSCRIPTION

WHAT IS DRUM TRANSCRIPTION?

38000

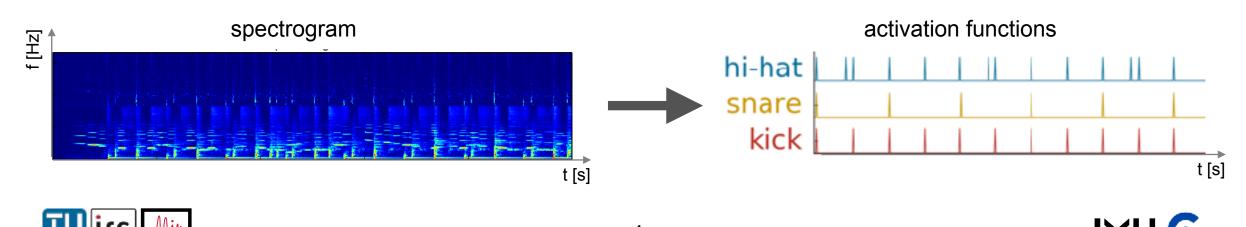
0

2

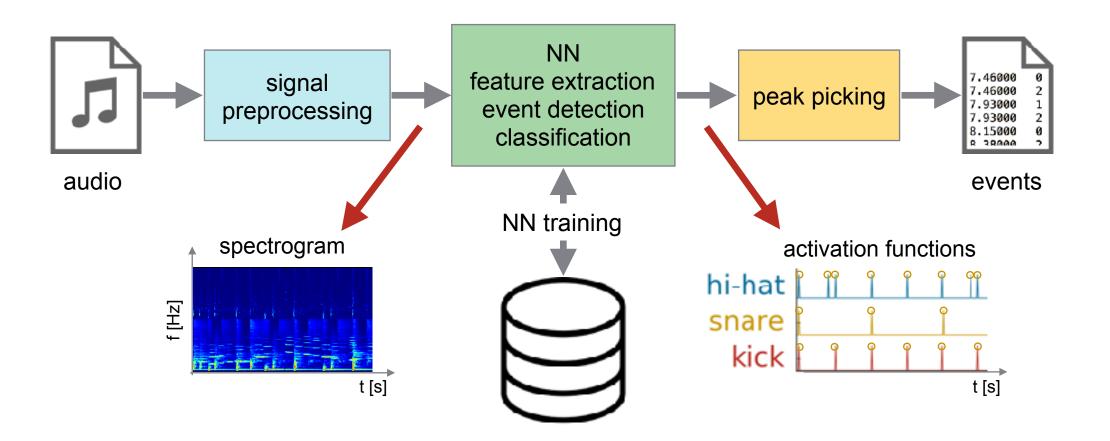
2

Ø

- popular music containing drums Input:
- symbolic representation of notes played by drum instruments Output:


STATE OF THE ART

Overview Article


Wu, C.-W., Dittmar, C., Southall, C.,Vogl, R., Widmer, G., Hockman, J., Müller, M., Lerch, A.: **"An Overview of Automatic Drum Transcription**," IEEE Trans. on Audio, Speech and Language Processing, vol. 26, no. 9, Sept. 2018.

Current state-of-the-art systems:

- End-to-end / activation-function-based approaches
- NMF based approaches and NN approaches

SYSTEM OVERVIEW

PUBLIC DATASETS

IDMT-SMT-Drums [Dittmar and Gärtner 2014]

- Solo drum tracks, recorded, synthesized, and sampled
- > 95 tracks, total: **24m**, onsets: **8004** + training samples

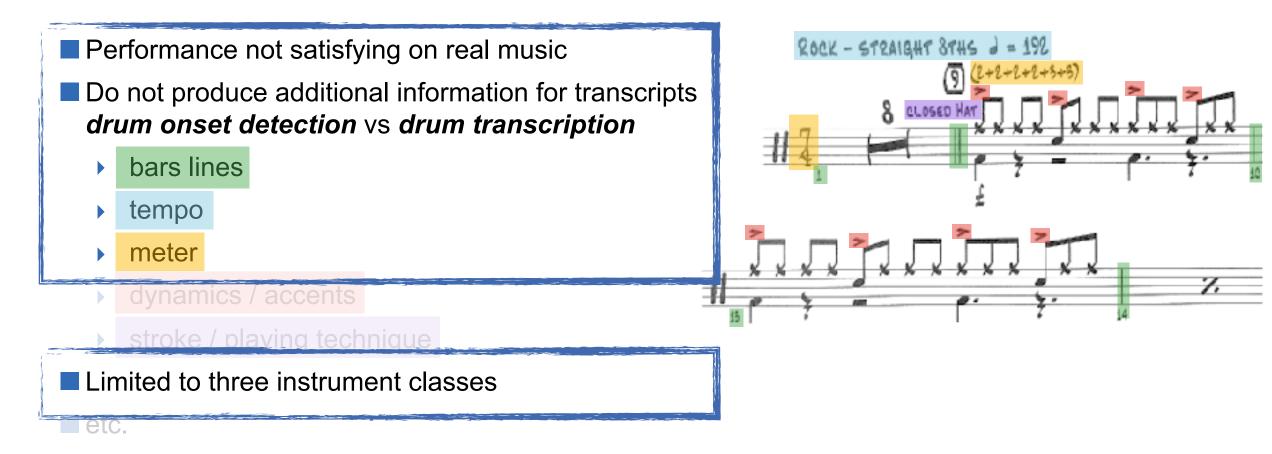
ENST-Drums [Gillet and Richard 2006]

- Recordings, three drummers on different drum kits, **optional accompaniment**
- 64 tracks, total: 1h, onsets: 22391 + training samples

PERFORMANCE

- Simple RNNs architecture (GRUs)
- With data augmentation

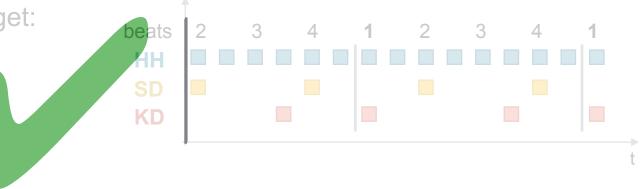
New state-of-the-art on public datasets (ICASSP'17):


Method	SMT solo		ENST solo	ENST acc.	
NMF		(95.0)			
PFNMF	81.6	(—)	77.9	72.2	
HMM		(—)	81.5	74.7	
BDRNN	83.3	(96.1)	73.2	66.9	
tsRNN	92.5	(96.6)	83.3	75.0	

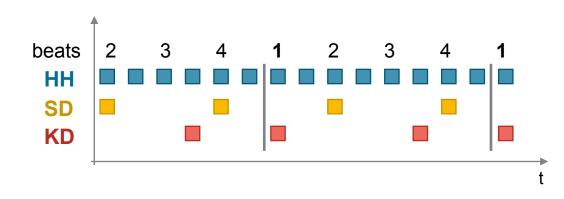
F-measure [%] for individual methods on datasets

Richard Vogl, Matthias Dorfer, and Peter Knees, "Drum transcription from polyphonic music with recurrent neural networks," in *Proc. 42nd IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP)*, New Orleans, LA, USA, Mar. 2017.

ISSUES OF CURRENT SYSTEMS



ADDITIONAL INFORMATION FOR TRANSCRIPTS


Use **beat and downbeat tracking** to get:

- bars lines
- tempo
- meter

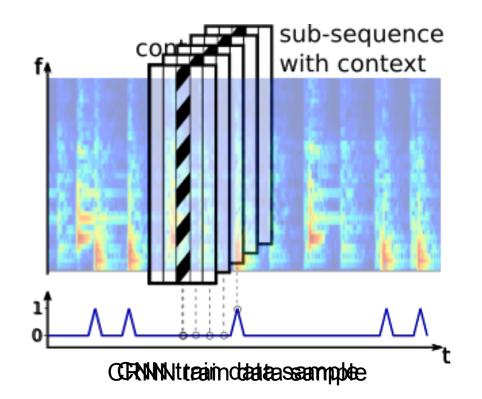
LEVERAGE BEAT INFORMATION

Beats are highly correlated with drum patterns

- Assume that prior knowledge of beats is helpful for drum transcription (drum hit locations / repetitive patterns)
- Use **multi-task learning** for beats and drums

NEW DATASETS (DRUMS AND BEATS)

RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/]


- Free music from the 2013 Red Bull Music Academy, different styles
- > 27 tracks, total: **1h 43m**, onsets: **24365**
- drum, beat, and downbeat annotations

CONVOLUTIONAL RECURRENT NN MODELS

- Convolutional NN (CNN)
 - Convolutions capture local correlations
 - Acoustic modeling of drum sounds
- Convolutional RNN (**CRNN**)
 - "best of both worlds"
 - Low-level CNN for acoustic modeling
 - Higher-level RNN for repetitive pattern modeling

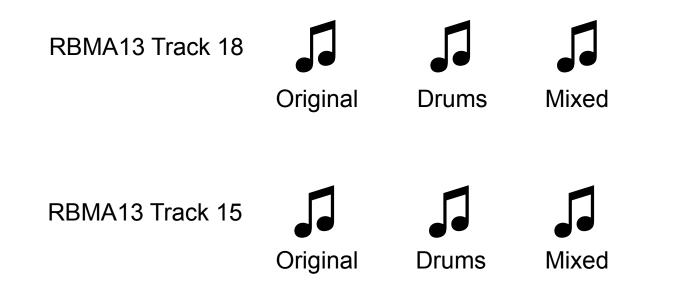
PERFORMANCE

New state-of-the-art using CRNNs (ISMIR'17)

Multi-task learning can improve performance (for recurrent architectures):

	SMT	ENST		RBMA13			
		solo	acc.	DT	BF	MT	
GRUts [36]	92.5	83.3	75.0	-	_	l _	
BGRU-a	93.0	80.9	70.1	59.8	63.6	64.6	
BGRU-b	93.3	82.9	72.3	61.8	64.5	64.3	RNNs
CNN-a	87.6	78.6	70.8	66.2	66.7	63.3	
CNN-b	93.4	85.0	78.3	66.8	65.2	64.8	CNNs
CBGRU-a	95.2	84.6	76.4	65.2	66.1	66.9	CRNNs
CBGRU-b	93.8	83.9	78. 4	67.3	68. 4	67.2	

Richard Vogl, Matthias Dorfer, and Peter Knees, "**Recurrent neural networks for drum transcription**," in *Proc. 17th Intl. Soc. for Music Information Retrieval Conf. (ISMIR)*, New York, NY, USA, Aug. 2016.


MIREX'17 RESULTS

Algorithm	<mark>mean fm</mark>	<mark>mean pr</mark>	<mark>mean rc</mark>	BD mean fm	SD mean fm	HH mean fm	
CW1	0.51	0.46	0.68	0.68	0.48	0.38)
CW3	0.53	0.50	0.65	0.67	0.46	0.42	> NMF
CW2	0.55	0.52	0.66	0.70	0.55	0.40)
RV3	0.68	0.74	0.70	0.81	0.64	0.51	RNN
RV2	0.67	0.69	0.73	0.78	0.67	0.51	CNN
RV1	0.71	0.75	0.74	0.82	0.70	0.53	CRNN
RV4	0.70	0.74	0.73	0.81	0.70	0.52	ensemble
CS1	0.61	0.56	0.73	0.79	0.55	0.46)
CS3	0.63	0.59	0.75	0.78	0.58	0.49	> RNN
CS2	0.63	0.61	0.71	0.78	0.57	0.49	J

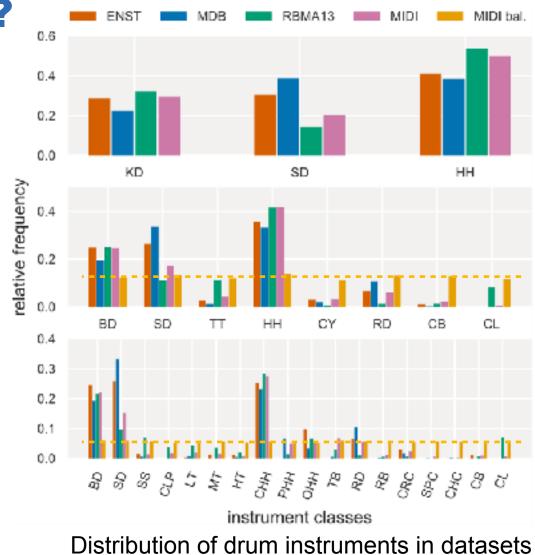
http://www.music-ir.org/mirex/wiki/2017:Drum_Transcription_Results

EXAMPLES

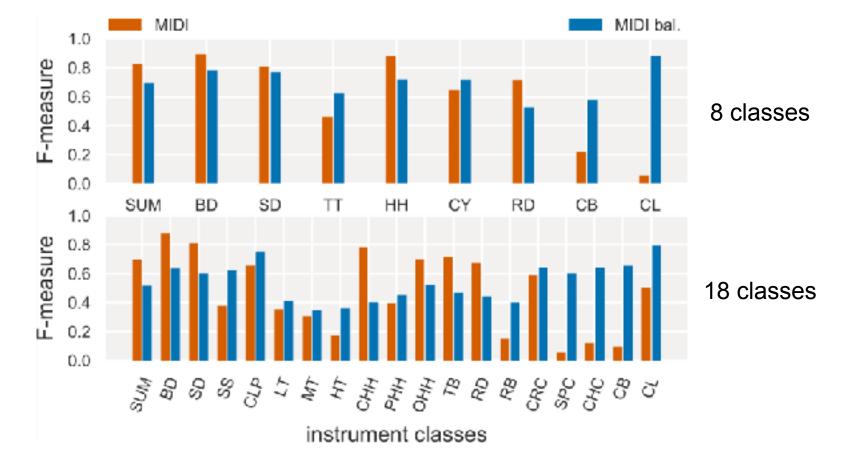
MORE DRUM INSTRUMENTS!

More complete and detailed transcripts

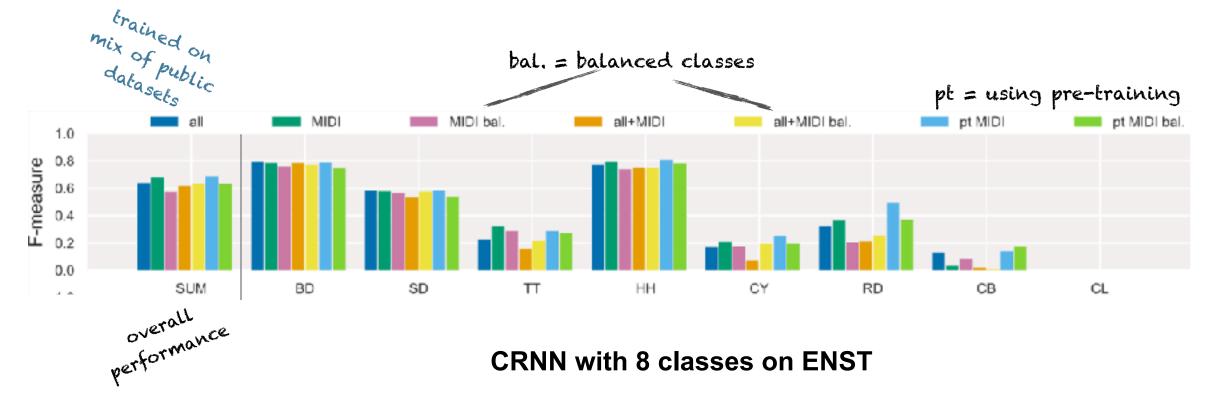
- Challenges
 - Not well defined / context dependent
 - Similar sounds
 - Diversity of sounds of certain instruments


num	ber of c	classes		
3	8	18	instrument name	
BD	BD	BD	bass drum	
SD -	SD -	SD -	snare drum	
		S	side stick	
		CLP	hand clap	
		HT -	high tom	
	TT	MT	mid tom	
		LT	low tom	
		CHH	closed hi-hat	
HH	HH	PHH	pedal hi-hat	
		OHH	open hi-hat	
		TB	tambourine	
	RD	RD	ride cymbal	
	BE	RB	ride bell	
		CB	cowbell	
	CY	C RC	crash cymbal	
		SPC	splash cymbal	
		CHC	Chinese cymbal	
	ĒŪ	-ĒL	clave/sticks	

MORE DRUM INSTRUMENTS?


Natural imbalance of data

- Some instruments are used sparsely
- Few samples for those instruments
- Problem during NN training
- Problem for evaluation
- Create synthetic dataset!
 - ~4000 tracks
 - More suitable sample
- Balance instruments?
 - All instruments equally represented description
 - Artificial drum patterns 😕


PERFORMANCE ON SYNTHETIC DATA

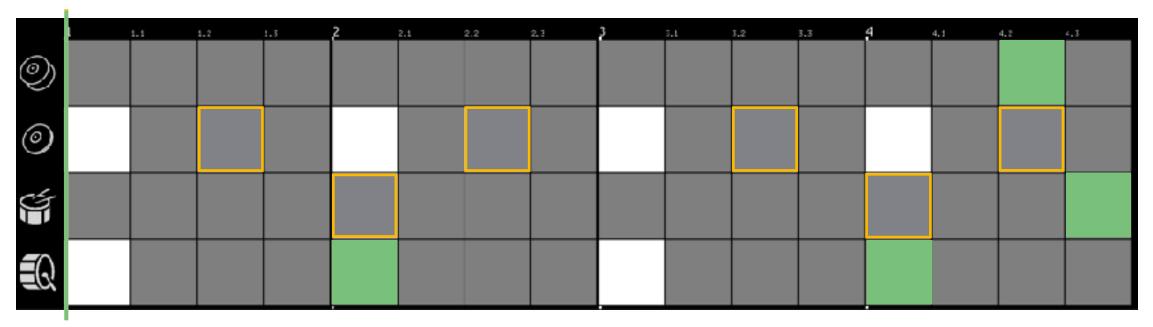
PERFORMANCE ON REAL DATA

bar color = dataset used for training

CONCLUSIONS PART 1

Improve drum transcription performance using CRNN models

- **Data augmentation** can be helpful
- **Multi-task learning** for drums and beats can be beneficial for recurrent architectures
- For more instruments: **pre-training** on large synthetic dataset



PART 2 AUTOMATIC DRUM PATTERN VARIATION

WHAT IS DRUM PATTERN VARIATION?

- Create modifications of a given seed pattern
- Maintain characteristic of the beat
- Add details to increase intensity
- Remove onsets to make it more simple

WHY AUTOMATIC DRUM PATTERN VARIATION?

- As an inspirational tool
- Increase productivity
- Exploration and experimentation

Use cases

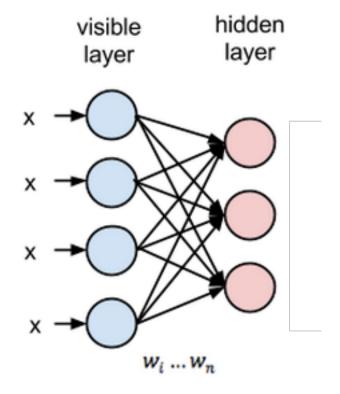
- Music production (digital studio)
- Live performances (experimental music)

Challenges

- Many degrees of freedom
- Genre dependent
- Original, meaningful, but not random patterns!

24

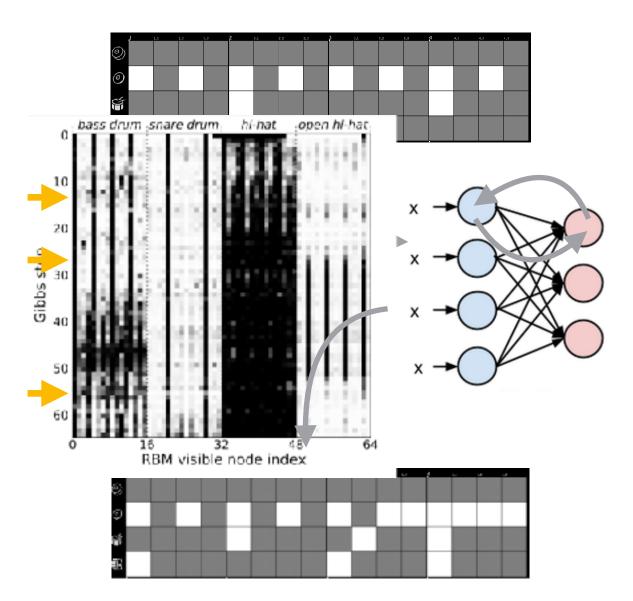
METHOD


Focus on EDM

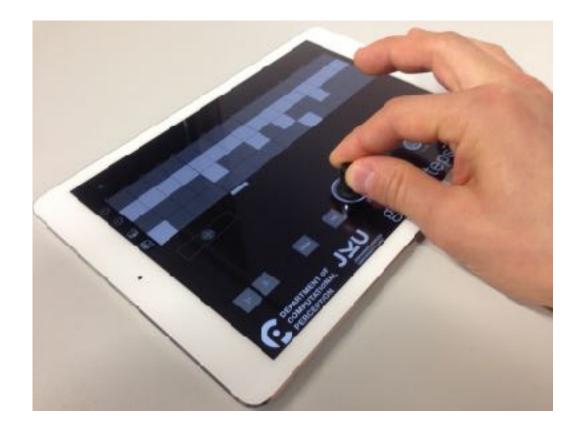
Step Sequencer Interface (4/4 time signature, 16th note resolution)

- Fixed pattern grid size
- Stochastic generative model
- Seed pattern
 - Defines genre / style
 - Baseline for sorting of patterns

Sampling of Restricted Boltzmann machine (RBM)


Train on EDM drum loop library (NI Maschine)

VARIATION METHOD

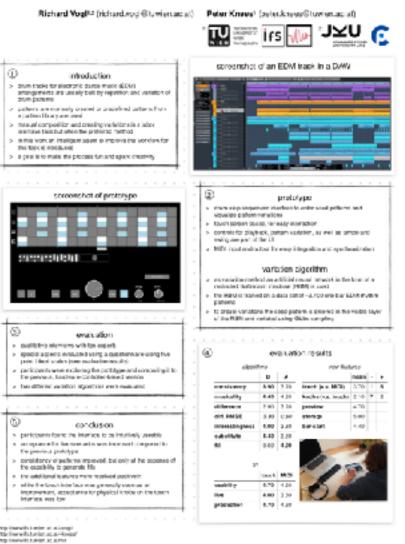

- Train RBM using drum loop database
- To create variations:
 - Enter seed pattern
 - Perform Gibbs sampling steps
 - Select and sort generated patterns
 - Provide patterns as variations

DRUM PATTERN VARIATION - UI PROTOTYPES

EVALUATION

An Intelligent Drum Machine for Electronic Dance Music Production and Performance

Qualitative user studies for both UI prototypes

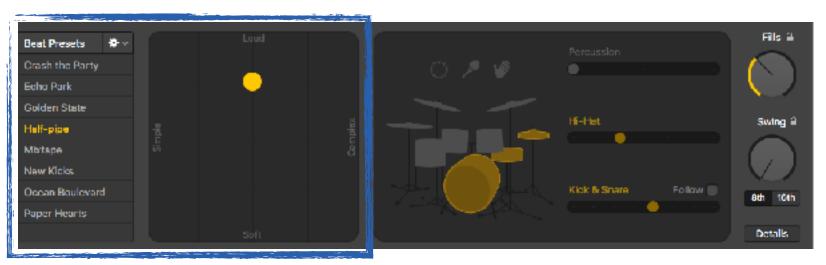

Different pattern variation implementations

Richard Vogl and Peter Knees, "An Intelligent Drum Machine for Electronic Dance Music Production and Performance," in *Proc. 17th Intl. Conf. for New Interfaces for Musical Expression (NIME)*, Copenhagen , DK, May 2017.

Quantitative survey for different pattern variation methods

- Database lookup based
- Genetic algorithm
- RBM based variation

R. Vogl, M. Leimeister, C. Ó Nuanáin, S. Jordà, M. Hlatky, and P. Knees, "An Intelligent Interface for Drum Pattern Variation and Comparative Evaluation of Algorithms," Journal of the Audio Engineering Society, Vol. 64, No. 7, July 2016.



IN PROGRESS: DRUM PATTERN GENERATION

Input parameters

- Music style
- Intensity/loudness
- Complexity
- More Instruments
- Higher time resolution
- Collect training data using drum transcription
- Generative adversarial networks (GANs)

Apple Logic Pro X: Drummer

VISION: AUTOMATIC DRUMMER?

Combine everything to build an **fully automatic drummer**?

- Better drum transcription for large volume of training examples
- Integrate more powerful models for pattern generation
- Apply other MIR techniques to **identify genre** and **follow the beat**

