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WHY DRUM TRANSCRIPTION?

Wide range of application
‣ Generate sheet music  

‣ Music production  
sampling / remixing / resynthesis

‣ Higher level MIR tasks  
use drum patterns for other tasks 
genre classification 
song segmentation

!6



FOCUSED INSTRUMENTS

!7

BD

SDHH



ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)

FOCUSED INSTRUMENTS

!7

BD

SDHH



ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)
‣ Make up majority of notes in datasets

FOCUSED INSTRUMENTS

!7

BD

SDHH



ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)
‣ Make up majority of notes in datasets
‣ Beat defining / most important

FOCUSED INSTRUMENTS

!7

BD

SDHH



ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)
‣ Make up majority of notes in datasets
‣ Beat defining / most important
‣ Well separated spectral energy distribution

FOCUSED INSTRUMENTS

!7

BD

SDHH

bass drum snare drum hi-hat



ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)
‣ Make up majority of notes in datasets
‣ Beat defining / most important
‣ Well separated spectral energy distribution

FOCUSED INSTRUMENTS

!7

BD

SDHH

bass drum snare drum hi-hat



ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)
‣ Make up majority of notes in datasets
‣ Beat defining / most important
‣ Well separated spectral energy distribution

FOCUSED INSTRUMENTS

!7

BD

SDHH

bass drum snare drum hi-hat



ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)
‣ Make up majority of notes in datasets
‣ Beat defining / most important
‣ Well separated spectral energy distribution

FOCUSED INSTRUMENTS

!7

BD

SDHH

bass drum snare drum hi-hat



STATE OF THE ART

!8

activation functionsspectrogram

t [ms] t [ms]

bass

snare
hi-hat



End-to-end / activation-function-based
Neural Networks and NMF-based approaches

STATE OF THE ART

!8

activation functionsspectrogram

t [ms] t [ms]

bass

snare
hi-hat



End-to-end / activation-function-based
Neural Networks and NMF-based approaches

Overview Article 
Wu, C.-W., Dittmar, C., Southall, C.,Vogl, R., Widmer, G., Hockman, J., Müller, M., Lerch, A.:  
“An Overview of Automatic Drum Transcription,” IEEE TASLP, vol. 26, no. 9, Sept. 2018.
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RNN train data sample

output: 3 sigmoid 

30 BD GRU

30 BD GRU

30 BD GRU

bidirectional RNN architecture with GRUs:
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NETWORK MODELS — CNN

Operate on small windows of spectrogram  
(current frame + spectral context)
Acoustic modeling of drum sounds
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output: 3 sigmoid 

2 x conv: 32 x 3x3 (batch norm)

max pool: 3x3

2 x conv: 64 x 3x3 (batch norm)

max pool: 3x3

2 x dense: 256 ReLU

VGG - style architecture:
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Low-level CNN for acoustic modeling 
High-level RNN for music language model

CRNN train data sample

NETWORK MODELS — CRNN
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2 x conv: 32 x 3x3 (batch norm)

max pool: 3x3

2 x conv: 64 x 3x3 (batch norm)

max pool: 3x3

3 x RNN: 50 BD GRU 

stacked CNN + RNN architecture:

output: 3 sigmoid 
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Instruments from the same class often sound quite different  
Similar sound for different instruments

When humans transcribe drums
‣ Function in a track equally important (snare drum v.s. backbeat)
‣ Inaudible onsets will be filled in if expected

Music Language Model
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‣ Solo drum tracks, recorded, synthesized, and sampled
‣ 95 tracks, total: 24m, onsets: 8004

ENST-Drums [Gillet and Richard 2006]

‣ Recordings, three drummers on different drum kits, optional accompaniment
‣ 64 tracks, total: 1h, onsets: 22391

DATASETS
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♫

♫ ♫

SMT (simple!)

ENST solo 
(harder!)

ENST acc. 

(diffi
cult!)
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Frames Context Conv. Layers Rec. Layers Dense Layers

RNN (S) 100 — — 2x50 GRU —
RNN (L) 400 — — 3x30 GRU —

CNN (S) — 9 2 x 32 3x3 filt. 
3x3 max pooling  

2 x 64 3x3 filt. 
3x3 max pooling 
all w/ batch norm.

— 2x256
CNN (L) — 25 — 2x256

CRNN (S) 100 9 2x50 GRU —
CRNN (L) 400 13 3x60 GRU —

tsRNN   baseline   [Vogl et al. ICASSP’17] 

Early stopping 
Batch normalization 
L2 norm

Dropout 
ADAM optimizer

A
rc

hi
te

ct
ur

e
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LEVERAGE BEAT INFORMATION

Beats are highly correlated with drum patterns 
(drum onset locations / repetitive patterns)
Assume that prior knowledge of beats is helpful for drum transcription 
Use multi-task learning for beats and drums
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Training one model to solve multiple related tasks
‣ Improve performance for each subtask ➡ context!

Individual activation functions are already learned using multi-task learning
‣ One network for all instruments
‣ Instrument onsets are not independent
‣ MIREX results show that it works better
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MULTI-TASK EXPERIMENTS

Three experiments:
‣ Training on drum targets (DT)
‣ Training on drum targets with annotated beats as additional input features (BF)
‣ Training on drum and beat targets as multi-task problem (MT)

Expected increase in performance for BF compared to DT
Desirable increase in performance for MT compared to DT

!24

t [s]

f [
H

z]

t [s]

input output



RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/] 
‣ Free music from the 2013 Red Bull Music Academy, different styles 
‣ 27 tracks, total: 1h 43m, onsets: 24365 

‣ drum, beat, and downbeat annotations

NEW DATASETS

!25

NEW!

♫ ♫

http://ifs.tuwien.ac.at/~vogl/datasets/


RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/] 
‣ Free music from the 2013 Red Bull Music Academy, different styles 
‣ 27 tracks, total: 1h 43m, onsets: 24365 

‣ drum, beat, and downbeat annotations

RBMA  
(super difficult!)

NEW DATASETS

!25

NEW!

♫ ♫

http://ifs.tuwien.ac.at/~vogl/datasets/


RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/] 
‣ Free music from the 2013 Red Bull Music Academy, different styles 
‣ 27 tracks, total: 1h 43m, onsets: 24365 

‣ drum, beat, and downbeat annotations

RBMA  
(super difficult!)

NEW DATASETS

!25

NEW!

♫ ♫

http://ifs.tuwien.ac.at/~vogl/datasets/


RESULTS

DT BF MT

RNN (S) 59.8 63.6 64.6

RNN (L) 61.8 64.5 64.3

CNN (S) 66.2 66.7 63.3

CNN (L) 66.8 65.2 64.8

CRNN (S) 65.2 66.1 66.9

CRNN (L) 67.3 68.4 67.2

% F-measure for drum onsets, tolerance: ±20ms, 3-fold cross-validation

DT … drum transcription  
BF … DT plus beats as input features  
MT … DT and beat detection multi-tasking

Experiment

M
od

el



RESULTS

DT BF MT

RNN (S) 59.8 63.6 64.6

RNN (L) 61.8 64.5 64.3

CNN (S) 66.2 66.7 63.3

CNN (L) 66.8 65.2 64.8

CRNN (S) 65.2 66.1 66.9

CRNN (L) 67.3 68.4 67.2

% F-measure for drum onsets, tolerance: ±20ms, 3-fold cross-validation

DT … drum transcription  
BF … DT plus beats as input features  
MT … DT and beat detection multi-tasking

Experiment

M
od

el

RBMA  (super difficult!)



RESULTS: RNNs

!27

F-
m

ea
su

re
 [%

]

50

55

60

65

70

RNN (small) RNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking



RESULTS: RNNs

!27

F-
m

ea
su

re
 [%

]

50

55

60

65

70

RNN (small) RNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking

Impact of beats for RNNs:



RESULTS: RNNs

!27

F-
m

ea
su

re
 [%

]

50

55

60

65

70

RNN (small) RNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking

Impact of beats for RNNs:

BF improves for both models ✔



RESULTS: RNNs

!27

F-
m

ea
su

re
 [%

]

50

55

60

65

70

RNN (small) RNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking

Impact of beats for RNNs:

BF improves for both models ✔

MT improves for both models ✔



RESULTS: CNNs

!28

F-
m

ea
su

re
 [%

]

50

55

60

65

70

CNN (small) CNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking



RESULTS: CNNs

!28

F-
m

ea
su

re
 [%

]

50

55

60

65

70

CNN (small) CNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking

Impact of beats for CNNs:



RESULTS: CNNs

!28

F-
m

ea
su

re
 [%

]

50

55

60

65

70

CNN (small) CNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking

Impact of beats for CNNs:
BF inconsistent



RESULTS: CNNs

!28

F-
m

ea
su

re
 [%

]

50

55

60

65

70

CNN (small) CNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking

Impact of beats for CNNs:
BF inconsistent
MT declines for both models



RESULTS: CNNs

!28

F-
m

ea
su

re
 [%

]

50

55

60

65

70

CNN (small) CNN (large)

DT … drum transcription
BF … DT plus beats as input features
MT … DT and beat detection multi-tasking

Impact of beats for CNNs:
BF inconsistent
MT declines for both models
Expected: CNNs have too 
little context for beats
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BF improves for both models ✔

MT improves for small models ✔

MT equal for large model ?
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RESULTS FOR RECURRENT ARCHITECTURES
No improvement because of  

beat tracking results?
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