DRUM TRANSCRIPTION VIA JOINT BEAT AND DRUM MODELING USING CONVOLUTIONAL RNNs

Richard Vogl

richard.vogl@tuwien.ac.at ifs.tuwien.ac.at/~vogl

21st Vienna Deep Learning Meetup

15th of October 2018

DRUM TRANSCRIPTION VIA JOINT BEAT AND DRUM MODELING USING CONVOLUTIONAL RNNs

Richard Vogl^{1,2}, Matthias Dorfer², Gerhard Widmer², Peter Knees¹

richard.vogl@tuwien.ac.at, matthias.dorfer@jku.at, gerhard.widmer@jku.at, peter.knees@tuwien.ac.at

PART 1 AUTOMATIC DRUM TRANSCRIPTION

Task Definition, Problem Modeling, Architectures

PART 2 MULTI-TASK LEARNING

Metadata for Transcripts

PART 1 AUTOMATIC DRUM TRANSCRIPTION

Task Definition, Problem Modeling, Architectures

PART 2 MULTI-TASK LEARNING

Metadata for Transcripts

audio

- **Input:** western popular music containing drums
- **Output:** symbolic representation of notes played by drum instruments

- **Input:** western popular music containing drums
- **Output:** symbolic representation of notes played by drum instruments

- **Input:** western popular music containing drums
- **Output:** symbolic representation of notes played by drum instruments

■ Wide range of application

- Wide range of application
 - Generate **sheet music**

- Wide range of application
 - Generate **sheet music**
 - Music production sampling / remixing / resynthesis

- Wide range of application
 - Generate **sheet music**
 - Music production sampling / remixing / resynthesis
 - Higher level MIR tasks use drum patterns for other tasks genre classification song segmentation

ADT methods focus bass drum (BD) snare (SD) and hi-hat (HH)

• Make up **majority of notes** in datasets

- Make up **majority of notes** in datasets
- Beat defining / most important

- Make up **majority of notes** in datasets
- Beat defining / most important
- Well separated spectral energy distribution

- Make up **majority of notes** in datasets
- Beat defining / most important
- Well separated spectral energy distribution

- Make up **majority of notes** in datasets
- Beat defining / most important
- Well separated spectral energy distribution

- Make up **majority of notes** in datasets
- Beat defining / most important
- Well separated spectral energy distribution

STATE OF THE ART

STATE OF THE ART

- End-to-end / activation-function-based
- **Neural Networks** and **NMF-based** approaches

STATE OF THE ART

- End-to-end / activation-function-based
- Neural Networks and NMF-based approaches

Overview Article

Wu, C.-W., Dittmar, C., Southall, C., Vogl, R., Widmer, G., Hockman, J., Müller, M., Lerch, A.: "An Overview of Automatic Drum Transcription," IEEE TASLP, vol. 26, no. 9, Sept. 2018.

Processing of spectrogram frames as **sequential data**

Processing of spectrogram frames as sequential data
Frame-wise detection of instrument onsets

RNN train data sample

Processing of spectrogram frames as sequential data
Frame-wise detection of instrument onsets

RNN train data sample

bidirectional RNN architecture with GRUs:

Operate on small windows of spectrogram (current frame + spectral context)

- Operate on small windows of spectrogram (current frame + spectral context)
- Acoustic modeling of drum sounds

- Operate on small windows of spectrogram (current frame + spectral context)
- Acoustic modeling of drum sounds

J⊻U

Low-level CNN for acoustic modeling

- Low-level CNN for acoustic modeling
- High-level RNN for *music language model*

Low-level CNN for acoustic modeling
High-level RNN for *music language model*

Instruments from the same class often sound quite different Similar sound for different instruments

snare drums: crash v.s. splash:

Instruments from the same class often sound quite different Similar sound for different instruments

snare drums: crash v.s. splash:

Instruments from the same class often sound quite different Similar sound for different instruments

snare drums: crash v.s. splash:

Instruments from the same class often sound quite different Similar sound for different instruments

When **humans** transcribe drums

Function in a track equally important (snare drum v.s. backbeat)

Instruments from the same class often sound quite different Similar sound for different instruments

snare drums:

crash v.s. splash:

When humans transcribe drums

- **Function** in a track equally important (snare drum v.s. backbeat)
- Inaudible onsets will be filled in if expected

Instruments from the same class often sound quite different Similar sound for different instruments

snare drums:

crash v.s. splash:

- Function in a track equally important (snare drum v.s. backbeat)
- Inaudible onsets will be filled in if expected

Music Language Model

IDMT-SMT-Drums [Dittmar and Gärtner 2014]

- **Solo** drum tracks, recorded, synthesized, and sampled
- > 95 tracks, total: **24m**, onsets: 8004

SMT (simple!)

- **IDMT-SMT-Drums** [Dittmar and Gärtner 2014]
 - **Solo** drum tracks, recorded, synthesized, and sampled
 - > 95 tracks, total: **24m**, onsets: 8004

SMT (simple!)

- **IDMT-SMT-Drums** [Dittmar and Gärtner 2014]
 - **Solo** drum tracks, recorded, synthesized, and sampled
 - > 95 tracks, total: **24m**, onsets: 8004

ENST-Drums [Gillet and Richard 2006]

- Recordings, three drummers on different drum kits, **optional accompaniment**
- 64 tracks, total: 1h, onsets: 22391

SMT (simple!)

- **IDMT-SMT-Drums** [Dittmar and Gärtner 2014]
 - **Solo** drum tracks, recorded, synthesized, and sampled
 - > 95 tracks, total: 24m, onsets: 8004

ENST-Drums [Gillet and Richard 2006]

- Recordings, three drummers on different drum kits, **optional accompaniment**
- 64 tracks, total: **1h**, onsets: 22391

SMT (simple!)

- **IDMT-SMT-Drums** [Dittmar and Gärtner 2014]
 - **Solo** drum tracks, recorded, synthesized, and sampled
 - > 95 tracks, total: 24m, onsets: 8004

ENST-Drums [Gillet and Richard 2006]

- Recordings, three drummers on different drum kits, optional accompaniment
- 64 tracks, total: **1h**, onsets: 22391

NETWORK MODELS

		Frames	Context	Conv. Layers	Rec. Layers	Dense Layers
Architecture	RNN (S)	100	—	—	2x50 GRU	—
	RNN (L)	400	—	—	3x30 GRU	—
	CNN (S)		9	2 x 32 3x3 filt. 3x3 max pooling 2 x 64 3x3 filt. 3x3 max pooling all w/ batch norm.	—	2x256
	CNN (L)		25			2x256
	CRNN (S)	100	9		2x50 GRU	—
	CRNN (L)	400	13		3x60 GRU	—
	tsRNN	baseline	[Vogl et al. IC	CASSP'17]		

- Early stopping
- Batch normalization
- L2 norm

Dropout

ADAM optimizer

"Punk" MEDLEY DB

"Punk" MEDLEY DB

"Hendrix" MEDLEY DB

"Hendrix" MEDLEY DB

Alexa, play some music...

Alexa, play some music...

PART 1 AUTOMATIC DRUM TRANSCRIPTION

Task Definition, Problem Modeling, Architectures

PART 2 MULTI-TASK LEARNING

Metadata for Transcripts

Do not produce additional information for transcripts drum onset detection vs drum transcription

Do not produce additional information for transcripts drum onset detection vs drum transcription

bars lines

- Do not produce additional information for transcripts drum onset detection vs drum transcription
 - bars lines
 - tempo

- Do not produce additional information for transcripts drum onset detection vs drum transcription
 - bars lines
 - tempo
 - meter

- Do not produce additional information for transcripts drum onset detection vs drum transcription
 - bars lines
 - tempo
 - meter
 - dynamics / accents

- Do not produce additional information for transcripts drum onset detection vs drum transcription
 - bars lines
 - tempo
 - meter
 - dynamics / accents
 - stroke / playing technique

- Do not produce additional information for transcripts drum onset detection vs drum transcription
 - bars lines
 - tempo
 - meter
 - dynamics / accents
 - stroke / playing technique
- Only three instrument classes

Richard Vogl, Gerhard Widmer, and Peter Knees, "**Towards multi-instrument drum transcription**," in *Proc. 21th Intl. Conf. on Digital Audio Effects (DAFx18), Aveiro, Portugal, Sep. 2018.*

Do not produce additional information for transcripts drum onset detection vs drum transcription

- bars lines
- ▶ tempo
- meter
- dynamics / accents
- stroke / playing technique
- Only three instrument classes

Richard Vogl, Gerhard Widmer, and Peter Knees, "**Towards multi-instrument drum transcription**," in *Proc. 21th Intl. Conf. on Digital Audio Effects (DAFx18), Aveiro, Portugal, Sep. 2018.*

Use **beat and downbeat tracking** to get:

Use **beat and downbeat tracking** to get:

Use **beat and downbeat tracking** to get:

bars lines

Use **beat and downbeat tracking** to get:

- bars lines
- tempo

Use **beat and downbeat tracking** to get:

- bars lines
- tempo
- meter

Beats are highly correlated with drum patterns (drum onset locations / repetitive patterns)

- Beats are highly correlated with drum patterns (drum onset locations / repetitive patterns)
- Assume that **prior knowledge** of beats is helpful for drum transcription

- Beats are highly correlated with drum patterns (drum onset locations / repetitive patterns)
- Assume that **prior knowledge** of beats is helpful for drum transcription
- Use multi-task learning for beats and drums

Training one model to solve **multiple related tasks**

Training one model to solve **multiple related tasks**

▶ **Improve performance** for each subtask ➡ context!

Training one model to solve multiple related tasks

▶ **Improve performance** for each subtask ➡ context!

Individual activation functions are already learned using multi-task learning

Training one model to solve multiple related tasks

▶ Improve performance for each subtask ➡ context!

Individual activation functions are already learned using multi-task learning

One network for all **instruments**

Training one model to solve multiple related tasks

▶ Improve performance for each subtask ➡ context!

Individual activation functions are already learned using multi-task learning

- One network for all **instruments**
- Instrument onsets are not independent

Training one model to solve multiple related tasks

▶ Improve performance for each subtask ➡ context!

Individual activation functions are already learned using multi-task learning

- One network for all **instruments**
- Instrument onsets are not independent
- MIREX results show that it works better

input

output

input

output

Three experiments:

input

output

- Three experiments:
 - Training on drum targets (DT)

- Three experiments:
 - Training on drum targets (DT)
 - Training on drum targets with annotated beats as additional input features (BF)

- Three experiments:
 - Training on drum targets (DT)
 - Training on drum targets with annotated beats as additional input features (BF)
 - Training on drum and beat targets as multi-task problem (MT)

- Three experiments:
 - Training on drum targets (DT)
 - Training on drum targets with annotated beats as additional input features (BF)
 - Training on drum and beat targets as multi-task problem (MT)

Expected increase in performance for BF compared to DT

- Three experiments:
 - Training on drum targets (DT)
 - Training on drum targets with annotated beats as additional input features (BF)
 - Training on drum and beat targets as multi-task problem (MT)

Expected increase in performance for BF compared to DT

Desirable increase in performance for MT compared to DT

NEW DATASETS

RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/]

- Free music from the 2013 Red Bull Music Academy, different styles
- > 27 tracks, total: **1h 43m**, onsets: 24365
- drum, beat, and downbeat annotations

NEW DATASETS

RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/]

- Free music from the 2013 Red Bull Music Academy, different styles
- > 27 tracks, total: **1h 43m**, onsets: 24365
- drum, beat, and downbeat annotations

NEW DATASETS

RBMA13-Drums [http://ifs.tuwien.ac.at/~vogl/datasets/]

- Free music from the 2013 Red Bull Music Academy, different styles
- > 27 tracks, total: **1h 43m**, onsets: 24365
- drum, beat, and downbeat annotations

RESULTS

		DT	BF	МТ
NOGE	RNN (S)	59.8	63.6	64.6
	RNN (L)	61.8	64.5	64.3
	CNN (S)	66.2	66.7	63.3
	CNN (L)	66.8	65.2	64.8
	CRNN (S)	65.2	66.1	66.9
	CRNN (L)	67.3	68.4	67.2

Experiment

% F-measure for drum onsets, tolerance: ±20ms, 3-fold cross-validation

DT ... drum transcription

BF ... DT plus beats as input features

MT ... DT and beat detection multi-tasking

RESULTS

		Experiment			
		DT	BF	МТ	
Nodel	RNN (S)	59.8	63.6	64.6	
	RNN (L)	61.8	64.5	64.3	
	CNN (S)	66.2	66.7	63.3	
	CNN (L)	66.8	65.2	64.8	
	CRNN (S)	65.2	66.1	66.9	
	CRNN (L)	67.3	68.4	67.2	

% F-measure for drum onsets, tolerance: ±20ms, 3-fold cross-validation

DT ... drum transcription

BF ... DT plus beats as input features

MT ... DT and beat detection multi-tasking

Impact of **beats for RNN**s:

Impact of **beats for RNN**s:

BF improves for both models

Impact of **beats for RNN**s:

BF improves for both models

MT improves for both models

Impact of **beats for CNN**s:

Impact of **beats for CNN**s:

BF inconsistent

Impact of **beats for CNNs**:

BF inconsistent

MT declines for both models

Impact of **beats for CNNs**:

- BF inconsistent
- **MT** declines for both models
- Expected: CNNs have too little context for beats

Impact of **beats for CRNN**s:

Impact of **beats for CRNN**s:

BF improves for both models

Impact of beats for CRNNs:

- BF improves for both models
- MT improves for small models

Impact of **beats for CRNN**s:

- BF improves for both models
- MT improves for small models
- MT equal for large model ?

three instruments + beats

three instruments + beats

eight instruments + beats

eight instruments + beats

CONCLUSIONS

CONCLUSIONS

Deep learning for automatic drum transcription

Deep learning for automatic drum transcription

CRNNs can outperform RNNs and CNNs, especially on complex data

▶ Modeling of acoustic and rhythmic properties → better generalization!

Deep learning for automatic drum transcription

CRNNs can outperform RNNs and CNNs, especially on complex data

▶ Modeling of acoustic and rhythmic properties → better generalization!

Leverage **multi-task learning** effects to increase performance

- All instruments under observation within **one model**
- Beats and downbeats for additional **meta data** for transcripts

Deep learning for automatic drum transcription

CRNNs can outperform RNNs and CNNs, especially on complex data

Modeling of acoustic and rhythmic properties ➡ better generalization!

Leverage multi-task learning effects to increase performance

- All instruments under observation within **one model**
- Beats and downbeats for additional **meta data** for transcripts

CRNN best overall results @ MIREX'17 and MIREX'18 drum transcription MIREX system: http://ifs.tuwien.ac.at/~vogl/models/mirex-17.zip

http://ifs.tuwien.ac.at/~vogl/models/mirex-18.tar.gz

Deep learning for automatic drum transcription

CRNNs can outperform RNNs and CNNs, especially on complex data

Modeling of acoustic and rhythmic properties ➡ better generalization!

Leverage multi-task learning effects to increase performance

- All instruments under observation within **one model**
- Beats and downbeats for additional **meta data** for transcripts

CRNN best overall results @ MIREX'17 and MIREX'18 drum transcription MIREX system: http://ifs.tuwien.ac.at/~vogl/models/mirex-17.zip

http://ifs.tuwien.ac.at/~vogl/models/mirex-18.tar.gz

Deep learning for automatic drum transcription

CRNNs can outperform RNNs and CNNs, especially on complex data

Modeling of acoustic and rhythmic properties ➡ better generalization!

Leverage multi-task learning effects to increase performance

- All instruments under observation within **one model**
- Beats and downbeats for additional **meta data** for transcripts

CRNN best overall results @ MIREX'17 and MIREX'18 drum transcription MIREX system: http://ifs.tuwien.ac.at/~vogl/models/mirex-17.zip

http://ifs.tuwien.ac.at/~vogl/models/mirex-18.tar.gz

