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A B S T R A C T

This thesis is situated in the field of music information retrieval and
addresses the tasks of automatic drum transcription and automatic
drum pattern generation. Automatic drum transcription deals with the
problem of extracting a symbolic representation of the notes played by
drum instruments from an audio signal. Automatic drum pattern gen-
eration aims at generating novel, musically meaningful and interesting
rhythmic patterns involving several percussion instruments.

The first part of this thesis focuses on automatic drum transcription.
Music transcription from audio is a hard task, which can be challeng-
ing even for trained human experts. Challenges in drum transcription
are the large variety of sounds for individual instrument types as
well as groups of similar sounding instruments like different types
of cymbals or tom-toms of varying sizes. The contributions covered
by the drum transcription part introduce end-to-end deep learning
methods for this task. With these, a new state of the art is established
on a variety of public drum transcription datasets, as well as in the
MIREX drum transcription competition. Furthermore, two additional
objectives are met: (i) adding meta information like bar boundaries,
meter, and local tempo to the transcripts, as well as (ii) increasing the
number of instruments under observation. While traditionally, only
bass drum, snare drum, and hi-hat have been focused on, in this thesis
up to 18 different instrument classes are considered.

The second part of this thesis deals with automatic drum pattern
generation. The goal is to generate patterns which are musically mean-
ingful and indistinguishable from human-created ones, and at the
same time are not trivial but interesting. Evaluating generative meth-
ods is non-trivial, since quality in this context is subjective. This issue
is addressed by conducting qualitative and quantitative user studies
for evaluation purposes. Two different models are proposed for drum
pattern generation: restricted Boltzmann machines (RBMs) and gener-
ative adversarial networks (GANs). While RBMs are comparably easy
to train, GANs are more problematic in this respect, requiring more
training data; on the other hand, GANs can better handle a greater
variety of instruments and higher temporal resolutions.

The need for data is met through two different approaches: (i) by
creating synthetic large scale drum pattern datasets, and (ii) by leverag-
ing the drum transcription methods from the first part of the thesis to
extract drum patterns from real audio. Besides these methodological
contributions, different user interfaces for drum pattern generation
are implemented and evaluated in user studies.

In addition, this thesis offers publicly available datasets and trained
models for drum transcription as resources for the research commu-
nity.
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Z U S A M M E N FA S S U N G

Die vorliegende Dissertation ist im Bereich Music Information Retrie-
val anzusiedeln und befasst sich mit automatischer Schlagzeugtran-
skription und automatischer Generierung von Drum-Patterns. Unter
Schlagzeugtranskription versteht man den Prozess eine symbolische
Darstellung der von Schlaginstrumenten gespielten Noten aus einem
Audiosignal zu extrahieren. Bei der automatischen Generierung von
Drum-Patterns gilt es Methoden zur Erzeugung von musikalisch sinn-
vollen, neuartigen und interessanten Rhythmen für Schlaginstrumente
zu finden.

Der erste Teil dieser Arbeit befasst sich mit automatischer Schlag-
zeugtranskription. Transkription von Musik ist eine schwierige Aufga-
be, die selbst für Fachkundige anspruchsvoll sein kann. Herausforde-
rungen bei der Schlagzeugtranskription sind einerseits die klangliche
Vielfalt einzelner Instrumenttypen, andererseits die Differenzierung
innerhalb Gruppen ähnlich klingender Instrumente wie z.B. verschie-
dene Arten von Becken oder Trommeln unterschiedlicher Größe. In
dieser Arbeit werden end-to-end Deep-Learning-Methoden für Schlag-
zeugtranskription verwendet. Mithilfe dieser werden neue Bestresul-
tate auf öffentlichen Datensätzen sowie beim MIREX Schlagzeugtran-
skriptions-Task erreicht. Darüber hinaus werden zwei weitere Ziele
erreicht: (i) Extrahieren zusätzlicher Metainformationen wie Taktgren-
zen, Taktart und lokales Tempo, sowie (ii) Erhöhung der Anzahl der
Instrumente bei der Transkription. Während in anderen Arbeiten aus
diesem Themenbereich nur Bassdrum, Snare und Hi-Hat berücksich-
tigt werden, kommen hier bis zu 18 verschiedene Instrumentklassen
zum Einsatz.

Der zweite Teil dieser Arbeit beschäftigt sich mit der automatischen
Generierung von Drum-Patterns. Dabei sollen interessante musikali-
sche Drum-Patterns erzeugt werden, die wie von Menschen kreierte
klingen. Die Evaluierung solch generativer Methoden ist im allgemei-
nen diffizil, da Qualität in diesem Kontext subjektiv ist. Dieses Problem
wird mittels qualitativer Interviews und quantitativer Umfragen gelöst.
Zur Generierung von Drum-Patterns werden zwei verschiedene Mo-
delle verwendet: Restricted Boltzmann Machines (RBMs) und Generativ
Adversarial Networks (GANs). Während RBMs vergleichsweise einfach
zu trainieren sind, gestaltet sich dies bei GANs problematischer. GANs
benötigen außerdem mehr Trainingsdaten, können jedoch dafür besser
mit einer größeren Vielfalt an Instrumenten und höheren zeitlichen
Auflösungen umgehen.

Der Bedarf großer Mengen an Trainigsdaten wird auf zwei Arten
gedeckt: (i) durch das Erstellen eines großen synthetischen Drum-
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Pattern-Datensatzes und (ii) mittels der im ersten Teil vorgestellten
Transkriptionsmethoden, mit denen Drum-Patterns aus Musik extra-
hieren werden. Weiters werden verschiedene Softwareprototypen für
die Erzeugung von Drumpatterns implementiert und evaluiert.

Als zusätzliches Ergebnis werden erstellte Datensätze und vortrai-
nierte Transkriptionsmodelle der Forschungsgemeinschaft frei zur
Verfügung gestellt.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

The field of music information retrieval (MIR), also music information
research, comprises research in the intersection of many different disci-
plines. Important contributing areas are signal processing, musicology,
psychoacoustics, data science, human–computer interaction (HCI), and
lately increasingly machine learning and artificial intelligence. MIR

deals, amongst other things, with the extraction of meaningful infor-
mation about music. In this context, music can be represented as audio
signals (monophonic, multi track, etc.), images (sheet music, album
artwork, tablature, lyrics, etc.), or even other symbolic representations
(e.g.: MIDI files, text, websites, etc.). To extract meaningful information
from these sources, different data manipulation and analysis methods
from the fields listed above are applied. Research in this field has en-
abled new technologies for commercial products as well as musicology
research. The range of applications reaches from entertainment and
experimental apps (Shazam1, Smule2, etc.), via productivity tools for
music production (onset detection, beat tracking, transcription, etc.),
to large scale analytic tools for musicology and archive applications
(optical music recognition (OMR), transcription, classification, etc.).

One of the central topics is automatic music transcription (AMT),
which is an active area of research in the field of MIR. The goal in AMT

is to extract a complete symbolic representation of a piece of music
from a digital audio recording. The extracted symbolic representation
may be presented in different formats, e.g.: as sheet music or musical
instrument digital interface (MIDI) files. The process of transcription
can be seen as the inversion of a musician interpreting and performing
from sheet music. Trained humans are generally capable of solving
this task satisfactory well, depending on complexity of the music and
quality of the audio source. However, even for experienced profes-
sionals this process takes a lot of time. A reliable AMT solution would
facilitate finding solutions for other MIR tasks. This is due to the fact
that working with symbolic data is often easier since it circumvents
the error prone, and often ill-defined step of extracting information
from the audio signal. AMT solutions would also be useful as end-user
products for musicians, music producers, and librarians.

The first part of this work deals with a subtask of AMT, namely
automatic drum transcription (ADT). ADT focuses on transcribing drum
instruments from an audio recording of a music piece. Although being
a narrower and better defined subtask, ADT is still far from being

1 https://www.shazam.com/

2 https://www.smule.com/
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4 introduction

solved. Nevertheless, in recent years significant progress has been
made within the scientific community. The existence of a variety of
publicly available ADT datasets simplifies evaluation and comparison
of different approaches. This said, currently existing datasets often
have limitations, and especially for data-hungry machine learning
methods, these datasets are often not sufficiently large and diverse.

Another area of research in the field of MIR is automatic music
generation. Although strictly speaking not information retrieval, music
generation has a close relation to MIR via a common basis consisting
of musicology, psychoacoustics, machine learning, and artificial intelli-
gence. In the case of automatic music generation, the aforementioned
interpretation of MIR as music information research is more fitting. In the
past, many attempts and approaches to automatically generate music
have been presented. While the music generated by those approaches
is often interesting and promising, until now, a system that automati-
cally creates convincing and pleasing music has not been found. Since
the problem in its entirety is quite complex, a reasonable approach is
to break it down into easier-to-solve subtasks. Similar as with AMT,
focusing on drums represents a better defined and arguably easier
subtask, since the complex topics of melody and harmony can mostly
be ignored and the main focus can be shifted to rhythmic patterns,
structure, and arrangement. However, especially the question of global
structure and arrangement are similarly challenging for drum tracks
when compared to harmonic instruments.

The second part of this work deals with automatic generation of
drum patterns. In drum pattern generation the goal is to find a method
which is able to create drum patterns or even a whole drum track given
a certain context. This context might be provided implicitly by a piece
of music or explicitly by certain parameters like tempo, musical style,
complexity, et cetera. A special case of this is automatic drum pattern
variation. Here, the necessary context is provided through a short
drum pattern. Given this seed drum pattern, the goal is to generate
similar patterns with different characteristics regarding certain aspects.
For example a variation of a pattern might be more complex or less
intense than the original. In this work both drum pattern variation and
the more general drum pattern generation will be discussed. As part
of the music generation task, the topic of drum pattern generation
is quite artistic in nature, i.e. there is no clear definition of correct
results. Thus, one of the main challenges is to evaluate and objectively
compare different approaches.

The two parts of this work (ADT and automatic drum pattern gen-
eration) are linked by the need for huge amounts of diverse training
data. This requirement for pattern generation can be met by using ADT

methods to generate large amounts of drum patterns using datasets
which contain the required additional annotations needed for pattern
generation (e.g. genre annotations). Furthermore, findings from ADT
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research (e.g. which models work best and why), can lead to a better
understanding of properties of drum patterns, which in turn can be
used to improve generative models.

1.1 outline

The remainder of this work is structured as follows: First, this intro-
duction will continue with mandatory sections covering the scientific
contributions and publications which make up this thesis. After that
(i) an introduction to the ADT task, (ii) an introduction to the drum
pattern generation task, and (iii) a basic introduction of machine learn-
ing methods used throughout this thesis are provided in Chapter 2.
Two distinct parts (Parts ii and iii) dealing with ADT and drum pattern
generation follow. These parts consist of original publications, each
prefaced with a short overview section that provides the context and a
short summary. Parts ii and iii each start with a synopsis that put the
individual publications into context and provide a narrative for the
part. In the last part, published datasets are summarized, a discussion
of the publications of this work from a critical standpoint is provided,
and an overview of future research directions for this field of research
is provided. The work concludes with a discussion of the findings of
this thesis in a broader context.

1.2 contributions

The main scientific contributions of this thesis, which are presented in
the individual chapters and publications, are as follows:

1. ADT state of the art: The first major contribution of this thesis is
the proposed end-to-end ADT architecture utilizing trained neu-
ral networks as the main transcription engine. The approach is
first presented in Chapter 4 and used in the subsequent publica-
tions and chapters. Using this architecture, different methods for
ADT were implemented which set a new state of the art for drum
transcription performance and were able to outperform other
methods in competitive evaluations (MIREX’17 [95], MIREX’18 [99],
Chapter 8).

2. Deep learning for ADT: The work demonstrates successful ap-
plication and provides a detailed evaluation of different neural
network architectures in the context of ADT. This includes re-
current (Chapter 4), convolutional, and convolutional recurrent
neural networks (Chapter 6) architectures, as well as special
training techniques like data augmentation (Chapter 5), multi-
task learning (Chapter 6), and pre-training (Chapter 7) [93, 94,
101].
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3. Expanding the capabilities of ADT systems: Efforts to extend
the capabilities of ADT systems are presented. These consist of
adding meta information to transcripts using multi-task learn-
ing [94] (Chapter 6) as well as extending the range of drum
instruments considered for transcription [101] (Chapter 7).

4. Drum pattern generation methods: In this work, machine learn-
ing techniques to generate drum patterns are introduced [20, 98]
(Chapter 10) and thoroughly evaluated [100] (Chapter 11).

5. Drum pattern generation user interfaces: Chapters 10, 12, and
13 cover the implementation and evaluation of novel user inter-
face (UI) approaches for drum pattern generation tools [20, 98,
100].

6. Datasets and models: This work also provides trained models
for ADT as well as several datasets which are available to the
research community: RBMA drums, a synthetic large-scale drum
transcription dataset, and the GiantSteps dataset (key and tempo
part). Chapter 14 discusses these datasets, while trained models
are provided for the MIREX submissions covered in Chapter 8.
The files are available under the following URL: http://ifs.
tuwien.ac.at/~vogl/ .

1.3 main publications

This list provides an overview of the publications which represent
the main scientific content of this thesis. These publications can be
split into two groups: the first four publications deal with ADT while
the rest cover drum pattern creation. This split into two topics is also
reflected by the two parts of the thesis.

1. Richard Vogl, Matthias Dorfer, and Peter Knees. “Recurrent
neural networks for drum transcription”. In: Proceedings of the
17th International Society for Music Information Retrieval Conference
(ISMIR). New York, NY, USA, 2016 [92].

2. Richard Vogl, Matthias Dorfer, and Peter Knees. “Drum Tran-
scription from Polyphonic Music with Recurrent Neural Net-
works”. In: Proceedings of the 42nd IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). New Orleans,
LA, USA, 2017 [93].

3. Richard Vogl, Matthias Dorfer, Gerhard Widmer, and Peter Knees.
“Drum Transcription via Joint Beat and Drum Modeling using
Convolutional Recurrent Neural Networks”. In: Proceedings of the
18th International Society for Music Information Retrieval Conference
(ISMIR). Suzhou, China, 2017 [94].

http://ifs.tuwien.ac.at/~vogl/
http://ifs.tuwien.ac.at/~vogl/
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4. Richard Vogl, Gerhard Widmer, and Peter Knees. “Towards
Multi-Instrument Drum Transcription”. In: Proceedings of the 21st
International Conference on Digital Audio Effects (DAFx). Aveiro,
Portugal, 2018 [101].

5. Richard Vogl and Peter Knees. “An Intelligent Musical Rhythm
Variation Interface”. In: Companion Publication 21st International
Conference on Intelligent User Interfaces. Sonoma, CA, USA, 2016

[97].

6. Richard Vogl, Matthias Leimeister, Cárthach Ó Nuanáin, Sergi
Jordà, Michael Hlatky, and Peter Knees. “An Intelligent Inter-
face for Drum Pattern Variation and Comparative Evaluation of
Algorithms”. In: Journal of the Audio Engineering Society 64.7/8

(2016) [100].

7. Richard Vogl and Peter Knees. “An Intelligent Drum Machine
for Electronic Dance Music Production and Performance”. In:
Proceedings of the 17th International Conference on New Interfaces for
Musical Expression (NIME). Copenhagen, Denmark, 2017 [98].

8. Hamid Eghbal-Zadeh*, Richard Vogl*, Gerhard Widmer, and
Peter Knees. “A GAN based Drum Pattern Generation UI Proto-
type". In: Late Breaking/Demos, 19th International Society for Music
Information Retrieval Conference (ISMIR). Paris, France, 2018 [20].
*Equal contribution.

1.4 additional publications

The following list contains publications which are relevant in the
context of this thesis. The list comprises works that were published as
contributing author [47, 105], competition submissions [95, 99], and a
submission covering an installation demonstrating generative models
for an art exhibition [96].

• Chih-Wei Wu, Christian Dittmar, Carl Southall, Richard Vogl,
Gerhard Widmer, Jason Hockman, Meinhard Müller, and Alexan-
der Lerch. “A Review of Automatic Drum Transcription”. In:
IEEE Transactions on Audio, Speech and Language Processing 26.9
(2018) [105].

• Peter Knees, Angel Faraldo, Perfecto Herrera, Richard Vogl,
Sebastian Böck, Florian Hörschläger, and Mickael Le Goff. “Two
Data Sets for Tempo Estimation and Key Detection in Electronic
Dance Music Annotated from User Corrections”. In: Proceedings
of the 16th International Society for Music Information Retrieval
Conference (ISMIR). Malaga, Spain, 2015 [47].
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• Richard Vogl, Matthias Dorfer, Gerhard Widmer, and Peter Knees.
“MIREX Submission For Drum Transcription 2017”. In: MIREX
extended abstracts, 18th International Society for Music Information
Retrieval Conference (ISMIR). Suzhou, China, 2017 [95].

• Richard Vogl and Peter Knees. “MIREX Submission For Drum
Transcription 2018”. In: MIREX extended abstracts, 19th Interna-
tional Society for Music Information Retrieval Conference (ISMIR).
Paris, France, 2018 [99].

• Richard Vogl*, Hamid Eghbal-Zadeh*, Gerhard Widmer, and
Peter Knees. “GANs and Poses: An Interactive Generative Music
Installation Controlled by Dance Moves". In: Interactive Machine-
Learning for Music @Exhibition at ISMIR. Paris, France, 2018 [96].
*Equal contribution.



2
B A C K G R O U N D

This chapter provides all the necessary information and terminology
that is required as a basis to understand the technical descriptions in
the individual publications of this thesis. The chapter is structured
into three sections, which cover (i) introduction, related work, and
challenges of ADT (Section 2.1), (ii) the same for automatic drum
pattern generation (Section 2.2.1), and (iii) an introduction to required
deep learning basics (Section 2.3). Sections 2.1 and 2.2.1 also provide
an overview of former state-of-the-art methods and their working
principles.

2.1 automatic drum transcription

As already mentioned, ADT is a subtask of AMT, which in turn is
about generating a symbolic representation of a music piece, given
a digital audio recording. Transcription is quite a hard task, but the
many potential applications for even only partial solutions provide
a great incentive to work on this task. When transcribing a piece of
music, the goal is to extract the following information for each played
note:

• Which instrument plays the note

• When does the played note start

• When does the played note end

• Which pitch does the played note have

• How loud is the note

• Which special playing technique is used

Some of this information is not always applicable for notes of dif-
ferent instruments, e.g. a harpsichord has only a very limited (in an
arrangement usually indistinguishable) range of loudness, cymbals
do not have a precise pitch, and for drums there is usually no clear
end of a note. However, every note is assignable to an instrument, and
has an onset time (note start), even if it might not be unambiguously
detectable using only the audio recording.

A common model that is used to synthesize musical notes is the so
called attack-decay-sustain-release (ADSR) model. While this model
is mainly used to generate sound, it is also helpful to understand the
different phases the signal of a played note goes through. Figure 2.1

9



10 background

Figure 2.1: Model of phases of a note played by a musical instrument. The
hight of the individual blocks indicates the typical relative ampli-
tude and its development over time.

visualizes the phases of the ADSR model. In the following the single
phases of the model are explained for the case of an acoustic piano
playing a note: At the onset a piano key is pressed, this results in
setting the piano action in motion, lifting the damper of the corre-
sponding set of strings and pushing the hammer towards the strings.
During the attack phase, the sound quickly builds up and a percussive
sound generated by the hammer hitting the strings is produced. After
this first percussive burst of energy has faded away (decay phase),
the strings start to oscillate in their respective tuned fundamental and
harmonic frequencies (sustain phase). As soon as the key of the piano
is released, the damper is lowered again, which results in the strings
quickly stopping to oscillate (release phase).

In the context of AMT all of these phases contain valuable infor-
mation. Of special interest are the onset time, attack phase, sustain
phase, and offset time of the note. When performing transcription, the
properties of interest identified earlier can be deduced by focusing on
these parts of each note.

The onset of a played note is arguably the most important part:
humans can, for certain instruments, identify pitch and even type
of instrument when provided with only attack and decay phases of
a played note. For percussive instruments (i.e. instruments that are
struck or plucked in some form - e.g.: piano, xylophone, cymbals,
drums), the attack phase contains broadband noise, which makes it
easier to identify the exact point in time of the onset. In contrast to
that, bowed or blown instruments often have the capability to slowly
build up the volume of a note, making it hard to exactly determine
the exact onset time.

During the sustain phase, pitched instruments produce tones with
a fundamental frequency ( f0) and harmonics (overtones at frequencies
fi = f0 · i, i ∈N>0 ), which result in a perceptible note pitch. Pitched
instruments are usually capable of producing tones with similar tim-
bre but different pitches (e.g. piano, violin, trumpet, xylophone, organ).
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Figure 2.2: Spectrogram of snare drum hits (top) and a piano playing a
middle C f0 = 261.63Hz (bottom). The harmonic frequencies are
clearly visible for the piano note (bright parallel lines), whereas
the drum exhibits a more noisy signal with stray frequencies.

The frequency spectrum of unpitched instruments either consists of
inharmonic frequencies (overtones at frequencies fi = f0 · i, i ∈ R>0,
e.g. membranophones) or irregular broadband noise. Some instru-
ments, like timpani, while technically being unpitched instruments (a
kind of drum i.e. a membranophone), appear to have pitch. This is
often due to special acoustic designs of the instrument; e.g. in case of
the timpani, the drum is designed in a way that amplifies harmonic
frequencies while inharmonic frequencies are dampened, leaving a
pseudo-harmonic pitch to be perceived. Figure 2.2 shows the spectrum
of snare drum hits and the spectrum of a piano note, visualizing the
difference of the distribution of spectral energy between pitched and
unpitched instruments.

Detecting the exact point in time of the offset has proven to be
difficult, but is required to identify note length of the played note.
Usually this is due to the fact that the sound produced by most
instruments tends to fade out slowly after the note is stopped (release
phase) compared to the rapid increase in loudness during the attack
phase. It remains to be discussed and tested how well humans are
able to exactly identify and locate offsets. Arguably, experience and
knowledge about musical genre, played instruments and their playing
techniques, as well as musical notation will have a significant impact
when transcribing music manually and deciding about note lengths.
This leads to the conclusion that for efficiently identifying offsets, all
this should also be taken into consideration.
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Figure 2.3: Visualization of an example drum kit consisting of different drum
instruments. (1) Bass (or kick) drum (2) floor tom (3) snare drum
(4) hanging/rack toms (5) hi-hat (6) crash cymbal (7) ride cymbal
(8) splash cymbal (9) china cymbal. Source: Wikipedia [103].

Special playing techniques are unique for every instrument and
may change different attributes of the produced notes and sound.
For some instruments it is possible to manipulate the timbre of the
played note (e.g. muted trumpet), the duration (e.g. plucked violin,
choked cymbals), the pitch (e.g. vibratos, pitch bends, glissando), or to
add percussive elements or change from pitched to unpitched sound
(e.g. col legno/battuto on violin). Identifying these special techniques
is challenging, primarily because of their diversity, and instrument
dependency.

Even after retrieving all of this note-related information, a full tran-
script still requires additional meta-information which is required to
reconstruct complete sheet music. This additional meta-information
covers overall tempo of the piece, bar division and meter, key an-
notations, as well as local interpretation indicators like tempo and
dynamics changes, et cetera. While some of these could be deduced
from the note information (dynamic changes and tempo), some can
be extracted using other MIR techniques. For example, beat and meter
using beat-tracking [94], or key using key-estimation [48]. When ig-
noring this additional meta-information, the task should be correctly
denoted note detection, but is often sloppily referred to as transcription
in the literature, since it is an easy and more common way to clarify
the goal of the task.

Arguably, transcribing unpitched percussive instruments is a com-
parably easy sub-task of AMT. This is due to the fact that with these
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types of instruments the offset time is virtually at the same time as the
onset, followed by a longer release phase, which is usually not of much
relevance concerning the transcript. Attack and decay contain most
of the required information for note detection and classification in
these cases. Compare Figure 2.2, which displays spectrograms of snare
drum hits and a piano note. Most of the works on ADT additionally
focused only on drum instruments used in western music. These cover
real drums like bass drum and tom toms; cymbals like crash, ride, and
hi-hat; and other instruments like cowbells, shakers, etc.; and are often
collectively referred to as a drum kit. Figure 2.3 visualizes a typical
drum kit consisting of a subset of possible instruments.

While detecting and classifying unpitched percussive instrument on-
sets might be simpler than doing so for harmonic instruments, the ADT

task involves other challenges. Compared to harmonic instruments,
where timbral properties of good sounding instruments are usually
pretty narrowly defined, certain drum instrument types exhibit large
variations of timbre and pseudo-pitch across different drum kits. For
example, the bass drum of a certain drum kit might resonate at a
higher pseudo-pitch than the low tom of another kit. Similarly, differ-
ent cymbal types might be hard to distinguish between certain drum
kits; i.e. for a drum kit cymbals are usually chosen in a way that they
sound distinguishable, but this is not necessarily true across different
drum kits. A special challenge of ADT is thus, that instruments are
often classified by function/task within the arrangement rather than
actual instrument sound: e.g. a drum playing the backbeat in a song
might be notated as snare drum by a human transcriber, even though
it does not sound like a snare drum. Similarly, the lowest pitched
drum accentuating downbeats will usually be notated as the bass
drum, regardless of the actual absolute pseudo-pitch. Examples for
this are quite common, and can be found in public drum transcription
datasets, e.g. when listening to the bass drums of drummer 1 and
drummer 2 in the ENST-Drums1 dataset.

Many different publications proposing methods for ADT have been
published in recent years. However, at the time of writing this work,
the task is not satisfactory solved, even for publicly available datasets.

2.1.1 Overview of ADT Approaches

First efforts to develop methods for ADT can be found as early as in
1985 [68]. With the rise of MIR, many different approaches were pre-
sented in the early 2000s, primarily focusing on drum note detection
from drum solo tracks. An attempt to summarize early methods was
made by FitzGerald and Paulus in 2006 [23], categorizing methods
into either pattern-recognition-based or separation-based approaches.

1 http://www.tsi.telecom-paristech.fr/aao/en/2010/02/19/

enst-drums-an-extensive-audio-visual-database-for-drum-signals-processing/

http://www.tsi.telecom-paristech.fr/aao/en/2010/02/19/enst-drums-an-extensive-audio-visual-database-for-drum-signals-processing/
http://www.tsi.telecom-paristech.fr/aao/en/2010/02/19/enst-drums-an-extensive-audio-visual-database-for-drum-signals-processing/
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Pattern-recognition-based approaches often use machine learning
to classify snippets of spectrograms. Nevertheless, other methods exist
which e.g. use bandpass filters to perform the classification [44, 91].
Gillet [25] uses an onset detection detection method based on sub-band
decomposition to segment the spectrogram into drum notes, and uses
support vector machine (SVM)s and hidden Markov model (HMM)s to
classify the drum notes into eight categories (bass drum, snare drum,
hi-hat, clap, cymbal, rim shot, tom tom, and other percussions). Her-
rera et al. [32] compare and evaluate different classification approaches
on different sound sample datasets. One of the datasets consists of
drum sound samples categorized into 21 classes.

Separation-based approaches use source separation algorithms to
identify the single drum instruments in mixed signals. In 2003 Fitzger-
ald et al. [21, 22] introduce prior subspace analysis (PSA), an independent
component analysis (ICA) variant leveraging prior knowledge about
the audio signal to be separated, and demonstrate the application
for drum transcription on solo drum tracks as well as on polyphonic
music. Smaragdis [76] introduces an extension to non-negative ma-
trix factorization (NMF) [53, 62], the so-called non-negative matrix
factor deconvolution (NMFD) method (sometimes sloppily referred to
as convolutional NMF or CNMF c.f. Section 2.1.2.1).

In 2008, Gillet and Richard [26] added a third category to the ADT

method classification scheme introduced in [23], and also propose new
naming conventions: (i) segment and classify (pattern recognition), (ii)
separate and detect (separation-based), and (iii) match and adapt. This
list was further extended by Paulus in 2009 [64], adding a category for
HMM-based system, noting that these do not fit in any of the existing
categories.

The segment and classify category is equivalent to the previously
introduced pattern recognition category. An representative of this
class from this era is a method introduced by Gillet and Richard [26]:
First, the drum track of a polyphonic audio mixture is enhanced, using
an ICA-based approach. Then, onset detection is performed and a SVM

classifier is used to classify the instrument onsets into three drum
classes (bass drum, snare drum, and hi-hat). Miron et al. [57] use
frequency filters for preprocessing, and subsequently perform onset
detection and feature extraction to classify the drum onsets using a
k-nearest neighbor (KNN) classifier to detect drum notes in solo drum
audio signals, in real-time.

The separate and detect category represents methods formerly grouped
as separation-based methods. In 2010, Spich et al. [81] build on the
approach introduced in [22] and extend it by adding a statistical music
language model. Dittmar and Gärtner [14] introduce a method based
on an NMF extension, building a real-time ADT system for solo drum
tracks, using prior knowledge of the used drum sounds.
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Figure 2.4: Example of an activation function for three drum instruments
alongside the spectrogram of the audio.

The NMF-based method by Dittmar and Gärtner [14] could also
be categorized into the match and adapt category, since the initially
extracted templates are continuously adapted. Another representative
of this category is the method introduced by Yoshii et al. [109] in
2004 and further extended in 2007 [110]. It represents an ADT system
based on template matching and adaptation, similar to sparse coding
approaches, which can also be interpreted as a variant of NMFD.

Formerly, HMM-based approaches have been categorized into the
segment and classify category, nevertheless, their lack of the crucial
onset detection step justifies a separate category. An example of such
an approach was published in 2009 by Paulus and Klapuri [64]. The
method utilizes HMMs to model the sequence of mel-frequency cepstral
coefficient (MFCC)s of drum tracks. Then the state transitions of the
HMMs are used to identify the individual drum note onsets.

The past continuous adaptations of categorization schemes for ADT

approaches made clear that a more flexible and extendible categoriza-
tion system would be needed to avoid further adaptations. Such a
system was introduced by Wu et al. in 2018 [105], proposing a modular
kit of components and nomenclature to classify ADT methods. The
proposed components are: (i) feature representation (FR), (ii) feature
transformation (FT), (iii) event segmentation (ES), (iv) event classi-
fication (EC), (v) activation function (AF), and (vi) language model
(LM). These components represent processing steps in pipelines of
method classes. Different methods can then be assigned into classes,
constructed from these components. In [105] four classes are proposed:
(i) segmentation-based (FR, ES, EC), (ii) classification-based (FR, ES,
FT, EC), (iii) language model-based (FR, FT, LM), and (iv) activation-
based (FR, AS, ES). Both the component list as well as the method
classes are designed to be expandable, thus allowing classification of
yet unknown future approaches.
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2.1.2 State of the Art Methods

Current state-of-the-art ADT systems share certain commonalities: (i)
they aim at detecting activation functions for each instrument under
observation, (ii) using as little processing steps as possible (end-to-
end), and (iii) they use gradient-descent-based numeric optimization
to train the models on a set of diverse training data. Figure 2.4 shows
an example of target activation functions for three drum instruments
alongside the spectrogram, highlighting the onsets for each instrument.
End-to-end systems tend to perform better than methods consisting of
several processing steps, each adding a chance of error and dismissing
information of the signal for the next stage. In other words: In a
multi-staged systems every processing step can be seen as a link in a
chain, and the chain is only as strong as its weakest link. With many
steps in the chain, also the probability of a single step failing naturally
increases.

Activation functions can be interpreted as pseudo probabilities for
each time step indicating if an onset for the corresponding instrument
occurred. This opens diverse possibilities of post processing, which
can be a simple peak-picking algorithm, or more complex systems
like musical language models, considering the global musical context of
drum patterns within the song. However, in the spirit of real end-to-
end learning, especially with (artificial) neural network (NN)-based
systems the goal is that such an musical language model is implicitly
learned during training.

In [105] an attempt at comparing state-of-the-art methods was made,
showing that, depending on the application, both NMF and NN-based
approaches have their strengths. Figure 2.5 compares the activation
functions of an NMF and a NN-based ADT approach, applied on a sim-
ple drum only audio file. While the NMF approach used is rather basic,
this example represents a best case scenario for this approach: The
NMF basis vectors are perfectly fitted using the mean spectrogram of
isolated drum hits of the single instruments used, and are fixed during
optimization. For the NN-based approach, a simple CRNN trained on a
different dataset was used. The CRNN represents a quite powerful NN

model, but performs transcription on unseen data, while the used NMF

model is quite basic (plain NMF with fixed bases), but overfitted on the
data. The diagram can be seen as an example of how well correctly
trained NN approaches are able to generalize, while producing almost
perfect activation functions for simple data.

2.1.2.1 Approaches Using Non-Negative Matrix Factorization

In this section on overview of the working principles of NMF-based
methods will be provided. The goal of NMF algorithms is to factor-
ize a matrix into two smaller matrices using iterative numerical ap-
proximation. The factor matrices are constrained to have no negative



2.1 automatic drum transcription 17

Figure 2.5: Example of activation functions extracted using an NMF and a
CRNN-based ADT approach. The first image (top) represents the
input spectrogram used, the second one displays the target ac-
tivation function (i.e. ground truth), while the third and fourth
plot show extracted activation functions using the NMF and CRNN

transcription system, respectively. The used NMF system is a sim-
ple fixed-bases method as described in Section 2.1.2.1, while the
CRNN system used is the on introduced in Chapter 6 [94].
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Figure 2.6: X, B, and G matrices after performing NMF on a simple drum
loop. While X contains the input spectrogram, B represents the
average spectral energy distribution for each instrument, and G
displays the activation function for each instrument. Note the
relative long tail of onset peaks in the activation function, caused
by the sustain of the instrument.

elements (non-negativity), which makes sense for the application in
signal and audio processing, when dealing with magnitude (or similar)
spectrograms. In the context of ADT, NMF is usually performed on a
spectrogram representation of the audio, and the two factorization
products can be interpreted as spectral templates for each of the in-
struments under observation, and their activation functions. In this
context, the spectrogram, spectral templates, and activation functions
are represented by the matrices X, B, and G, respectively:

X ≈ X̂ = B ·G , (2.1)

where X̂ is the approximation of X when using the current values for
B and G. See Figure 2.6 in which the relation of the matrices and the
arrangement of the data within these matrices is visualized. To adapt B
and G to better fit X, usually an iterative algorithm is used. To this end
a loss function L is defined. Often the generalized Kullback-Leibler
(KL) Divergence [54] is used:

L = DKL(X|X̂) = ∑
(

X� log
(

X
X̂

)
− X + X̂

)
, (2.2)

where � denotes element-wise multiplication, and also the fraction
is executed as an element-wise division of the two matrices. The sum
is performed over the single elements of the resulting matrix. To
adapt B and G, often stochastic gradient descent (SGD) is used. After
calculating the partial derivatives for the loss function L with respect
to B and G, the following update rules can be derived:

B⇐ B�
X
X̂
·Gᵀ

J ·Gᵀ (2.3)

G⇐ G�
Bᵀ · X

X̂
Bᵀ · J , (2.4)

where J is a matrix of ones of the same size as X. For a detailed deriva-
tion of these multiplicative update rules via the partial derivatives
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of the loss, please consult the work of Juan José Burred [11], who
provides an in depth discussion.

In practice, choosing the correct size of B (i.e. its rank), and its ini-
tialization are crucial. Plain NMF works best for drum solo recordings,
thus choosing the rank of B to be the number of distinct drum instru-
ments in the recording (e.g. 3 if transcribing bass drum, snare drum,
and hi-hat). For initialization, the mean spectra for each drum instru-
ment can be used, if available. If single hit training data is available,
it can be used to extract the mean spectra for each drum instrument.
For certain applications it can even make sense not to update the basis
matrix B, which is called fixed-bases NMF. While this provides good
results for scenarios where each drum hit sounds exactly the same
(transcription of sampled or synthesized drum track), in most cases the
pre-defined templates will not match the audio well and thus results
will deteriorate. To counteract this issue, methods to add columns
which can be adapted to B, and/or to make B semi-adaptive have been
proposed ( partially-fixed NMF [106] and semi-adaptive NMF [14]).

When using NMF the assumption is that a drum hit sound can be
modeled using one spectrum with varying intensity over time—i.e. the
relative distribution of energy in the spectrum for one drum onset does
not change. This is, of course, a simplification. As already discussed
earlier, in the attack phase of percussive signals, more broad band
noise is present, which later changes to inharmonic oscillations. This
simplification is a shortcoming which can be overcome in several
ways, e.g. Battenberg et al. use different basis vectors for different
phases of the notes [3]. Another way is to use Non-Negative Matrix
Factor Deconvolution, where instead of a single column as basis vector,
a whole matrix for each basis is used [52, 55, 67, 75]. Doing so, B
becomes a 3-tensor P consisting of one matrix for each basis, and the
matrix multiplication in X̂ = B ·G becomes the sum of convolving
each matrix in P over the corresponding row of G:

X̂ = ∑
m

Bm ∗Gm . (2.5)

In practice, the convolution is usually avoided by shifting the acti-
vations in G and performing the normal matrix multiplication step
as with vanilla NMF for each frame of the basis vectors, and then
summing over the result—c.f. approach in [75]. Using matrices as
spectrogram templates for NMF allows a more detailed modeling of
the time series for each onset, but this improvement comes at a higher
computational cost for optimization.

2.1.2.2 Approaches based on Neural Networks

A detailed discussion of the working principles of NNs will follow
in Section 2.3, and a detailed explanation of state-of-the-art NN ADT

systems is the focus of Part ii of this thesis. Therefore, this section
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Figure 2.7: An outline of NN ADT systems. First, spectrogram frames are
calculated from the audio source. The spectrogram frames are
then used as input features for previously trained NNs. Finally, a
peak-picking algorithm is used to determine the instrument onset
locations using the instrument activation functions provided by
the NNs.

will focus on giving a brief overview of the history of publications
for NN-based ADT systems, and then explain how in principle neural
networks as black box machine learning tools can be used for ADT.

After the success of artificial neural networks and the subsequent
hype reached the MIR community, NNs were applied to many different
MIR problems, e.g.: onset detection [70], piano transcription [9, 45],
beat and downbeat tracking [7, 18, 19, 49], key estimation [48], singing
voice detection [71], et cetera.

The first works focusing on ADT were published in 2016 [78, 92] and
use recurrent neural network (RNN)s to extract activation functions
for three different drum instruments (bass drum, snare drum, and
hi-hat) from spectrogram representations of drum tracks. Subsequent
works in 2017 use different training techniques [93], architectures [79,
94], and training paradigms [94] to further increase performance and
generalization capabilities. Further work focused on enriching the
transcript with more drum instruments [12, 101], and additional meta
information [94].

Neural networks are still a young technology in ADT, nevertheless
these systems seem to have the capability to outperform traditional
systems [95, 105] (also see MIREX drum transcription task results2).

If a NN should be used in an activation-function-based ADT system,
the neurons of the output layer are responsible for generating activa-
tion functions for assigned drum instruments. Figure 2.7 provides a
schematic over of such a system. To this date, several NN-based ADT

systems have been proposed [78, 79, 92–94, 101]. All of these systems
use a similar processing pipeline, with the main difference being if a

2 http://www.music-ir.org/mirex/wiki/2017:Drum_Transcription_Results

http://www.music-ir.org/mirex/wiki/2017:Drum_Transcription_Results
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single [12, 92–94, 101] or multiple networks [78, 79] are used to extract
the activation function for the instruments under observation.

The extraction of the activation function using NNs is usually de-
signed as a frame-wise logistic regression for each instrument. This is
realized using a spectrogram representation of the audio as input for
the network and binary cross-entropy as loss function. As target func-
tions for training, ground-truth activation functions are created using
the annotations of the training data: For each of the drum instruments
under observation, frames are either labeled as not containing an onset
(0) or containing an onset (1). The trained NN should then produce
similar activation functions when provided with the spectrogram in-
put data of unseen audio files. As with all activation-function-based
methods, a peak picking algorithm is required to determine the on-
set locations of the drum instruments. Experience shows that these
activation functions can be trained to be very spiky, which leads to
peak picking being a relatively easy task, especially when compared to
NMF-based methods—also see Figure 2.5 for a comparison of typical
NMF and NN activation functions.

2.1.3 Evaluation

In the simplest form, drum note detections consist of only the (ab-
solute) onset time and instrument class. A more detailed transcript
would additionally contain onset intensity or loudness, as well as
relative position to the rhythmic grid or bar. However, most ADT sys-
tems only focus on absolute time and instrument class. In this section,
metrics usually used for evaluation of drum transcription systems are
discussed.

In the case of systems focusing on onset time and instrument class
only, evaluating ADT systems is almost the same as evaluating onset
detection systems, with the only difference that for one music track,
multiple onset categories (one for each drum instrument under obser-
vation), must be evaluated. For onset detection, first the number of true
positive (TP) onsets tp, false positives (FP) f p, and false negatives (FN)
f n is determined by comparing detected and annotated onsets using
an onset time tolerance window of a certain size. Using these val-
ues, precision P, recall R (also called sensitivity), and F-measure F
(harmonic mean of precision and recall) can be calculated:

P =
tp

tp + f p
(2.6)

R =
tp

tp + f n
(2.7)

F = 2 · P · R
P + R

. (2.8)

Figure 2.8 shows the relationship between these measures and visual-
izes their calculation.
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Figure 2.8: Calculating evaluation metrics for a drum loop. The top plot
shows the annotated activation function. The second plot shows
the predictions of the transcription algorithm alongside detected
peaks and classification into true positives, false positives, and
false negatives. Note that true negatives are represented by all
other frames of the activation functions. The diagram in the
bottom area visualizes the relationship between the measures
used for evaluation. C.f. precision and recall on Wikipedia [104].
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To obtain an overall result for one track over the individual in-
struments, two strategies can be used: (i) calculate a mean value for
precision, recall, and F-measure values, or (ii) count TP, FP, and FN

values jointly over all instruments. These two approaches will be re-
ferred to as mean and sum evaluation for the rest of this work. If the
evaluation set contains more than just one audio track, an overall
value for all audio tracks in the evaluation set must be calculated.
Again, either the sum or mean approach can be used for this. Note
that sum over all tracks using mean over all instruments is not possible.
While it would be possible to use mean for instruments and sum for
tracks, it is not common. Usually either sum or mean is used for both
instruments and tracks. While in most cases the resulting values will
be very similar, both approaches behave differently for certain extreme
conditions. While mean is more sensitive to a low performance on
individual sub-results (tracks and instruments) even if they contain
only few onsets (relative underrepresented classes), sum is more robust
in terms of very sparse sub-results (i.e. tracks or instruments with
no, or only very few onsets). E.g. if an instrument is not present in
most tracks, the F-measure for the instrument in the cases where no
onsets are annotated will be 1.0 if no detections are predicted. For the
whole dataset the mean F-measure result for this instrument might
now be close to 1.0, even if the only onsets in the whole dataset were
missed (FN). In contrast the sum evaluation for this instrument will
yield a value close to, or exactly 0.0, if this was the case. On the other
hand, if a instrument in the dataset only contributes a small fraction of
onsets, its F-measure value will not influence the overall result much
when using sum evaluation, whereas mean evaluation will yield a
more defensive overall value, if certain instruments or tracks perform
comparably worse, even if the number of onsets is relatively small.
Each evaluation strategy highlights slightly different aspects, thus it
often makes sense to include them both and discuss whenever there
are large discrepancies.

To count TP, FP, and FN values, usually an onset time tolerance
window of a certain width is used. The size of the tolerance window
has an impact on the results: the larger the tolerance window the easier
it is to achieve high F-measure values. Desirable is thus a tolerance
window with a size as small as possible. This usually depends on
two factors: (i) temporal resolution of the drum transcription method,
and (ii) temporal accuracy of the annotations. If the method only
provides a low temporal resolution for transcribed drum onsets, the
tolerance window needs to be at least the same size as a discrete
time step of the transcription methods time resolution. In practice
a larger value is reasonable (e.g. two times the size). The second
aspect is the temporal accuracy of annotations. If annotations are only
provided with an accuracy of ±Ta, the tolerance window must be at
least of the same size, otherwise even given a perfect transcription
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Figure 2.9: Example spectrograms for bass drum (left), snare drum (middle),
and hi-hat (right).

system correctly detected onsets might not match the annotations
provided during evaluation. Again, in practice this value must be
larger for machine learning approaches, since annotations with a
large tolerance introduce a lot of noise during training, and thus
the resulting transcripts may display even larger deviations. In the
literature different sizes of onset time tolerance windows are common,
ranging from 50ms down to 20ms. Arguably, since drum instruments
are used to accentuate rhythms, and their broadband energy at onset
time makes it easy for the human ear to identify the exact temporal
location, a relatively low tolerance window is preferable. Depending
on the annotation quality, tolerance windows as low as 20ms can make
sense. This is due to the fact, that the lower bound of the time interval
for which a human ear is capable of discerning distinct onsets is in
the order of magnitude of 10ms [5].

2.1.4 Challenges and Open Research Questions

While in the early years, works on ADT were focusing on different
subsets and groupings of drum instruments, it quickly became clear
that due to a lack of high quality datasets, as wells as certain signal
properties, a focus on three most common drum kit instruments was
reasonable. These instruments are bass drum, snare drum, and hi-hat,
which usually shape the basic rhythmic patterns and are statistically
most represented in the available datasets of popular western music.
Furthermore, because of the timbral properties of these instruments,
they are well separable considering their spectral energy distribution:
The bass drum generates a broadband-noise shortly after the onset,
and low-frequency resonances can be observed after that. The spectro-
gram of the snare drum displays a similar broadband impulse after
the onset, and mid-frequency resonances as well as mid-frequency
noise, later. The hi-hat generally produces higher frequency noise and
resonance contents. Compare Figure 2.9, which shows separate spectra
for these instruments. This distribution explains the relative success
of simple methods using only band-pass filtering for signal separa-
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Figure 2.10: Spectrograms of an open hi-hat, two different crash cymbals, and
a crashed ride cymbal. While different resonant frequencies are
identifiable e.g. for the two crash cymbals (middle two onsets)
the overall shape is very similar, since the timbre and behavior
of these instruments is also quite similar.

tion [44, 91]. These properties are also related to the issues usually
encountered when working with more than only these three drum
instruments: Other drum instruments often sound very similar (cym-
bals and hi-hat), and/or their resonance frequencies are not uniquely
assignable to a certain instrument (e.g. a mid tom in one track might
be higher than the high tom in another track). Figure 2.10 shows a
spectrogram of open hi-hat, two crash cymbals, and a crashed ride
cymbal, visualizing the similarity between those, in contrast to the
different spectra in Figure 2.9. Additionally, the relatively low number
of occurrence for certain instruments in common datasets leads to
many problems during training and evaluation [12, 101].

Another open problem for ADT is extracting relative loudness of
drum events. Hawthorne et al. [31] present an interesting approach
for piano transcription, using multi-task learning for framewise note
detection, onset and offset detection, as well as velocity extraction. A
similar approach could be applicable for drums, using extra outputs
for velocity curves for each drum instrument. However, obtaining
sufficient training data for this approach remains a challenge. While
it would be possible to use artificial, generated data, in the case of
real world recordings it is almost impossible to manually create these
annotations in sufficient quantities.

An additional aspect of transcribing drum instrument events is the
variety of playing techniques that can be employed on the individual
instruments. These playing techniques comprise different aspects: First,
drums in western music are usually struck using drum sticks, but other
mallet/beater types for striking are also quite common: e.g. rutes/rods,
brushes, soft mallets, or even bare hands. Furthermore, diverse striking
techniques are commonly used on the different instruments, e.g.: single
and double strokes, rolls, drags, and flams can be used on almost all
instruments; rim-shot, cross or side stick on drums; edge, bell, and
bow strikes, crashing and choking on cymbals; different hi-hat opening
positions and techniques; et cetera. All these can have a significant
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impact on the produced sound, and are relevant in terms of notations
for a final transcript. With this wide variety, and the sparseness with
which these techniques are usually used, all the problems that exist
for the standard stroke drum transcription task are exponentiated.
Several attempts to deal with well defined tasks using only a small
subset of these techniques have been made in the past. Tindale et
al. [88] investigated classification of snare drum techniques like rim-
shots considering also stroke locations on the drumhead. In 2011,
Hochenbaum and Kapur [34] investigate methods to identify if a stroke
was played using the left or right hand ultimately using additional
accelerometer data. Prockup et al. [65] introduce a dataset consisting
of drum hits on three instruments (snare, high and low tom) using
different intensities and playing techniques, and evaluate different
features using a SVM classifier. Souza et al. [80] introduce a dataset
containing sound samples of different cymbal playing techniques and
evaluate different features using SVM classifiers, in a similar fashion.
In their 2016 publication, Wu et al. [107] present an approach to tackle
drum instrument playing technique identification during transcription
from polyphonic music. Classifying playing techniques is a difficult
task with many aspects, and the question remains how to model the
many parameters that this task brings, effectively.

In general, the need for large amounts of high quality, manually
annotated training data is a limiting factor for data-driven machine
learning methods, which seem to be the most successful in this context.
The annotation’s accuracy is also a limiting factor for high temporal
resolution and accuracy which is desirable, especially in the context of
drums and rhythm. Manual annotation is very time consuming, not
only but also because high temporal accuracy is required. Generating
a complete transcript for a five minute long track, including all used
drum instruments and considering playing technique and dynamics
information, requires many hours up to days of work and can only
be performed by a trained and experienced person. Using tools like
drum-triggers or accelerometers [34] can help with creating annotated
datasets. However, not all required nuances can be captured using
these primitive sensors. Generating synthetic data using drum sam-
plers and synthesizer is often the only feasible option if only limited
resources are available. However, these datasets always bear the risk
of resulting in models which do not generalize well on real, recorded
drum tracks.

2.2 drum pattern generation

With a shift of studio technology towards fully digital systems running
on computers, many production and recording technologies changed.
Due to greatly lowering the costs of high quality equipment, this
digitalization also enabled non-professionals to build home recording
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Figure 2.11: A screenshot showing a drum track manually set in a drum roll
editor within the Steinberg Cubase† DAW .

† https://www.steinberg.net/en/products/cubase/

and production studios. Especially for electronic dance music (EDM),
fully digital studios, using only synthesizers, samplers, and snippets
of audio recordings are, quite common. However, even for pop/rock
genres, replacing much of the traditional equipment with digital
versions is quite common, e.g. guitar amplifiers, pianos, effects and
sound processing like equalizers. Even using sampled drums for
non-EDM genres, especially in semi-professional settings, has become
quite common. This is due to the fact that recording drums requires
expensive equipment (studio drum kit, multiple microphones) which
is notoriously difficult to set up, and the recording process can be very
time consuming, also depending on the capabilities of the musician.

An approach often used to create drum tracks is to enter drum
patterns using a piano-roll-like editor within a DAW. Figure 2.11 shows
a typical drum roll editor for editing and creating a drum track. Other
typical input modalities for drums include step-sequencer interfaces,
pads, or e-drums. While a step sequencer is very similar to drum roll
editors, it is not as flexible but has certain advantages especially for
live setups. Playing drums on pads using a technique called finger
drumming requires practice and is thus not as accessible as other
input methods. This is even more the case with using e-drums, which
additionally require more space and are more costly. Figure 2.12 shows
examples of a hardware step sequencer, drum programming pads, and
an e-drum kit. Because of its flexibility and ease of use, programming
drums in a drum roll editor is one of the most widespread techniques.
However, using this technique to create synthetic drum tracks can be
quite time consuming, while much of the work involves repetitive
tasks. Due to this, producers of DAWs have started adding libraries of
drum patterns to their software products. These come in two main
variants, providing different output formats, which can be either audio
or discrete notes (e.g. MIDI tracks). Both have their advantages: While

https://www.steinberg.net/en/products/cubase/
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Figure 2.12: Examples of a hardware step sequencer (a) (Roland TR808),
hardware MIDI controller featuring pads for finger drumming (b)
(Native Instruments Maschine†), and an e-drum kit (c) (Roland
V-Drums‡).

†https://www.native-instruments.com/en/products/maschine/

production-systems/maschine/
‡https://www.roland.com/global/categories/drums_percussion/v-drums_kits/

audio drum loops are an easy-to-use shelf product, they lack flexibility.
With symbolic drum loops and patterns, it is easier to change tempo,
make small modifications, and choose the desired sound by feeding the
patterns into drum samples or synthesizers. While these approaches
speed up production, using predefined drum loops and patterns has
two downsides. Foremost, using a commercial pattern library bears
the risk of sounding unoriginal since many other artists might use the
same samples. This can partly be overcome by increasing the library
size. Doing so leads to another problem: finding and selecting patterns
or loops from large sample libraries can be equally time consuming
and frustrating. Figure 2.13 shows a screenshot of the UI for Native
Instruments’ Maschine3, featuring an arranger, a drum roll editor, and
a browser window for instruments, sounds, and drum patterns. The
browser features a category selection element, and a simple list where
fitting results are presented.

To improve this situation and circumvent problems of browsing-
based approaches, more sophisticated supportive tools have been
developed in recent years. For unorganized libraries, automatic cat-
egorization and recommender systems can improve accessibility for
both audio loops and symbolic drum patterns. A completely different
approach is to use generative methods creating patterns or audio
loops according to certain parameters. While generative methods of-
fer solutions to many problems of pattern-library-based tools, they
bring certain problems on their own. A main challenge of generative
methods is to generate patterns that match the provided parameters,
sound original, but also conform to certain expectations.

3 https://www.native-instruments.com/en/products/maschine/

production-systems/maschine/

https://www.native-instruments.com/en/products/maschine/production-systems/maschine/
https://www.native-instruments.com/en/products/maschine/production-systems/maschine/
https://www.roland.com/global/categories/drums_percussion/v-drums_kits/
https://www.native-instruments.com/en/products/maschine/production-systems/maschine/
https://www.native-instruments.com/en/products/maschine/production-systems/maschine/
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Figure 2.13: Software UI of Native Instrument Maschine. On the left side in
the browser panel the user can select instruments, sounds, and
patterns. In the top portion the arrangement is visualized, while
in the bottom portion a drum roll editor displays the currently
selected element.

2.2.1 Overview of Drum Pattern Generation Methods

In the context of pattern generation and variation, the question if a
generated pattern is suitable is of central interest. Automatic evalua-
tion of such systems is often difficult, because this question is hard
to answer and often depends on many latent variables. However, for
symbolic data, attempts to calculate similarity and quality of rhyth-
mic patterns have been made. In his 2004 publication, Toussaint [89]
discusses similarity measures for rhythmic patterns. The measures
investigated are: Hamming distance, edit distance, Euclidean distance
of inter-onset-interval vectors, and the interval-ratio distance. To com-
pare these measures, phylogenetic trees based on the computed distance
matrices—a visualization tool borrowed from biology—are built and
compared. In 2010, Toussaint [90] investigates and proposes prop-
erties of “good” rhythms, and additionally introduces algorithmic
approaches to create rhythm patterns. Calculating rhythmic similarity
for audio is more difficult, since either a transcription step is necessary,
or relevant features have to be extracted from the audio first. For the
case of using audio as source material, Holzapfel and Stylianou [36]
propose a tempo invariant rhythmic similarity measure utilizing the
scale transform. Similarly, Jensen et al. [41] as well as Gruhne and
Dittmar [29] approach the goal of extracting tempo invariant rhythmic
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features by using logarithmic autocorrelation functions calculated on
different onset density functions.

One of the earliest approaches to drum pattern generation was
published in 1994 by Horowitz [37], using a genetic algorithm (GA).
Since GAs represent an important group of methods to generate drum
patterns besides the techniques used in this thesis, Section 2.2.1.1
will provide a brief introduction to GAs. Kaliakatsos-Papakostas et
al. [42] also use a GA to build an automatic drum rhythm generation
tool. They do so by defining an L-system, a rule-based approach to
generate fractal patterns, for drum patterns. Using a GA to evolve
the grammar, a set of five rhythmic indicators is used to measure
fitness. The system can generate rhythm patterns controlled by the
rhythmic indicators density, pauses, self-similarity, symmetry, syncopation.
In their follow-up work [43] they switch to a matrix representation
of the drum patterns which are directly evolved using a GA and
similar fitness functions based on 40 feature values. The system is
designed to generate variations while allowing interactive control of
the divergence between a seed pattern and the generated ones. In
2015, Ó Nuanáin et al. [60] propose a similar rhythm pattern variation
system based on GAs. The focus of this work is the comparison of
two fitness functions based on different distance functions for rhythm
patterns. A GA approach that uses a dataset to check the fitness of
current generations was presented by Bernardes et al. [6].

An advantage of genetic algorithms is that they only rely on a fitness
function. Another option is to use supervised machine learning (ML)
approaches to train a pattern generator. However, these usually require
large amounts of training data. In 2007, Paiement et al. [63] propose
to use a probabilistic model fitted on rhythm pattern subsequence
distances. With the help of this probabilistic model, continuations of
rhythm patterns are generated, utilizing a HMM. In a recent work,
Huang et al. [38] demonstrate the power of RNN-based systems using
self-attention, to generate symbolic music. A similar approach could
be applied to drum tracks.

Another class of probabilistic models which can be used in a gener-
ative way are Restricted Boltzmann Machines (RBM). Section 2.3.6 will
provide an introduction to RBMs Boulanger-Lewandowski et al. [10]
use a recurrent extension of RBMs to model and generate polyphonic
music. Battenberg and Wessel [4] use a conditional RBM, to extract
meter information from rhythm patterns. In this work, the authors
mention the capability of the model to generate drum patterns, when
provided with seed patterns. The works which make up the rhythm
pattern variation part of this thesis take up this idea [97, 98, 100] to
build drum rhythm variation systems based on RBMs. Evaluation of
the variation systems is done by embedding them in a step sequencer
interface [97] using a touch interface [98], and performing a qualitative
evaluation as well as a quantitative study using user surveys [100].
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Figure 2.14: Screenshot of the Drummer plugin in commercial DAW Apple
Logic Pro X. All rights by Apple Inc.

A relatively new technology primarily aimed at generative tasks
are generative adversarial networks (GAN)—see Section 2.3.7. One of
the first approaches of using GANs to create symbolic music has been
introduced by Yang et al. [108]. They use a convolutional architecture
trained on MIDI data to develop a model that generates symbolic notes.
A similar work by Dong et al. [16] is trained to synchronously generate
five tracks of symbolic notes for bass, drums, guitar, strings, and piano.
In [20], we use a controllable GAN based on a convolutional-recurrent
architecture to directly generate symbolic drum patterns of different
lengths.

Publications dealing with generating audio drum patterns directly,
have emerged only very recently. An early related approach was
proposed by Ravelli et al. [66], who present a system performing
adaptation of audio loops, based on rhythmic information extracted
from other audio loops. A similar system could be used to transform
symbolic patterns into audio, using a source audio loop, providing
the sound. More recent works mostly use GANs to generate audio,
e.g. Donahue [15] introduce a method called WaveGAN which is used
to generate speech, as well as drum and piano sequences. Krish-
namurthy [50] created a demo application of WaveGAN aiming to
generate audio drum loops, called BeatGAN. Directly creating audio
is an interesting approach, and results are often of surprising qual-
ity. Nevertheless, generating symbolic music is far from becoming
obsolete since common tools and workflows used by producers and
musicians often build on symbolic music.

In current commercial products which provide automatic drum loop
generation, the predominant approach is to generate symbolic tracks.
For example, the Logic Pro X DAW4 by Apple provides a Drummer
plugin, which generates a drum track for a given style. Figure 2.14

shows the user interface to control the Drummer plugin. The complex-
ity and loudness can be controlled dynamically in realtime or using
automation. It is not documented if for this plugin the patterns are
generated or are selected from a library, but it appears that an internal
pattern database is used.

4 http://www.apple.com/logic-pro/

http://www.apple.com/logic-pro/
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Figure 2.15: Overview of the iterative optimization cycle for a genetic algo-
rithm.

The working principles of RBMs and GANs, which represent the
technology behind most current state-of-the-art drum pattern gener-
ation methods, will be explained in Section 2.3.6 and Section 2.3.7,
respectively. Details on the application of these methods for drum
pattern generation are the focus of the second main part of this thesis.

2.2.1.1 Genetic Algorithms

The basic idea of a GA, is to mimic the real world natural selection and
evolution of living organisms based on deoxyribonucleic acid (DNA),
which encodes the building plan of living organisms. To do so, a
population of individuals, representing solutions for the optimization
problem to be solved, is evolved to find better solutions. An individ-
ual is represented by a parameter set defining a candidate solution.
During one epoch every individual is evaluated using a fitness function.
Individuals with a low fitness are removed, while individuals with
high fitness are kept in the population and used for reproduction.
In the reproduction step, the parameter sets from two individuals
are combined by using cross-over and mutation. Cross-over consists
of creating a new parameter set by combining a randomly selected
subset of parameters from individual A, and the disjunct set of param-
eters from individual B. Mutation allows for random alteration of the
parameter set of a new individual, given a certain mutation rate or
probability. The goal of cross-over is to create new individual that com-
bine strengths of the parent individuals, while mutation alongside the
diversity of the population is responsible for sufficient exploration of
the parameter space. These steps of a training epoch or generation are
iterated until a satisfying solution is found, or no further improvement
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can be achieved. The whole process is mimicking how natural selec-
tion (survival of the fittest) is driving biological evolution in nature.
Figure 2.15 provides an overview of a typical iterative optimization
using a GA. To be able to use a GA for optimization, two things must
be modeled: (i) the representation of a solution by the parameter set
of an individual, and (ii) a fitness function that provides a heuristic
for the quality or performance of an individual.

2.2.2 Challenges and Open Research Questions

The question, whether a rhythm pattern is good or not is per se
ambiguous. Evaluation is generally a major challenge in the context of
generative methods. A simple approach is to use similarity measures
to calculate the distance to provided examples [42, 43, 60, 89]. Efforts
have been made to study properties of good rhythm patterns [90],
however, a way to generalize these approaches to a larger variety of
music genres is desirable. When working with probabilistic models,
tests comparing feature distributions of training data and generated
samples can be useful. However, conclusions are only meaningful if a
reasonable feature space is used [85]. The challenge in this case is the
same as when using distance metrics. Often, performing user studies
is the most direct and effective way to evaluate generative systems [98,
100]. However, performing user studies is usually laborious while
careful selection of the participants is crucial.

Many hidden parameters for successfully creating meaningful and
appropriate drum patterns depend on the musical context. Experi-
enced musicians are able to implicitly consider those, e.g.: genre of the
music, general mood and tempo of the piece, available instruments
and their sound, et cetera. In addition, conscious decisions expressing
artistic intent have to be made: create or release tension, thematically
connect or separate different parts of a piece, pay homage to other
pieces et cetera. As of now, very few of these parameters are explicitly
captured by generative methods and used to control generation of
patterns. A main challenge is to find a set of parameters which provide
sufficient flexibility and allow room for sufficient artistic expression
while not overly complicating a potential interface.

It is to be discussed how far certain parameters should be detected
automatically by such a system, and in which context. E.g. in a pro-
duction environment, musicians and producer may not want to use a
system that makes decisions which have a strong impact on the final
song on its own, since that might take away the creative responsibility
from the artist. On the other hand, in an experimental music setup, or
as a proof of concept, a fully automatic drummer, using many different
input modalities to decide what to play, might be desirable. The choice
of directly generating audio or symbolic notes also depends on the
context and field of application. As mentioned earlier, in a production
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environment, generating symbolic notes, which can easily be further
manipulated, is more common than generative methods producing
audio. On the other hand, if style transfer systems can be used to
successfully transfer sound and feel of preexisting drum loops, such a
system might make sense in a more sampling focused production.

2.3 deep learning basics

Most of the publications which form the basis for this manuscript
are based on deep learning. To provide a basic understanding of the
concepts and techniques referred to and used throughout the thesis, a
compact introduction to deep learning will be provided in the next
section. Note that the focus will be to give a basic understanding
and an overview. Further reading with more details will be provided
through links and references, since exhaustive coverage and in-depth
mathematical discussion for all covered topics is not possible in this
format.

The expression deep learning is a term used to refer to a family of
machine learning methods. They are usually focused on un-, semi-, or
supervised data driven optimization of hierarchical models which are
structured into layers. These models are usually called (deep) artificial
neural networks.

2.3.1 Neural Networks

A NN can be understood as a network of weighted, directed con-
nections between nodes which represent artificial neurons. Along
these connections, values are synchronously propagated through the
network in discrete time steps. At a neuron, the weighted values of
multiple incoming connections are summed and an activation function
φ is applied to calculate the output of such a neuron.

h = φ(b +
Ni

∑
i=0

xi · wi) , (2.9)

where h represents the output value (also: activation or hidden
state) of the neuron, b denotes a bias value (wighted connection
from constant value 1), Ni number of inputs, and wi the weighting
associated with incoming value xi.

The activation function used in neurons can also be called nonlin-
earity. This is due to the fact that only nonlinear activation functions
enable the network to learn solutions for nontrivial problems. The
activation function represents an important hyperparameter for NN
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Figure 2.16: Three layers of a fully connected (dense) neural network.

design which influences modeling capabilities of the network. A basic
and widely used activation function is the hyperbolic tangent:

tanh(v) =
1− e−2v

1 + e−2v . (2.10)

Since it is such an important parameter, a variety of activation func-
tions can be found in the literature5, e.g.: arc-tangent, rectified-linear
(and variants), exponential-linear, and sigmoid (σ):

σ(v) =
1

1 + ev . (2.11)

Special activation functions can also consider the hidden state of the
whole layer, e.g. softmax:

softmax(v) =
ev

∑ ev , (2.12)

which is used in the output layer of one-hot classification problems.
A NN usually has a set of special neurons without incoming con-

nections, which are used to feed data into the network. Similarly,
the hidden states of another set of neurons are used to output data
from the network. These sets need not to be disjoint in the general
case—see RBMs, Section 2.3.6. They are disjoint, however, for the type
of networks which are used for ADT in this work. The weights and
biases of neurons represent the tunable parameters Θ which are to be
adapted to make a NN calculate the desired output when provided
with input data. Adaptation of these parameters is usually done using
iterative numerical approximation methods and is called training or
optimization. Different methods which specify algorithms to perform
this task are usually referred to as training methods or optimizers. A
trick which makes the numerical parameters optimization of complex
NNs manageable is to organize them in layers. These layers of neurons

5 This Wikipedia article provides a good overview: https://en.wikipedia.org/wiki/
Activation_function

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
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must only have connections to the neurons in layers above (inputs) and
below (outputs) it, c.f. Figure 2.16. If the network consists of at least
three layers (input, hidden, and output layer), it is called a multilayer
perceptron (MLP), or deep neural network. The inputs, outputs, and
biases of the individual layers can be represented by a vector, the
weights as matrices:

hl = φ(Wl · xl + bl) , (2.13)

where hl and bl are vectors of size Nl , the number of neurons within
the current layer; xl is a vector of size Nl−1 the number of neurons of
the previous layer, or input. Wl represents the input weights for the
layer and is a matrix of size Nl × Nl−1.

This structure enables the application of a parameter adaptation
concept called backward propagation of errors or simply backpropagation.
Utilizing the layered structure, backpropagation employs automatic
differentiation to calculate a gradient of an error measure. This gradi-
ent is then used to update the model parameters to reduce the error.
The error is usually measured using a loss function L which calculates
the difference between targets y and actual output values ŷ of the
network. The output of the network ŷ, is calculated using the input
data x and the network’s forward path transfer function ŷ = fnt(Θ, x).
The forward path transfer function of the network is simply a nesting
of the transfer functions for the individual layers provided in Equa-
tion 2.13. There exist numerous candidates to be used as loss function,
depending on the task and model choices. For regression tasks a linear
output layer (φ(a) = a) in combination with a mean squared error loss
function is typically used:

L(Θ, x, y) =
1

Nop

Nop

∑
n=1

(yn − ŷn)
2 , (2.14)

where Nop is the number of output neurons and yn is the n-th element
of the output vector y of the network.

In case of multi-class one-hot classification tasks, a softmax output
layer (see Equation 2.12 ) in combination with a (categorical) cross-
entropy loss is usually used:

L(Θ, x, y) = −
Nop

∑
n=1

yn log(ŷn) . (2.15)

For binary classification tasks (logistic regression), a sigmoid output
layer in combination with a (mean binary) cross-entropy loss can be
used:

L(Θ, x, y) = − 1
Nop

Nop

∑
n=1

[yn log(ŷn) + (1− yn) log(1− ŷn))] . (2.16)
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Given the loss function and the set of model parameters, a gradient
G in respect to the model parameters Θ can be calculated:

G = ∇ΘL(Θ, x, y) . (2.17)

Calculating the gradient G of the loss function L for each individ-
ual parameter in the network (elements in Θ), is where the idea of
backpropagation comes into play. In principle it is a clever way of
computing the partial derivatives by recursively applying the chain
rule in backward direction of the network. This is enabled by the
network’s structure of being organized in layers—thus there are no
circular connections and the network transfer function consists of
nesting and summing the individual neuron transfer functions. If for
every activation function used in the network a derivative is known,
the calculation of the gradient is tedious, but trivial and can thus be
done automatically (automatic differentiation).

To update the model parameters using the gradient, different strate-
gies can be employed. For plain gradient descent, the gradients are
weighted with a learning rate α and subtracted from the model pa-
rameters to get the updated parameters:

Θ⇐ Θ− α · G . (2.18)

The required training data consists of multiple pairs of correspond-
ing input and output data. During training this data can be used in
different ways. A parameter update can be calculated using the com-
plete set of data (batch gradient descent), a single input/output pair
(stochastic gradient descent, SGD), or a small sample of data points
(mini batch gradient descent) for a single update. One iteration of
updating the network parameters is usually called update, and an
iteration over the whole training data set is called an training epoch.
Thus, for batch gradient descent one training epoch consists of exactly
one update.

Vanilla gradient descent does have some limitations when used on
complex problems. An issue that can occur is that the method gets
stuck in a local minimum of the loss function L. Another problem
which is encountered is slow progress in ravines and flat areas of
the loss function. To accelerate the convergence of gradient descent
and to avoid local minima, modifications6 have been proposed: (i)
momentum approaches use past update values to speed up conver-
gence in ravines and flat areas of L, e.g., SGD with momentum [83]
and Nesterov accelerated gradient [59]; (ii) methods with learning rate
adaptation use a history of past gradients to accelerate convergence
more intelligently, e.g., Adagrad[17], Adadelta [112], RMSprop [87],
and Adam [46]. As an example, RMSprop incorporates a recursively

6 This blog post provides a detailed overview of common methods: http://

sebastianruder.com/optimizing-gradient-descent

http://sebastianruder.com/optimizing-gradient-descent
http://sebastianruder.com/optimizing-gradient-descent
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defined decaying average of the past squared gradients E[G2] to adapt
the learning rate:

E[G2]⇐ λE[G2] + (1− λ)G2 (2.19)

Θ⇐ Θ− α√
E[G2] + ε

G . (2.20)

Although not widely used, alternative training methods for NNs
have been introduced in the past e.g. genetic algorithms [58], aug-
mented Lagrangian methods [84], et cetera.

2.3.2 Convolutional Neural Networks

A simple MLP as described in Section 2.3.1 may also be called a fully
connected or dense network, since every neuron in each layer has a
connection to every neuron in the following layer. It is noteworthy
that by stacking multiple layers of neurons this way, the number of
parameters, and thus memory requirements as well as training time,
grow quickly.

A property of fully connected networks is that they are oblivious of
any ordering of the input data. We can scramble the input (and output)
data of the individual training examples, as long as it is scrambled
consistently, using the same ordering for each instance of the dataset;
the network will still be able to adapt to the data the same way. In
fact, if we scramble the network parameter matrices columnwise the
same way as the input data, we can even scramble the data for already
trained networks.

While this is desirable for certain types of data, for structured
data it can be beneficial if the network has the capability to use
local structures during training. An example of such data which is
structured are images: the ordering of the pixels within an image is
very important.

To allow the network to learn spatial relations in the input data and
thus simplify training for structured data (like images), convolutional
layers can be used. The idea is that instead of feeding every pixel
as input to every neuron, a neuron in a convolutional layer only
accepts a subset of input pixels (a smaller matrix). The inputs for this
neuron are then shifted over the full input matrix, like a kernel during
convolution. Because of this, a neuron in the case of convolutional
neural network (CNN)s is usually called a filter or kernel. Usually
multiple filters are used per layer, leading to multiple output channels
or feature maps. When working on images, it is also common to use
single channels for red, green, and blue colors (RGB channels) as
input matrices for the whole network. To express this mathematically
the single input values for a neuron xi are replaced with a matrix
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Figure 2.17: Mode of operation of a convolutional layer. This example shows
a simplified scenario visualizing only one input and output
channel. Usually multiple input channels are fed into multiple
filters, leading to more than one output matrix (feature maps).
Realizing the convolution using neurons similar to the ones
used in MLPs, the convolution operation can be thought of as an
element-wise multiplication with subsequent summing. Instead
of moving the filter over the input matrix, the convolution can
be thought of as multiple neurons using only the corresponding
sub-matrix of X as input, while sharing input weights W and
biases B.

Xi, the weights for the input wi with a weight matrix Wij, where
the subscripts i and j indicate the input and output channel (filter),
respectively. Finally, the multiplication is replaced by a convolution ∗.
Doing so the output of a convolutional unit can be calculated using:

Hj = φ(Bj +
l

∑
i=0

Xi ∗Wij) , (2.21)

where l indicates the number of input channels. Note that the out-
put for each filter Hj is again represented by a matrix. Figure 2.17

visualizes how a convolutional layer operates on input data. When
performing convolution, the output matrix will be smaller than the
input matrix:

cH =
cX − cW + 1

sc
(2.22)

rH =
rX − rW + 1

sr
, (2.23)

where cH and rH are the number of columns and rows of output
matrix H, cX and rX columns and rows for input matrix X, cW, rW

columns and rows for weight matrix W, and sc and sr the stride
for convolutions (stepping size) in column and row directions. This
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Figure 2.18: A convolutional network stack consisting of two convolutional
layers and a pooling layer. While the input data only consists
of one channel, every convolutional layer consists of five filters,
generating five feature maps.

shrinking in matrix size is in some cases desirable. However, it can
be avoided by using padding of the matrices before convolution is
applied. There are several different methods for padding: (i) zero
padding, (ii) repetition of last value, (iii) mirroring data, etc.; and the
correct choice depends on the application and data.

A layer type which is commonly found in combination with con-
volutional layers are pooling layers. In pooling layers the neurons
operate similar to neurons of convolutional layers on the input ma-
trices, except they do not perform element-wise multiplication and
summation. They calculate the output in other ways: e.g. max-pooling
calculates the maximum while average-pooling calculates the average
value of the input sub-matrix.

A typical convolutional network can be created by stacking multiple
convolutional and pooling layers, with optional additional fully con-
nected (dense) layers as output layers. If the dense output layers are
omitted the network is usually called fully convolutional. Fully convo-
lutional network stacks usually use the shrinking of the input matrix
created by convolving without padding (valid convolutions) and pool-
ing layers to reduce the size of the input array down to the desired
output dimensionality. These kind of networks tend to be especially
small, in terms of number of parameters. Figure 2.18 shows a simple
convolutional network stack to exemplify typical CNN architectures.

Besides allowing the network to identify local structures, using
convolutions also greatly reduces the number of parameters. This
is often a positive side-effect which reduces memory consumption
during training, and generally reduces calculation time per update
due to algebraic optimizations for convolution.
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Figure 2.19: By using dilated convolutions, a larger receptive field can be
achieved without increasing filter size.

2.3.2.1 Dilated Convolution

A special case of convolutional layers are so-called dilated convolu-
tions [111]. The idea is to allow the used filters to cover a larger area
of the input matrix, without actually increasing filter size. This can be
useful for detecting large scale structures spread across a larger area
of the input matrix. To this end, a dilation parameter is added which
specifies how far the single elements of the filter matrix are separated
when being applied on the input matrix. Figure 2.19 visualizes the
working principles of dilated convolutions.

2.3.2.2 Transposed Convolution

Regularly misleadingly referred to as deconvolution, transposed convo-
lutions [113] are often used as an inversion of normal convolutional
layers in symmetric network architectures like autoencoders and GANs
(c.f. Section 2.3.7). The basic idea is to transform the convolution into
a matrix multiplication by creating a convolution matrix C and rear-
ranging the input and output as vectors. Doing so, the transposed
convolution matrix Cᵀ can be used to create a pseudo-inverse trans-
formation. An interpretation of this operation that is equivalent but
easier to understand is the following: First, every value of the in-
put matrix is padded with zeros (number depends on filter size and
strides). Then normal convolutions are performed. This also results
in an upsampling, i.e. an increase in size of the resulting feature map
compared to the input matrix. Since the filter values are learned and
initialized randomly anyway, it is not necessary to transform the filter
matrix. Figure 2.20 visualizes the working principles of transposed
convolutions.
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Figure 2.20: A transposed convolutional layer pads each value of the input
matrix (blue) as shown in this figure. Doing so it is possible to
increase the size of the resulting feature map (green) compared
to the input matrix.

2.3.3 Recurrent Neural Networks

While CNNs are able to identify local structures and are thus well
suited for images, they do not capture temporal context. I.e. when
presented with two images at the input, the output will always be
the same for each image, no matter in which order the network is
presented with the images. For certain applications this behavior is
not desirable, e.g. when dealing with time series data.

One way to approach this issue is to use special connections which
provide the outputs of a layer for the previous time step as additional
inputs. Because of their function, these connections are usually called
recurrent connections. An RNN is a neural network containing neurons
with recurrent connections within all or certain layers. The left diagram
of Figure 2.21 visualizes a standard RNN neuron (sometimes also
referred to as RNN cell, or node in the context of the network). For an
RNN consisting of multiple recurrent hidden layers, the equation for
each layer l at time step t is:

ht
l = φ(Wl

[
xt

l , ht−1
l

]
+ bl) . (2.24)

This equation is inferred from Equation 2.13, adding indexing of time
for the inputs xt

l and outputs ht
l . Furthermore, the output vector from

the previous time step ht−1
l is concatenated to the inputs [xt

l , ht−1
l ]. In

a network with multiple hidden layers, the input for a hidden layer
is set to the output of the previous layer xt

l = ht
l−1. The feedback of

the layer output acts as a simple form of memory and make RNNs the
appropriate tool to process time series data.

To be able to train RNNs using backpropagation, the network is
unfolded in time for the length of the time series data sequence. To
unfold an RNN in time, the whole network is copied for each input
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Figure 2.21: A simple RNN node (left) and the same node unfolded in time
for four time steps (right).

value and recurrent connections now represent horizontal connec-
tions between the copied recurrent layers. Using this technique in
combination with backpropagation to calculate the gradients is called
backpropagation through time (BPTT) [102]. Figure 2.21 demonstrates the
unfolding for a simple one layer, one neuron RNN. Note that the
horizontal connections do not violate the constraint of no inter-layer
connections, since the copied nodes for later time steps can be thought
of as being located in an extra layer below the nodes of the preceding
time step. This means that a new layer is added for each time step
in the training sequence. The parameters (weights, biases) for nodes
which were unfolded for different time steps are shared, i.e. the matri-
ces and vectors only exist once and all node instances share the same
values. Unfolded RNNs can become very deep networks, depending
on the sequence length used for training. Since very deep networks
have the tendency of being harder to train, often the time series data
is split into subsequences to reduce the depth of the network during
training.

2.3.3.1 Bidirectional RNNs

Simple recurrent networks as discussed so far have the ability to
consider past input values when calculating the output for the cur-
rent time step. However, for certain problems considering the full
sequence can be advantageous, i.e. information from past as well
as future inputs when producing the output for a certain time step.
This can be achieved by implementing bidirectional connections, creat-
ing a so-called bidirectional recurrent neural network (BDRNN) [73]. A
bidirectional layer consist of two recurrent sub-layers, one with connec-
tions in forward direction (t− 1→ t) and the other with connections
in backward direction (t + 1→ t). Such an bidirectional architecture
is visualized in Figure 2.22. The bidirectional connections allow the
network to take past as well as future information into consideration
for the output at time step t, which has been shown to be beneficial
for many different tasks. The division of the bidirectional layer into
two sub-layers is necessary to avoid circular connections and maintain
the constraint of no inter-layer connections. The equations to calculate
the output of a bidirectional layer are as follows:
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Figure 2.22: An unfolded bidirectional RNN layer revealing forward and back-
ward connections. The solid (forward) connections are also found
in a standard RNN (c.f. Figure 2.21) while the BDRNN contains
additional backward connections (dashed arrows). xt and ht are
the inputs and outputs at time step t, with the circles represent-
ing the network’s neurons (green for forward layer, violet for
backward layer).

ht
l f = φ(Wl f

[
xt

l , ht−1
l f

]
+ bl f ) (2.25)

ht
lb = φ(Wlb

[
xt

l , ht+1
lb

]
+ blb) , (2.26)

using the same structure and nomenclature as in Equation 2.24. For
the input of the following layer both hidden activations ht

l f and ht
lb

are concatenated: xt
l+1 = [ht

l f , ht
lb].

2.3.3.2 Long Short-Term Memory

A problem when training plain RNNs in practice is that learning of
long-term dependencies from the input data is often hard to achieve.
This is mainly due to a system inherent problem called vanishing
and exploding gradients [35]. Problems with gradients are caused by
high numbers of multiplications with values smaller than (vanishing)
or higher than (exploding) one. The chances of these scenarios to
occur are increased by the many layers generated while unfolding the
recurrent network for training.

To address this issue for recurrent architectures Hochreiter and
Schmidhuber [35] introduce LSTM cells. LSTMs feature an internal
memory c controlled by multiplicative gates, which counteract van-
ishing and exploding gradients and thus allow the network to better
learn long-term dependencies. The internal memory is accessed and
updated using three gates (input gate i, forget gate f, and output gate
o) controlled by the input xt, the hidden state ht−1 and, in case of



2.3 deep learning basics 45

Figure 2.23: Overview of LSTM (b) and GRU (c) cell architectures, alongside
a simple RNN cell (a). Symbol xt represents the input at time
step t, h is the hidden state, and c is the cell memory. Note
that, while plain recurrent cells and GRUs only forward the
hidden state h to the next time step, LSTM cells forward the
hidden state as well as the cell memory c. The yellow blocks
represent NN nodes, applying weights and bias, taking the sum
and applying the indicated activation function, where tanh is the
hyperbolic tangent function and σ is the sigmoid function, e.g.:
tanh(W · x + b)—compare Equation 2.13. Orange round blocks
stand for elementwise multiplication (x), elementwise addition
(+), and elementwise application of the tanh function. Merging
lines imply concatenation of matrices while splitting lines imply
copying of the matrix represented by the connection. Dashed
lines within the LSTM cell represent peephole connections for
LSTMPs, i.e. they are not present for simple LSTM cells. Note
that these diagrams do not represent single nodes but a whole
layer, thus the input and output for h are both vectors. In case of
single cells, c and outputs for h would be scalar values. Compare
figures and details provided in [61].
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LSTMs with peephole connections (LSTMP) [24], the cell memory ct−1.
The equations for an RNN with LSTM cell architecture are:

it
l = σ(Wil

[
xt, ht−1

l

]
+ bil) (2.27)

ft
l = σ(W f l

[
xt, ht−1

l

]
+ b f l) (2.28)

c̃t
l = tanh(Wcl

[
xt, ht−1

l

]
+ bcl) (2.29)

ct
l = ft � ct−1 + it � c̃t

l (2.30)

ot
l = σ(Wol

[
xt, ht−1

l

]
+ bol) (2.31)

ht
l = ot

l � tanh(ct
l) . (2.32)

For an RNN with LSTMP cell architecture, equations for i, f, and o
change:

it
l = σ(Wil

[
xt, ht−1

l , ct−1]+ bil) (2.33)

ft
l = σ(W f l

[
xt, ht−1

l , ct−1]+ b f l) (2.34)

ot
l = σ(Wol

[
xt, ht−1

l , ct]+ bol) . (2.35)

An overview of the LSTM cell architecture is given in the middle
diagram of Figure 2.23. The contents of this figure and explanation
of LSTMs and related technologies follow the ones provided in Olah’s
blog post from 2015 [61].

2.3.3.3 Gated Recurrent Units

Similar to LSTMPs, GRUs [13] can be seen as a modification of standard
LSTMs, however, the changes are more grave. GRUs have a significantly
lower number of parameters compared to LSTMs. This is achieved by
reducing the number of gates, using only an update z and reset r gate,
as well as by merging the memory into the hidden state ht−1. The
equations which define an RNN with GRUs are:

zt
l = σ(Wzl

[
xt

l , ht−1
l

]
+ bzl) (2.36)

rt
l = σ(Wrl

[
xt

l , ht−1
l

]
+ brl) (2.37)

h̃t
l = tanh(Whl

[
xt, rt

l � ht−1
l

]
+ bhl) (2.38)

ht
l = zt

l � ht−1
l + (1− zt

l)� h̃t
l . (2.39)

An overview of the GRU architecture is shown in the bottom diagram
of Figure 2.23.

GRUs can be seen to be more or less equivalent to LSTMs in terms of
modeling capacities, with the difference that usually more GRU cells
per layer are necessary to achieve the same model capacity as with
LSTM cells. In practice, however, it shows that GRUs are more forgiving
in terms of hyperparameter tuning.
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2.3.4 Convolutional Recurrent Neural Networks

After discussing convolutional and recurrent layers and networks, an
obvious question is if these two concepts can be combined. The short
answer is yes: by combining convolutional and recurrent layers into
one neural network a CRNN is created (sometimes but less commonly
also called recurrent convolutional neural network). Since CNNs are
the tool of choice for structured data like images, and RNNs are suited
to process sequences like time series signals, CRNNs combine both
of these abilities. Thus, as an example application for which CRNNs
are well suited a video stream (time series of images) is an obvious
candidate.

The structure of CRNNs can take different shapes, the most common
is to use convolutional input layers and to use recurrent layers as
output layers (instead of normal feed forward layers). Since both layer
types were already discussed this is just a matter of correctly stacking
those layer types. Figure 2.24 shows a schematic representation of
such a stack similar to Figure 2.18’s CNN version.

Similar as with RNNs the network has to be unfolded in time for
training using backpropagation. In practice, data preparation and
generating the input matrices for training, as well as transforming
data between convolutional and recurrent layers correctly is not trivial.
Apart from convolutional context (input matrix size) and training se-
quence length for the recurrent part, additional dimensions for batch
size and convolution filter channels (or feature maps) are necessary
and have to be handled correctly. Figure 2.25 visualizes how the CRNN

is unfolded in time and how data is fed into the convolutional part
during training. Note that Figure 2.25 only represents the convolu-
tional input and recurrent training sequence, but ignores batch and
feature maps, which represent additional data dimensions for training.

Figure 2.24: A schematic representation of a convolutional recurrent network
stack. The convolutional and pooling layers are equal to the
CNN stack in Figure 2.18, but the dense layer is replaced by two
recurrent layers.
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Figure 2.25: Diagram representing the data shape and mode of operation on
the data for a CRNN network during training. As with normal
RNNs, the CRNN has to be unfolded in time during training to
enable the use of backpropagation.

2.3.5 Regularization

One of the major challenges with machine learning in general and
with deep learning particularly is to avoid overfitting. The data used
for training is usually only a small sample of the real data on which
the model should be used. More often than not, the sample contains
annotation errors, inaccuracies, or is not perfectly representative of
the statistical population. Adapting the model’s parameters to fit the
training data too closely usually yields a suboptimal model, which
performs worse on other unseen data—this is called overfitting. Fig-
ure 2.26 visualizes a simple two-dimensional feature space for a two-
class classification problem. The three panels show (a) a too simple
model, (b) a too complex, overfitted model, and (c) a model which
learned the true underlying decision boundary. While model (a) might
do surprisingly well on unseen data, model (b) will perform poorly
compared to the performance on the training set.

To counter the tendency of NNs to overfit the training data, espe-
cially when complex network architectures are used, many different
approaches have been presented in the past. Methods dealing with
these problems can be collectively referred to as regularizers. One of
the simplest and most effective forms of regularization is to keep the
model complexity as low as possible, i.e. work with a network as small
as possible. This usually involves reducing the network’s number of
layers and number of nodes per layer after a successful hyperparame-
ter setup was found, by finding a good trade-off between performance
and network size. Often this is not possible, or too resource intensive,
e.g. if training takes a very long time. Because training often is very
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Figure 2.26: Three diagrams that show a simple data distribution for a two-
class classification problem. Colored areas represent the two
classes, and colored circles represent samples of training data.
The decision boundary learned by the model is represented by
a dotted line. Panels show different decision boundaries that
are (a) too simple (underfitted), (b) too complex (overfitted), and
(c) optimal or real boundary revealing wrong class labels in the
training data.

time consuming, a common approach is to use models which have
more capacity than necessary, and counteract overfitting by using
other regularization techniques.

2.3.5.1 Early Stopping

Another quite simple approach to regularization is to use early stop-
ping. To counteract overfitting, a small sample is excluded from the
training data and used after each training epoch to validate the perfor-
mance on data which was not used for training. Doing this, the degree
of overfitting can be estimated by watching the ratio between valida-
tion and training loss. When the validation loss starts deteriorating
it is a strong indication that the model begins to severely overfit the
training data. As soon as this is observed, the training of the model
is stopped, even before the training loss converges (= early stopping).
Figure 2.27 visualizes this scenario.

2.3.5.2 L1 and L2 norm Regularization

L1 and L2 norm regularization consists of adding a term to the loss
function which penalizes large absolute values for weights in the
network:

L = L+ λ ·∑ |w| (2.40)

L = L+ λ ·∑ w2 , (2.41)

where Equation 2.40 represents the term for L1 and Equation 2.41

the term for L2 regularization, and λ represents another tunable
hyperparameter. Adding this penalty to the loss function results in
the weights to be pushed towards zero during training. Figuratively
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Figure 2.27: Training and validation loss curves for a network trained with-
out early stopping. When using early stopping, the training is
stopped as soon as the validation loss does not decrease any-
more (indicated by dotted line). This usually marks the point
where the network starts to severely overfit the training data.

speaking, this forces the network to distribute the calculation it needs
to perform for its task evenly across all nodes, which ultimately limits
the networks modeling capabilities and thus counteracts overfitting.

2.3.5.3 Dropout

When using dropout [82], randomly selected connections between
two layers are disabled for one training step. Usually a value which
determines which percentage of connections is disabled for each layer
is used as an additional hyperparameter. Dropout effectively improves
generalization and counteracts overfitting. During inference, dropout
is not applied. Using dropout can also be interpreted as implicit
random partitioning of the network during training and using an
ensemble during inference.

2.3.5.4 Batch Normalization

Batch normalization [39] is a method which accelerates training of
deep networks, but also has regularizing properties. The idea behind
batch normalization is to normalize the activations between each layer
and adding learnable translation and scaling parameters. First, the
mean and variance of activations, for each layer which uses batch
normalization, is calculated over the current training batch:

B = {x1 . . . xm} (2.42)

µB =
1
m

m

∑
i=1

xi (2.43)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 , (2.44)

where B is the set of input values for a node for the current batch, m is
the batch size, and µB is the mean and σ2

B is the variance of the values.



2.3 deep learning basics 51

Then, the input values are normalized and subsequently scaled and
shifted using the learnable parameters λB and βB :

x̂i =
xi − µB√

σ2
B + ε

(2.45)

yi = λB x̂i + βB , (2.46)

where ε is a small value, added for computational stability and yi
is the batch normalized activation. During inference, the mean and
variance of the current input batch are replaced by mean and variance
for the whole training set, providing constant values, which leads
to a deterministic behavior of the model during inference, which is
desirable.

2.3.5.5 Data Augmentation

Especially if the training data is limited, it is hard to limit overfitting
and achieve good generalization for the resulting trained models. If
special domain knowledge is available and certain properties of the
training data are known, it can be helpful to apply appropriate trans-
formations to the data to increase variety and amount of training data.
In case of images of objects to train an image recognition CNN, possible
transformations can be: scaling, translation, rotation, and adding noise.
Additionally color information adjustments like changing lightness,
saturation, hue, and contrast can also be applied. By applying these
data augmentation methods, the trained system will be more robust,
tend less to overfit the training data, and exhibit better generalization
capabilities. In the context of audio signals and music, the principle
stays the same, while other transformations have to be used. Depend-
ing on the context, for audio signals these transformations might be
applicable: pitch shifting, time stretching, volume changes, as well as
adding noise and overlaying other signals.

Which of the possible transforms is applicable and valid depends
on the target application and properties of the trained model. It is also
necessary to consider if and in which form the annotations have to
be adapted; e.g. in the context of piano transcription, pitch shifting
might be applicable, but pitch annotations of played notes have to be
adapted.

2.3.6 Restricted Boltzmann Machines

RBMs are a class of special neural networks consisting of two layers
(visible and hidden layer) of neurons with undirected connections.
There are no connections within a layer, in contrast to the general case
of (unrestricted) Boltzmann machines. RBMs are thus a special case
of Boltzmann machines, which are in turn a special case of Markov
networks. Figure 2.28 shows a simple RBM structure. RBMs can be used
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Figure 2.28: Structure and elements of an RBM. The nodes in the top layer
represent the hidden or latent values h of the RBM, while the
nodes in the lower layer represent the visible values x. The
undirected connections between the two layers are weighted by
the weight matrix W. Bias values for the hidden and visible units
are represented by the vectors b and c, respectively.

for unsupervised feature learning, classification, and dimensionality
reduction. RBMs were introduced by Smolensky in 1986 [77], and
gained popularity after Hinton et al. [33] introduced fast training
algorithms for them in 2006.

An RBM consists of neurons in a visible xk ∈ x and hidden hj ∈ h
layer. Values for these layers are binary, i.e. can only assume values
xk, hj ∈ {0, 1}. The two layers are (fully) connected with undirected
weighted connections. The weight matrix W assigns each connection a
weight. Additionally every neuron has a bias value, bj for hidden and
ck for visible units.

Given these variables an energy function E(x, h) can be defined:

E(x, h) = −hᵀWx− cᵀx− bᵀh (2.47)

= −∑
j

∑
k

Wj,khjxk −∑
k

ckxk −∑
j

bjhj . (2.48)

Using this energy function, a probability that a certain state (x, h)
can be observed is defined. Note that the probability distributions for
elements in x and h are Bernoulli distributions since they are binary
variables:

p(x, h) =
e−E(x,h)

Z
, (2.49)

where Z is the so-called partition function:

Z = ∑
x

∑
h

e−E(x,h) , (2.50)

which is in practice intractable due to the exponential number of
possible combinations of x and h. The sum over x and h in this
and all subsequent equations means that it is taken over all possible
x ∈ {0, 1}X and h ∈ {0, 1}H, where X and H are the lengths of x and
h, respectively.
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Given those definitions, we can calculate the conditional probability
for a certain state of h, given x: p(h|x) and vice-versa: p(x|h). Since
there are no connections within a layer, the individual variables of a
layer are independent: p(h|x) = ∏j p(hj|x) and p(x|h) = ∏k p(xk|h).
This can also be seen as a special case of the local Markov property
since the RBM is a Markov network. Thus, when substituting the
definition of p(x, h) into

p(h|x) = p(x, h)
∑h′ p(x, h′)

, (2.51)

the following definition can be derived (note that Z can be factored
out):

p(hj = 1|x) = σ(bj + Wj · x) , (2.52)

where σ is the sigmoid function (see Equation 2.11). Similarly the
probability for an element in x to be 1, given the hidden state h is
defined by:

p(xk = 1|h) = σ(ck + Wk · h) . (2.53)

Note that these equations are very similar to the definition of the
hidden activation in Equation 2.9, with the only difference being that
the output is the probability for the value being 1, instead of the
activation for the neuron.

An RBM essentially models the distribution of x using the network
parameters. The probability distribution for a input vector x, p(x), can
be expressed using the networks parameters as:

p(x) = ∑
h

p(x, h) (2.54)

= ∑
h

e−E(x,y)

Z
(2.55)

= exp(cᵀx + ∑
j

log(1 + ebj+Wjx))/Z (2.56)

= exp(cᵀx + ∑
j

softplus(bj + Wjx))/Z = e−F(x)/Z . (2.57)

A new activation function is introduced at this point: softplus(x) =
log(1+ ex). This equation also introduces F which is commonly known
as the free energy of an RBM. Equation 2.57 show how the parameters
of the RBM (c, b and W) influence the probability distribution p(x).
To train the RBM, these parameters have to be adapted in a way to
maximize p(x) for samples of x(t) ∈ X.

To train an RBM, a loss function is defined and gradient descent
is used to update the parameters. As loss, the average negative log
probability is used:

L(x) = 1
T ∑

t
− log

(
p(x(t))

)
, (2.58)
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where T is the total number of samples in X and t is the index of a
sample x(t) ∈ X. Using this loss function the gradient with respect to
the model parameters (Θ) can be computed:

G(x) =
∂− log

(
p(x(t))

)
∂Θ

(2.59)

= Eh

[
∂E(x(t), h)

∂Θ

∣∣∣∣∣x(t)
]
−Ex,h

[
∂E(x, h)

∂Θ

]
. (2.60)

Since the real state of h is unknown, expectations E for the partial
differentials of the energy E(x, h) are used instead. The index of E

denotes variables over which values the expectation is taken, while
the vertical line expresses a conditional expectation. Unfortunately,
calculating the gradient for this loss involves calculating a partial
derivative of the energy of the network over all x, and h, E(x, h),
which is equally intractable as calculating the partition function Z.
To solve this issue, a method to approximate Ex,h, called contrastive
divergence (CD) [33], is usually used: Starting from a sample x(t) from
the training data, Gibbs sampling is applied to obtain a point x̃, which
is then used to calculate a point estimate for the expectation of the
partial derivative of the energy for x̃ and h, Ex̃,h. This can be seen as
Monte Carlo sampling of the expectation Ex,h using a single data point
x̃ sampled from the model distribution. As starting point for sampling
the expectation Ex,h, an actual training sample x(t), instead of sampling
from a (e.g. uniform) random distribution for the hidden variables h,
is used. Gibbs sampling of an RBM consists of two calculation steps:

h̃j ∼ p(hj|x̃) (2.61)

and

x̃k ∼ p(xk|h̃) . (2.62)

After calculating the hidden state given the values in the visible layer
(Equation 2.61), the updated values for the visible are calculated using
the hidden state (Equation 2.62). For classic Gibbs sampling, this is
usually done until the samples x represent the true distribution. In
practice for sampling the expectation Ex,h, only a limited number of
Gibbs sampling steps are performed (even only one step has been
shown to work). This in combination with the fact that the variables
in a layer are independent, which makes calculating the conditional
probabilities very efficient, makes this approximation method feasible
in practice.
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Substituting the approximations introduced by CD and calculating
the gradient for the model parameters W, b, and c, the following
update rules can be obtained:

W⇐W + α
(
h(x(t))x(t)

ᵀ − h(x̃)x̃ᵀ
)

(2.63)

b⇐ b + α
(
h(x(t))− h(x̃)

)
(2.64)

c⇐ c + α
(
x(t) − x̃

)
, (2.65)

where, α is a small factor called learning rate.
A modification to that algorithm called persistent contrastive diver-

gence (PCD) was introduced in 2009 by Tieleman et al. [86]. Instead
of starting Gibbs sampling for x̃ using the current sample x(t), x̃ from
the previous iteration is used. Using this simple trick, Gibbs sampling
produces samples with a higher variance, thus helping the network to
generalize better.

An extension of RBM training used in works of this thesis is a
method to encourage latent variable selectivity and sparsity [27]. Both
are desired for multiple reasons, and will in the end aid the network
to learn better suited hidden representations.

In this work RBMs are used to model the distribution of drum pat-
terns. By starting with a given drum pattern sample, Gibbs sampling
can be used to generate patterns with similar latent variable character-
istics, which, in theory, should produce patterns with similar rhythmic
properties.

2.3.7 Generative Adversarial Networks

In 2014, Goodfellow et al. [28] introduced GANs. While being a rela-
tively new technology, GANs are applied on a wide variety of tasks
and the field has a very active research community, making it nearly
impossible to stay up-to-date with current developments. In the con-
text of this work, only a very focused introduction of the working
principles, and some training methods is given.

The basic idea behind GANs is to use two competing (deep) neural
networks trained in a minimax fashion. One network’s task is to gen-
erate realistic examples (generator G), while the other network’s task
is it to discriminate between generated examples and real examples
from a sample library (discriminator D). The generator is defined by
its model parameters θg and is a function generating an example x̂
when provided with a latent variable z as input:

x̂ = G(z; θg) (2.66)

The dimensionality of the latent input depends on the application but
is in general of a lower dimensionality than the generated data. The
discriminator, likewise, has its own trainable model parameters θd and



56 background

Figure 2.29: Overview of a GAN during training.

is a binary classifiers (output c, generated=0, real=1) discriminating
input examples x:

c = D(x; θd) (2.67)

Both networks are designed in a way that they can be trained
using backpropagation (c.f. Section 2.3.1). Training is then performed
iteratively, feeding the discriminator with alternating samples from
the generator and real examples from the training set.

A GAN learns an implicit estimation of the distribution of x, pr(x)
represented by the training set, x ∈ X. The distribution learned by
the generator will be denoted as pg(x). The discriminator tries to
distinguish real x ∼ pr(x) and generated x̂ ∼ pg(x) samples, i.e.
identifying generated samples. The training, thus, can be interpreted
as a two-player minimax game with value function V(G, D):

min
G

max
D

V(G, D) = Ex∼pr(x)[log D(x)]+Ez∼pz(z)[log(1−D(G(z)))] .

(2.68)

D tries to maximize this value, and can achieve this by improving
detecting real examples (limD(x)→1 log D(x) = 0 ), or reveal generated
examples (x̂ = G(z), limD(x̂)→0 log(1− D(x̂)) = 0). On the other hand
G tries to minimize this value by trying to trick the discriminator
D into classifying generated examples as real ones: limD(x̂)→1 log 1−
D(x̂) = − inf. The optimal discriminator D for a generator G can be
derived from that as:

D∗G(x) =
pr(x)

pr(x) + pg(x)
. (2.69)
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Figure 2.30: Probability distributions for generator pg(x) versus the distribu-
tion of real examples pr(x) during training. In the beginning, the
two distributions are different. Panel (a) shows the discriminator
before training. After some iterations of discriminator training
an optimal discriminator was found (b). After several iterations
of generator training, pg(x) becomes more similar to pr(x) (b).
Finally, when pg(x) = pr(x) the generator produces examples
indistinguishable from real ones, and the discriminator can only
guess. The optimal discriminator function in that case is D∗G = 1

2 ,
see Equation 2.69.

Figure 2.30 shows the distributions of the generator pg(x) compared
to the distribution of real samples pr(x) for a one dimensional case
for X. The visualized discriminator D(x) for panels (b), (c), and (d)
of Figure 2.30 always close to the optimal discriminator provided by
Equation 2.69.

Training of a GAN is performed updating the discriminator’s param-
eters θd until convergence, and then the generator’s parameters (θg)
once. This is repeated until convergence of the generator. For this, two
loss functions are needed which can be derived from Equation 2.68.
To update the parameters we descend the following gradients:

Gd = ∇θdLd = ∇θd

1
m

m

∑
i=1
−
[
log D(x(i)) + log(1− D(G(z(i))))

]
(2.70)

Gg = ∇θgLg = ∇θg

1
m

m

∑
i=1

log(1− D(G(z(i)))) . (2.71)

Using these definitions for gradients, the GAN can be trained ap-
plying backpropagation and any gradient descent method, as with
other deep neural networks. Note that in practice, convergence of the
discriminator is not desired, rather an equilibrium between discrimina-
tor and generator is sought after. To achieve this, the discriminator is
usually only trained for several iterations; typically for more iterations
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in the beginning and fewer after several generator updates. The idea is
that once the discriminator was sufficiently trained, and the generator
only slowly changes, the discriminator only needs to adapt slightly to
the updated generator for each generator update.

In general, vanilla GANs (the original version introduced in [28]) are
hard to train, partly due to the fact that with high dimensionality of X
both pg(x) and pr(x) residing on a lower dimensional manifold (rep-
resented by the latent variable space z), the probability of overlapping
distributions for pg(x) and pr(x) is virtually zero. This leads to the
problem that it is easy to find a perfect discriminator in such a high
dimensional space and if the discriminator is perfect, the gradient for
generator training vanishes (becomes zero). In these cases the GAN

training is very unstable and successful training is tricky. This is be-
cause either the discriminator has not learned anything reasonable
and there is no reasonable gradient for the generator to improve, or
the discriminator is perfect and the gradient for the generator training
becomes zero. In some cases that can lead to a behavior termed mode
collapse, where the generator produces the same output which may or
may not trick the discriminator. In any case, the generator does not
learn a reasonable distribution for x.

2.3.7.1 Wasserstein Distance and Loss

To overcome this problem, many different tricks have been proposed. A
major improvement brings the use of the Wasserstein distance instead
of Jensen-Shannon (or Kullback-Leibler) divergence for distributions
pg(x) and pr(x) for generator and discriminator training [1, 2]. The
advantage of using the Wasserstein distance is that it provides a
continuous measure of distances also for probability distributions
that do not overlap, thus improving convergence in situations which
have been identified as problematic. In other words, the Wasserstein
distance provides a more interpretable relation between real and
generated examples, indicating how far off the generator is; in contrast
to the 0/1 behavior of the discriminator of the vanilla GAN. The
Wasserstein distance between the two distributions pr and pg is given
by:

W(pr, pg) = inf
γ∼∏(pr ,pg)

E(x,y)∼γ[‖x− y‖] . (2.72)

In general, it is intractable to use the Wasserstein distance as a loss func-
tion, since it involves calculating the infimum (greatest lower bound) of
all joint distributions infγ∼∏(pr ,pg). Due to this a transformation of the
Wasserstein loss function utilizing the Kantorovich-Rubinstein duality
is applied, which leads to:

Ld = W(pr, pg) = max
w∈W

Ex∼pr [ fw(x)]−Ez∼pr(z)[ fw(G(z))] . (2.73)

The function fw is a K-Lipschitz continuous function, { fw}w∈W , where
W is a family of K-Lipschitz functions. Thus, in this GAN setup, the
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discriminator D is the parameterized fw and the loss function L
represents the Wasserstein distance between pr and pg. That means
that in a Wasserstein GAN, the discriminator does not classify examples
into real and generated, but rather learns a function fw helping to
compute the Wasserstein distance between them. A requirement that
comes with these design choices is that the function fw represented by
the discriminator has to be K-Lipschitz continuous. In practice this is
enforced by clipping the weights of D to a small interval, e.g. ±0.01.

While the idea of using Wasserstein distance is great and circum-
vents many problems of vanilla GANs, the approximation and use of
weight clipping introduces new problems. Wasserstein GAN (WGAN)
training can show slow convergence when the clipping window is
chosen too large, or can still run into the problem of vanishing gra-
dients for too small clipping windows. Gulrajani et al. [30] introduce
gradient penalty as a way to circumvent weight clipping, which offers
some improvement to these problems.
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3
S Y N O P S I S

The following part covers the contributions focusing on automatic
drum transcription. The individual chapters introduce the main pub-
lications of this thesis dealing with ADT. Each publication and thus
chapter focuses a different problem in this area. As discussed in the
introduction, methods and solutions introduced for this task in this
work are all based on deep learning. All publications have a focus
on end-to-end activation-function-based processing pipelines while
different network architectures are used and evaluated. The methods
introduced in the following chapters set new state-of-the-art perfor-
mance results at the time of publication, and some still do.

In Chapter 4 deep learning methods for drum transcription are
introduced for the first time. For the implemented neural networks a
recurrent architecture is chosen, since it is well suited for time-series
data like audio signals. The basic processing pipeline, modeling princi-
ples, and evaluation strategy for drum transcription experiments using
artificial neural networks are established . The focus is on drum-only
audio signals to investigate the applicability of deep learning using
the most basic problem of ADT. In the evaluation, state-of-the-art per-
formance on public drum solo datasets is achieved. Southall et al. [78]
independently presented a related system for drum transcription at
the same time. While the works are similar in term of used method for
drum transcription, they focus on different aspects in their evaluation
sections.

After that, in Chapter 5, the focus shifts to transcribing drums from
music containing other instruments alongside the drum tracks. This
represents a much harder problem than transcribing drums from
drum-only tracks. This is due to several factors: Primarily because
onsets of other harmonic and percussive instruments will often be
close to drum instrument onsets, making it difficult to identify the
exact onset time as well as the correct drum instruments. Furthermore,
the spectral energy distributions for different instruments in full mu-
sic tracks usually heavily overlap, making it difficult to classify the
individual instruments correctly. To tackle this issue, state-of-the-art
deep learning techniques like data augmentation [71] and dropout [82]
along with changes to the network architecture are applied to improve
generalization capabilities and robustness of the trained models. Us-
ing these methods, new state-of-the-art performance results on public
datasets covering polyphonic music are achieved.

As discussed in the introduction, most drum transcription systems
presented in recent years focus on drum instrument onset detection
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Figure 3.1: Timeline of publications and brief overview of topics covered in
them, with corresponding chapters.

only. This is also the case for the neural-network-based approaches in-
troduced in this thesis, so far. To put the drum instrument onset times
into context and create real transcripts, additional metadata is required
and must be extracted from the audio signal. The additional metadata
which has to be extracted covers beat and downbeat positions, which
is needed to transform onset times into bar and beat relative timing
(note positions and durations). Since this data strongly correlates with
drum instrument onsets, it is reasonable to try to leverage multi-task-
learning effects for this data. The publication presented in Chapter 6

deals with these topics, while also introducing and evaluating CNN

and CRNN network architectures for ADT.
Another shortcoming of most ADT systems introduced in the past

was the limitation of considering only three drum instruments for
transcription. As discussed in the introduction, making this simplifi-
cation is reasonable since it circumvents many problems caused by
shortcomings of the available datasets and other challenges of the task.
Nevertheless, for satisfying transcripts all the other drum instruments
cannot be ignored since they are equally important, even if being used
more sparsely than bass drum, snare drum, and hi-hat. Chapter 7

thus focuses on increasing the number of instruments considered for
transcription. In the corresponding publication, a large scale synthetic
dataset is introduced to overcome shortcomings of available datasets.
A thorough evaluation of different training strategies provides insights
and indicates further directions to solve this problem.

Last, Chapter 8 covers attempts of evaluating different state-of-the-
art ADT methods. An overview of an extensive review article on drum
transcription which also provides an evaluation of NMF-based and NN-
based ADT methods, is provided. Furthermore, the drum transcription
challenge organized by the Music Information Retrieval Evaluation
eXchange (MIREX) team is introduced and results from the last two
years are presented. The works covered in this chapter are all part of
the supplemental publications for this thesis.
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Figure 3.1 puts the individual publications of this part into perspec-
tive and provides an overview of the timeline while indicating the
chapters in which those publications can be found.





4
N E U R A L N E T W O R K S F O R D R U M T R A N S C R I P T I O N

4.1 overview

The methods and experiments presented in this chapter were pub-
lished in the following work:

Richard Vogl, Matthias Dorfer, and Peter Knees. “Recurrent neural
networks for drum transcription”. In: Proceedings of the 17th Interna-
tional Society for Music Information Retrieval Conference (ISMIR). New
York, NY, USA, 2016.

In this chapter, neural networks, more specifically RNNs, are intro-
duced as a novel method to solve the drum transcription task. As
discussed in the introduction, RNNs are well suited for processing
sequential data. Furthermore, Böck et al. [7, 8] demonstrate that RNNs
can successfully be employed for beat tracking, which is a related task.
For these reasons, RNNs present themselves as a viable choice, in this
context.

In this work, different RNN architectures are evaluated within an
end-to-end, activation-function-based transcription system. The neural
network in this pipeline is tasked with extracting activation functions
for the individual drum instruments under observation when pro-
vided with a spectrogram representation of the audio signal. The
label end-to-end is used although a transformation of the audio sig-
nal into a spectrogram representation is required, as well as a peak
picking method to extract onset positions from the resulting activation
functions. This is done to distinguish the proposed new models from
traditional hand-crafted methods that often use several different and
more complex processing steps. Furthermore, the spectrogram can
be seen as just another representation of the audio signal, while peak
picking on the very spiky activation functions produced by the neural
network is almost trivial. The evaluation covers different recurrent
architectures, namely (i) forward, (ii) backward, and (iii) bidirectional
RNNs. Additionally, a forward RNN with label time shift is evaluated.
For evaluation, two publicly available drum transcription datasets com-
prising drum-solo tracks are used. This is done in order to establish a
baseline for neural networks on a basic task.

The results show that RNNs can successfully be employed for acti-
vation function extraction for ADT. While state-of-the-art results on
a simple drum-only public dataset are achieved, further work is re-
quired to make the model suitable for polyphonic music. Additionally,
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the evaluation reveals that bidirectional RNNs perform better than
unidirectional networks, but similar results can be obtained using a
short label time shift. This is an interesting finding, since it reveals
that the first few milliseconds are sufficient to correctly distinguish
the onsets of the three drum instruments under observation. It further
indicates that the bidirectional architecture used is not able to leverage
global structures of the drum patterns.

4.2 contributions of authors

As first author of this work, I contributed most of its content. My
contributions comprise: idea of using RNNs for drum transcription,
collection and preparation of used datasets, writing most of the source
code in python, designing/running experiments and evaluation, as
well as writing most of the paper.

Matthias Dorfer’s contributions focused on helping me getting
started with neural network training and ideas for evaluating the
proposed system. He helped with choice of network architectures,
provided a helper library for training (batch iterator, training setup,
. . . ), and created Figure 1 visualizing the use of an RNN in the context
of ADT. Finally, he supported me with writing the paper (proofreading,
suggestions, etc.).

Peter Knees acted as supervisor for this paper. In this role, he
supported me throughout the process of creating and conducting the
experiments, and especially during writing the paper, by proofreading
and providing valuable feedback.
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ABSTRACT

Music transcription is a core task in the field of music
information retrieval. Transcribing the drum tracks of mu-
sic pieces is a well-defined sub-task. The symbolic repre-
sentation of a drum track contains much useful information
about the piece, like meter, tempo, as well as various style
and genre cues. This work introduces a novel approach for
drum transcription using recurrent neural networks. We
claim that recurrent neural networks can be trained to iden-
tify the onsets of percussive instruments based on general
properties of their sound. Different architectures of recur-
rent neural networks are compared and evaluated using a
well-known dataset. The outcomes are compared to results
of a state-of-the-art approach on the same dataset. Further-
more, the ability of the networks to generalize is demon-
strated using a second, independent dataset. The exper-
iments yield promising results: while F-measures higher
than state-of-the-art results are achieved, the networks are
capable of generalizing reasonably well.

1. INTRODUCTION AND RELATED WORK

Automatic music transcription (AMT) methods aim at ex-
tracting a symbolic, note-like representation from the au-
dio signal of music tracks. It comprises important tasks in
the field of music information retrieval (MIR), as — with
the knowledge of a symbolic representation — many MIR
tasks can be address more efficiently. Additionally, a vari-
ety for direct applications of AMT systems exists, for ex-
ample: sheet music extraction for music students, MIDI
generation/re-synthesis, score following for performances,
as well as visualizations of different forms.

Drum transcription is a sub-task of AMT which ad-
dresses creating a symbolic representation of all notes
played by percussive instruments (drums, cymbals, bells,
etc.). The source material is usually, as in AMT, a monau-
ral audio source—either from polyphonic audio containing
multiple instruments, or a solo drum track. The symbolic
representation of notes played by the percussive instru-
ments can be used to derive rhythmical meta-information
like tempo, meter, and downbeat. The repetitive rhythmi-

c© Richard Vogl, Matthias Dorfer, Peter Knees. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Richard Vogl, Matthias Dorfer, Peter Knees. “Recur-
rent Neural Networks for Drum Transcription”, 17th International Society
for Music Information Retrieval Conference, 2016.

cal structure of the drum track, as well as changes therein,
can be used as features for high-level MIR tasks. They
provide information about the overall structure of the song
which can be utilized for song segmentation [18]. The
drum rhythm patterns can also be utilized for genre clas-
sification [7]. Other applications for rhythmic patterns in-
clude query-by-tapping and query-by-beat-boxing [11,19].

A common approach to the task of drum transcription
is to apply methods used for source separation like non-
negative matrix factorization (NMF), independent compo-
nent analysis (ICA), or sparse coding. In recent work,
Dittmar and Gärtner [5] use an NMF approach to tran-
scribe solo drum tracks into three drum sound classes
representing bass drum, snare drum, and hi-hat. They
achieve F-measure values of up to 95%. Their approach
focuses on real-time transcription of solo drum tracks for
which training instances of each individual instrument are
present. This is a very specific use case and in many
cases separate training instances for each instrument are
not available. A more general and robust approach which
is able to transcribe different sounding instruments is de-
sirable. Smaragdis [28] introduces a convolutional NMF
method. It uses two-dimensional matrices (instead of one-
dimensional vectors used in NMF) as temporal-spectral
bases which allow to consider temporal structures of the
components. Smaragdis shows that this method can be ap-
plied to transcribe solo drum tracks. Lindsay-Smith and
McDonald [21] extend this method and use convolutive
NMF to build a system for solo drum track transcription.
They report good results on a non-public, synthetic dataset.

Fitzgerald et al. [9] introduce prior subspace analysis,
an ICA method using knowledge of the signals to be sepa-
rated, and demonstrate the application for drum transcrip-
tion. Spich et al. [29] extend this approach by incorporat-
ing a statistical music language model. These works focus
on transcription of three and two instruments, respectively.

Scholler and Purwins [26] use a sparse coding approach
to calculate a similarity measure for drum sound classifica-
tion. They use eight basis vectors to represent the sounds
for bass drum, snare drum, and hi-hat in the time domain.
Yoshii et al. [33] present an automatic drum transcription
system based on template matching and adaptation, similar
to sparse coding approaches. They focus on transcription
of snare and bass drum only, from polyphonic audio sig-
nals.

Algorithms based on source separation usually use the
input signal to produce prototypes (or components) rep-
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Figure 1. Overview of the proposed method. The ex-
tracted spectrogram is fed into the trained RNN which out-
puts activation functions for each instrument. A peak pick-
ing algorithms selects appropriate peaks as instrument on-
set candidates.

resenting individual instruments and so called activation
curves which indicate the activity of them. A peak pick-
ing algorithm is needed to identify the instrument onsets in
the activation curves. Additionally, the identified compo-
nent prototypes have to be assigned to instruments. This is
usually done using machine learning algorithms in combi-
nation with standard audio features [6, 16].

Another approach found in the literature is to first seg-
ment the audio stream using onset detection and classify
the resulting fragments. Gillet and Richard [13] use a
combination of a source separation technique and a sup-
port vector machine (SVM) classifier to transcribe drum
sounds from polyphonic music. Miron et al. use a combi-
nation of frequency filters, onset detection and feature ex-
traction in combination with a k-nearest-neighbor [23] and
a k-means [22] classifier to detect drum sounds in a solo
drum audio signal in real-time. Hidden Markov Models
(HMMs) can be used to perform segmentation and classi-
fication in one step. Paulus and Klapuri [24] use HMMs
to model the development of MFCCs over time. Decoding
the most likely sequence yields activation curves for bass
drum, snare drum, and hi-hat and can be applied for both
solo drum tracks as well as polyphonic music.

Artificial neural networks consist of nodes (neurons)
forming a directed graph, in which every connection has
a certain weight. Since the discovery of gradient descent
training methods which make training of complex archi-
tectures computationally feasible [17], artificial neural net-
works regained popularity in the machine learning commu-
nity. They are being successfully applied in many differ-
ent fields. Recurrent neural networks (RNNs) feature ad-
ditional connections (recurrent connections) in each layer,
providing the outputs of the same layer from the last time
step as additional inputs. These connections can serve as
memory for neural networks which is beneficial for tasks
with sequential input data. RNNs have been shown to per-
form well, e.g., for speech recognition [25] and handwrit-
ing recognition [15]. Böck and Schedl use RNNs to im-
prove beat tracking results [3] as well as for polyphonic
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Figure 2. Spectrogram of a drum track and target functions
for bass drum, snare drum, and hi-hat. The target function
has a value of 1.0 at the frames at which annotations for the
instruments exist and 0.0 otherwise. The frame rate of the
target function is 100Hz, the same as for the spectrogram.
The third graph shows the output of the trained RNN for
the spectrogram in the first image.

piano transcription [4]. Sigtia et al. [27] use RNNs in the
context of automatic music transcription as music language
models to improve the results of a frame-level acoustic
classifier. Although RNNs have been used in the past for
transcription systems [4], we are not aware of any work
using RNNs for transcription of drum tracks.

2. TASK AND MOTIVATION

In this work, we introduce a new method for automatic
transcription of solo drum tracks using RNNs. While it is a
first step towards drum transcription from polyphonic mu-
sic, there also exist multiple applications for the transcrip-
tion of solo drum tracks. In electronic music production, it
can be used to transcribe drum loops if a re-synthesis using
different sounds is desired. The transcription of recorded
solo drum tracks can be used in the context of recording
and production of rock songs. Nowadays it is not unusual
to use sampled drums, e.g., in low-budget productions or
in modern heavy metal genres. One the one hand, this is
due to the complexity and costs of recording drums. On the
other hand, with sampled drums it is easier to achieve the
high precision and even robotic sounding style desired in
some genres. Instead of manually programming the drum
track, automatic transcription of a simple low-quality drum
recording can be used as basis for the production of a song.
As in other works, we focus on the transcription of bass
drum, snare drum, and hi-hat. These instruments usually
define the main rhythmic patterns [24], depending on genre
and play style. They also cover most (>80% in the case of
the ENST-Drums dataset, see Section 4.1) of the played
notes in full drum kit recordings. Since simple RNN ar-
chitectures already provide good transcription results (cf.
Section 5), it is worthwhile exploring their application in
this task further.
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Figure 3. Result visualization for the evaluation on the IDMT-SMT-Drums dataset. The left plot shows the F-measure
curve, the right plot the precision-recall curve for different threshold levels for peak picking.

3. METHOD

To extract the played notes from the audio signal, first
a spectrogram of the audio signal is calculated. This is
frame-wise fed into an RNN with three output neurons.
The outputs of the RNN provide activation signals for the
three drum instruments. A peak picking algorithm then
identifies the onsets for each instrument’s activation func-
tion, which yields the finished transcript (cf. Figure 1).

In this work, we compare four RNN architectures de-
signed for transcribing solo drum tracks. These are: i. a
simple RNN, ii. a backward RNN (bwRNN), iii. a bidi-
rectional RNN (bdRNN), and iv. an RNN with time shift
(tsRNN). The next section will cover the preprocessing of
the audio signal, which is used for all four RNNs. After
that, the individual architectures are presented in detail.

3.1 Signal Preprocessing

All four RNN architectures use the same features extracted
from the audio signal. As input, mono audio files with 16
bit resolution at 44.1 kHz sampling rate are used. The au-
dio is normalized and padded with 0.25 seconds of silence,
to avoid onsets occurring immediately at the beginning of
the audio file. First a logarithmic power spectrogram is
calculated using a 2048 samples window size and a re-
sulting frame rate of 100Hz. The frequency axis is then
transformed to a logarithmic scale using twelve triangular
filters per octave for a frequency range from 20 to 20,000
Hz. This results in a total number of 84 frequency bins.

3.2 Network Architectures

In this work, four different architectures of RNNs are com-
pared. The four architectures comprise a plain RNN and
three variations which are described in detail in the follow-
ing.

3.2.1 Recurrent Neural Network

The plain RNN features a 84-node input layer which is
needed to handle the input data vectors of the same size.
The recurrent layer consists of 200 recurrently connected

rectified linear units (ReLUs [14]). Although RNNs with
ReLU activations can be difficult to train [20], good results
without special initialization or treatment were achieved
in this work. The connections between the input and the
recurrent layer, the recurrent connections, and the connec-
tions between the recurrent layer and the output layer are
all realized densely (every node is connected to all other
nodes). The output layer consists of three nodes with
sigmoid transfer functions, which provide the activation
functions for the three instrument classes defined earlier.
The sigmoid transfer function was chosen because binary
cross-entropy was used as loss function for training, which
turned out to be easier to train in the experiments.

3.2.2 Backward RNN

This RNN is very similar to the basic RNN with the only
difference being that the recurrent connections are back-
ward instead of forward in time. This was done in order
to evaluate if the short sustain phase of percussive instru-
ments provides additional information for the classifica-
tion. The plain RNN has to identify the instruments at
exactly the time frame of the onset annotation, thus the
sustain phase of the notes can not be considered by it. This
architecture is not real-time-capable since the audio to be
transcribed is analyzed in reverse. Moreover, it might be
more hard for this architecture to find the exact position of
the onsets since the steep slope of the onset is only seen in
forward direction.

3.2.3 Bidirectional RNN

The architecture of the bidirectional RNN used in this work
consists of 100 nodes in a forward layer and 100 nodes in a
backward layer. Both the forward and backward layers are
directly connected to the input layer. Bidirectional RNNs
often produce better results than unidirectional RNNs be-
cause they can also use the context of future frames for
classification. In this work, they are meant to combine both
the strengths of the forward and backward RNN. Unfor-
tunately, this system has the same limitations as the back-
ward RNN, making it not usable for real-time applications.
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Figure 4. Result visualization for the evaluation on the ENST-Drums dataset. The left plot shows the F-measure curve, the
right plot the precision-recall curve for different threshold levels for peak picking.

3.2.4 RNN with Time Shift

This approach is architecturally the same as the simple for-
ward RNN, with the addition that this network can see
more frames of the spectrogram to identify the instruments
active at an onset. For training, the annotations are shifted
into the future by 25ms and after transcription the detected
onsets are shifted back by the same time. Doing this, the
RNN can take a small portion of the sustain phase of the
onset’s spectrogram also into account. This is meant to im-
prove the performance of the classification in the same way
the backward connections do, without losing the real-time
capabilities. The system is to a limited degree still real-
time capable—depending on the length of the time shift.
The used delay of 25ms in this work might still be suffi-
ciently small for certain applications like score following
and other visualizations and it can be tuned to meet the
demands of certain applications.

3.3 Peak Picking

The output neurons of the RNNs provide activation func-
tions for every instrument. To identify the instrument on-
sets, a simple and robust peak picking method designed for
onset detection is used [2]. Peaks are selected at a frame n
of the activation function F (n) if the following three con-
ditions are met:

1. F (n) = max(F (n− pre max : n+ post max)),

2. F (n) ≥ mean(F (n−pre avg : n+post avg))+δ,

3. n− nlastpeak > combination width,

where δ is a threshold varied for evaluation. Simply
put, a peak has to be the maximum of a certain win-
dow, and higher than the mean plus some threshold of
another window. Additionally there has to be a distance
of at least combination width to the last peak. Param-
eters for the windows were chosen to achieve good re-
sults on a development data set while considering that 10
ms is the threshold of hearing two distinct events (values
are converted from frames to ms): pre max = 20ms,

post max = 0ms, pre avg = 20ms, post avg = 0ms,
and combination width = 20ms. Setting post max and
post avg to zero allows the application in online scenarios.

3.4 RNN Training

The task which has to be solved by the RNNs in this work
is a three-way binary classification problem. When pro-
vided with the input spectrogram, the RNN has to identify
the onsets of the three instrument classes by predicting the
activation functions at the output neurons. The training al-
gorithm has to adapt the weights and biases of the network
in a way to achieve this functionality. In this work, the
rmsprop method proposed by Hinton and Tieleman [31]
is used as training algorithm. Additionally, dropout [30]
between the recurrent and the output layer of the RNNs
is used for training. When using dropout, randomly cho-
sen connections are disabled for a single training iteration.
The amount of disabled connections is determined by the
dropout rate.

The goal of the training algorithm is to minimize a
loss function. The loss function measures how much er-
ror the networks makes while reproducing the target func-
tions. As loss function for training, the mean of the bi-
nary cross-entropy of the values of the three output neurons
and the target functions is used (see Figure 2). The train-
ing with rmsprop is based on mini batches. In this work,
mini batches with a size of eight instances were used. The
training instances consist of 100-frame-segments of the ex-
tracted spectrogram. These are generated by extracting the
spectrogram as described in Section 3.1 from the training
files and cutting it into 100-frame-segments with 90 frames
overlap (i.e. 10 frames hop-size). The order of the seg-
ments for training is randomized.

During one epoch the training data is used to adapt the
weights and biases of the network. At the end of an epoch,
the validation data is used to estimate the quality of the
trained network. The training of the RNNs is aborted as
soon as the resulting loss for the validation set has not de-
creased for 10 epochs. As learning rate decay strategy, the
following method is applied: after every seven epochs the
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Results for IDMT-SMT-Drums
algorithm best F-measure[%] at threshold
RNN 96.3 0.15
bwRNN 97.1 0.30
bdRNN 98.1 0.15
tsRNN 98.2 0.25
NMF [5] 95.0 -

Table 1. Evaluation results on the IDMT-SMT-Drums
dataset. The NMF approach serves as state-of-the-art base-
line.

learning rate is halved. For the simple RNN, backward
RNN, and time shifted RNN the following parameter set-
tings are used: initial learning rate rl = 0.001 and dropout
rate rd = 0.2. In case of the bidirectional RNN the fol-
lowing parameter settings are used: initial learning rate
rl = 0.0005 and the dropout rate rd = 0.3. The network is
initialized with weights randomly sampled from a uniform
distribution in the range ±0.01, and zero-value biases.

All hyperparameters like network architecture, dropout
rate, and learning rate were chosen according to empiri-
cal experimentation on a development data set, experience,
and best practice examples.

3.5 Implementation

The implementation was done in Python using Lasagne [8]
and Theano for RNN training and evaluation. The mad-
mom [1] framework was used for signal processing and
feature extraction, as well as for peak picking and evalua-
tion metric calculation (precision, recall, and F-measure).

4. EVALUATION

To evaluate the presented system, the audio files of the test
subset are preprocessed as explained in Section 3.1. Sub-
sequently the spectrogram of the audio file is fed into the
input layer of the RNN. The three neurons of the output
layer provide the activation functions for the three instru-
ments for which the peak picking algorithm then identifies
the relevant peaks. These peaks are interpreted as instru-
ment onsets. The true positive and false positive onsets
are then identified by using a 20 ms tolerance window. It
should be noted that in the state-of-the-art methods for the
ENST-Drums dataset [24] as well as for the IDMT-SMT-
Drums dataset [5], less strict tolerance windows of 30 ms
and 50 ms, respectively, are used. Using these values, pre-
cision, recall, and F-measure for the onsets are calculated.

4.1 Datasets

For training and evaluation the IDMT-SMT-Drums [5]
dataset was used. Some missing annotations have been
added and additionally annotations for the #train tracks
have been created. The #train tracks are tracks contain-
ing separated strokes of the individual instruments. These
are only used as additional training examples and not used
in the test set, to maintain a fair comparison with the results

Results for ENST-Drums
algorithm best F-measure[%] at threshold
RNN 69.3 0.05
bwRNN 64.4 0.15
bdRNN 70.3 0.05
tsRNN 73.1 0.10
HMM [24] 81.5 -

Table 2. Evaluation results on the ENST-Drums dataset.
The HMM approach serves as state-of-the-art baseline.

in [5]. The dataset was split into train, validation, and test
subsets using 70%, 15%, and 15% of the files, respectively.

Additionally, the audio portion of the ENST-Drums [12]
dataset was used as a second independent dataset to evalu-
ate the generalization capabilities of the RNNs. From this
dataset, the wet mixes of the drum-only tracks of all three
drummers were used. Since all models were trained on the
IDMT-SMT-Drums dataset, no splitting of this dataset was
necessary.

For both datasets the three instruments’ target functions
are created by calculating the correct active frames (for a
target frame rate of 100 Hz) using the annotations for each
instrument. The target functions are one at the frames in
which an annotation is present and zero otherwise. See
Figure 2 for a visualization of the target functions in the
context of the input spectrogram.

4.2 Experiments

For all four architectures, two different experiments were
performed. First, the model was trained using the training
and validation subsets of the IDMT-SMT-Drums dataset.
Then, using the trained model, the tracks of the test split
of the dataset were transcribed and the resulting preci-
sion, recall, and F-measure were calculated. Second, the
trained model was evaluated by transcribing the ENST-
Drums dataset and calculating the validation metrics. This
was done to evaluate how well the trained models are able
to generalize and if the models are over-fitted to the train-
ing dataset. Since the ENST-Drums dataset contains more
than just the three instruments with which the model was
trained, only the snare, bass, and hi-hat annotations were
used. This makes it on the one hand easier to identify
all annotated notes, on the other hand, there are some
percussive onsets in the audio, which should not be tran-
scribed and which are counted as false positives if the net-
work falsely interprets them as snare, bass, or hi-hat hits.
The percentage of snare, bass, and hi-hat annotations is
81.2% (i.e., 18.8% are other instruments which are ignored
and potential false positives). The ENST-Drums dataset
contains more expressive and faster drumming styles than
the IDMT-SMT-Drums dataset, making it a more difficult
dataset to transcribe. This fact is reflected in the transcrip-
tion performances of both the state-of-the-art algorithms as
well as the proposed methods. This behavior can also be
observed in the work of Wu and Lerch [32] who apply their
method to both datasets.
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5. RESULTS AND DISCUSSION

Table 1 summarizes the results of all methods on the
IDMT-SMT-Drums dataset. It can be seen that the F-
measure values for all RNNs are higher than the state-of-
the-art. It should be noted at this point, that the approach
presented in [5] was introduced for real-time transcription.
Nevertheless, the used NMF approach uses audio samples
of the exact same instruments which should be transcribed
as prototypes, which is the best-case scenario for NMF
transcription. In contrast, our approach is trained on a split
of the full dataset which contains many different instru-
ment sounds, and thus is a more general model than the one
used in the state-of-the-art approach used as baseline. It
can be observed that the backward RNN performs slightly
better than the plain RNN, which indicates that indeed the
short sustain phases of the drum instruments contain in-
formation which is useful for classification. The bidirec-
tional RNN again performs slightly better than the back-
ward RNN, which comes as no surprise since it combines
the properties of the plain forward and backward RNNs.
The results of the forward RNN with time shift are not
significantly different from the results of the bidirectional
RNN. This indicates that the short additional time frame
provided by the time shift provides sufficient additional in-
formation to achieve similar classification results as with
a bidirectional RNN. Figure 3 shows a F-measure curve
as well as a precision-recall curve for different threshold
levels for peak picking.

The results of the evaluation of the models trained
on the IDMT-SMT-Drums dataset used to transcribe the
ENST-Drums dataset are shown in Table 2. The achieved
F-measure values are not as high as the state-of-the-art in
this case but this was expected. In contrast to [24], the
model used in this work is not trained on splits of the
ENST-Drums dataset and thus not optimized for it. Nev-
ertheless, reasonable high F-measure values are achieved
with respect to the fact that the model was trained on com-
pletely different and more simple data. This can be in-
terpreted as an indication that the model in fact learns, to
some degree, general properties of the three different drum
instruments. Figure 4 shows an F-measure curve as well
as a precision-recall curve for different threshold levels for
peak picking.

In Figures 3 and 4, it can be seen that the highest F-
measure values are found for low values for the threshold
of the peak picking algorithm. This suggests that the RNNs
are quite selective and the predicted activation functions
do not contain much noise—which can in fact be observed
(see Figure 2). This further implies that choices for peak
picking window sizes are not critical, which was also ob-
served in empiric experiments.

6. FUTURE WORK

Next steps for using RNNs for drum transcription will
involve adapting the method to work on polyphonic au-
dio tracks. It can be imagined to combine the presented
method with a harmonic/percussive separation stage, us-
ing, e.g., the method introduced by Fitzgerald et al. [10],

which would yield a drum track transcript from a full poly-
phonic audio track. As we show in this work, the transcrip-
tion methods using RNNs are quite selective and therefore
expected to be robust regarding artifacts resulting from
source separation. Training directly on full audio tracks
may also be a viable option to work on full audio tracks.

Another option is to use more instrument classes than
the three instruments used in this and many other works.
Theoretically, RNNs are not as vulnerable as source sepa-
ration approaches when it comes to the number of instru-
ments to transcribe. It has been shown that RNNs can per-
form well when using a much greater number of output
neurons, for example 88 neurons in the case of piano tran-
scription [4]. Although, for this, a dataset which has a bal-
anced amount of notes played by different instruments has
to be created first.

7. CONCLUSION

In this work, four architectures for drum transcription
methods of solo drum tracks using RNNs were introduced.
Their transcription performances are better than the re-
sults of the state-of-the-art approach which uses an NMF
method—even with the NMF approach having the advan-
tage of being trained on exactly the same instruments used
in the drum tracks. The RNN approaches seem to be able to
generalize quite well, since reasonable high transcription
results are yielded on another, independent, and more diffi-
cult dataset. The precision-recall curves show that the best
results are obtained when using a low threshold for peak
picking. This implies that the used transcription methods
are quite selective, which is an indication that they are ro-
bust and not bound to be influenced by noise or artifacts
when using additional preprocessing steps.
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5
I M P R O V I N G G E N E R A L I Z AT I O N C A PA B I L I T I E S

5.1 overview

The contents of this chapter were published in the following paper:

Richard Vogl, Matthias Dorfer, and Peter Knees. “Drum Transcrip-
tion from Polyphonic Music with Recurrent Neural Networks”. In:
Proceedings of the 42nd IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). New Orleans, LA, USA, 2017.
©2017 IEEE. Reprinted with permission from Richard Vogl, Matthias
Dorfer, and Peter Knees.

The focus of this work is on tackling drum transcription from more
diverse audio material which also features other instruments alongside
the drums. To this end, the previously established RNN-based methods
are adapted to be able to deal with the more difficult data. To surpass
performance of previous state-of-the-art methods on this data, a recur-
rent architecture featuring GRUs is used. Additionally, advanced deep
learning methods are employed to improve the generalization capabil-
ities of the trained models. In detail, data augmentation and dropout
as well as an improved loss function which assigns different weights
to the loss functions of individual instruments, are used. Again, in
this work a label time shift for onset labels is used. Using a small
shift around 30ms backwards in time for all onset labels allows the
network to access required spectral information to classify instrument
onsets. This is due to the fact that the sound, and thus spectral energy
patterns, which characterize the individual instruments occur only
after an onset. In bidirectional networks this information is naturally
provided by the backward connections, but this comes at the cost of
losing realtime capability.

The evaluation shows that unidirectional forward RNNs with addi-
tional label time shift can surpass state-of-the-art systems (NMF-based
as well as BDRNN-based) when using data augmentation and dropout.
While this was shown on simple, drum-only tracks in the previous
work, in this work similar performance improvements compared to
other systems could be achieved on more complex and realistic data.
Analysis of the datasets reveals that certain drum instruments exhibit
strong timbral variation over the data-splits for cross-validation, which
proves to be a generalization challenge when evaluating in a three-fold
cross-validation setup. Data augmentation has been shown to be an
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78 improving generalization capabilities

effective way to circumvent this issue and improve generalization
capabilities of the trained model.

5.2 contributions of authors

As for the last work, I contributed most of this work’s content: ideas
for using data augmentation and more complex RNN architecture for
drum transcription, preparation of datasets, updating the source code
in python, designing and running experiments and evaluation, as well
as writing most of the paper.

Matthias Dorfer’s main contribution for this work was helping with
designing the networks’ architectures. He also provided support with
writing the paper (proofreading, suggestions).

Peter Knees acted as supervisor for this submission: he provided
feedback throughout the process of creating and conducting the exper-
iments, and helped writing the paper, by proofreading and suggesting
improvements.
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ABSTRACT 

Automatic drum transcription methods aim at extracting a 
symbolic representation of notes played by a drum kit in au
dio recordings. For automatic music analysis, this task is of 
particular interest as such a transcript can be used to extract 
high level information about the piece, e.g., tempo, downbeat 
positions, meter, and genre cues. In this work, an approach to 
transcribe drums from polyphonic audio signals based on a re
current neural network is presented. Deep learning techniques 
like dropout and data augmentation are applied to improve 
the generalization capabilities of the system. The method is 
evaluated using established reference datasets consisting of 
solo drum tracks as weH as drums mixed with accompani
ment. The results are compared to state-of-the-art approaches 
on the same datasets. The evaluation reveals that F-measure 
values high er than state of the art can be achieved using the 
proposed method. 

Index Terms- Drum transcription, neural networks, 
deep learning, automatic transcription, data augmentation 

1. INTRODUCTION 

The goal of automatic drum transcription (ADT) systems is 
to create a symbolic representation of the drum instrument 
onsets contained in monaural audio signals. A reliable ADT 
system has many applications in different fields like music 
production, music education, and music information retrieval. 
Good transcription results can be achieved on simple solo 
drum tracks [1], but for complex mixtures in polyphonic au
dio, the problem is still not solved satisfactorily. In this work, 
a robust method to transcribe solo drum tracks using RNNs 
[2] is further extended to be applicable on polyphonic audio. 

As in other work (e.g. [3, 1, 4, 5, 6]), the transcribed 
instrument classes are limited to the three main instruments 
used in most drum kits: bass drum, snare drum, and hi-hat. 
This is a reasonable simplification as these three classes usu
aHy suffice to capture the main rhythm patterns of the drum 
track [3] and cover most of the played notes in full drum kit 
recordings. I 

I > 80% in the case of the ENST-Drums [7] dataset, see sec. 4.1. 
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2. RELATED WORK 

The majority of ADT methods can be categorized into three 
classes: i. segment and classify, ii. match and adapt, and iii. 
separate and detect methods (cf. [9]). 

Segment and classify methods first segment the audio 
signal using, e.g., onset detection and then classify the result
ing fragments regarding contained drum instruments [8, 9]. 
Miron et al. use a combination of frequency filters , onset 
detection and feature extraction in combination with a k
nearest-neighbor [10] and a k-means [8] classifier to detect 
drum sounds in a solo drum audio signal in real-time. 

Match and adapt methods use temporal or spectral tem
plates of the individual drum sounds to detect the events. 
These templates are iteratively adapted during classification 
to better match the events in the input signal. Yoshii et al. 
[11] present an ADT system based on template matching and 
adaptation incorporating harmonic suppression. 

The separate and detect methods utilize source separation 
techniques to separate the drum sounds from the mix. Subse
quently the onsets for the individual drums are detected. The 
most successful technique in this context is non-negative ma
trix factorization (NMF). Dittmar and Gärtner [1] use an NMF 
approach for areal-time ADT system of solo drum tracks. 
Their approach utilizes training instances for the individual 
drum instrument of each track. 

Additionally there are methods which combine tech
niques from these categories. Hidden Markov Models (HMMs) 
can be used to perfonn segmentation and classification in one 
step. Paulus and Klapuri [3] use HMMs to model the develop
ment of MFCCs over time and incorporate an unsupervised 
acoustic model adaptation. Decoding the most likely se
quence yields activation curves for bass drum, snare drum, 
and hi-hat and can be applied for both solo drum tracks as weil 
as polyphonic music. Wu and Lerch [5] use an extension of 
NMF, the so-called partially fixed NMF (PFNMF), for wh ich 
they also evaluate two different template adaptation methods. 

Artificial neural networks represent a powerful machine 
learning technique which is being successfuHy applied in 
many different fields. Recurrent neural networks (RNNs) 
are neural networks with additional connections (recurrent 
connections) in each layer, providing the outputs of the same 
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Fig. 1. Overview of the proposed method. The extracted 
spectrogram is fed into the trained RNN wh ich outputs activa
tion functions for each instrument. A peak picking algorithms 
selects appropriate peaks as instrument onset candidates. 

layer from the last time step as additional inputs. These 
recurrent connections serve as a kind of memory which is 
beneficial for tasks with sequential input data. For example, 
RNNs have been shown to perform weil for speech recogni
tion [12] and handwriting recognition [13]. 

RNNs have several advantages in the context of automatic 
music transcription. As shown in the context of automatic 
piano transcription by Böck and Schedl [14], RNNs are ca
pable of handling many different classes beUer than NMF. 
This becomes particularly relevant when classifying pitches 
(typically up to 88) [14] or many instruments. Southall et 
al. [15] apply bidirectional RNNs (BDRNNs) for ADT and 
demonstrate the capability of RNNs to detect snare drums in 
polyphonic audio better than state of the art. In [2], we show 
that time-shift RNNs (tsRNNs) perform as weIl as BDRNNs 
when used for ADT on solo drum tracks, while maintain
ing online capability and also demonstrate the generalization 
capabilities of RNNs in the context of ADT. In the present 
work, this method is further developed into an online-capable 
ADT system for polyphonic audio, wh ich further improves 
the state of the art. 

3. METHOD 

Fig. 1 shows an overview of the proposed method. First, the 
input features derived from the power spectrogram of the au
dio signal are calculated. The result is frame-wise fed into 
an RNN with three output neurons. The outputs of the RNN 
provide activation signals for the three drum instruments con
sidered (bass drum, snare drum, and hi-hat). A peak picking 
algorithm then identifies the onsets for each instrument's acti
vation function, which yields the finished transcript. The next 
sections will cover the individual steps of the method in detail. 

3.1. Feature Extraction 

As input, mono audio files with 16 bit resolution at 44. 1kHz 
sampling rate are used. The audio is normalized and padded 
with 0.25 seconds of silence at the start to avoid undesired ar
tifacts resulting from onsets which occur immediately at the 
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Fig. 2. Spectrogram of a drum track with accompaniment 
(top) and target functions for bass drum , snare drum, and hi
hat (middle). The target functions have a value of 1.0 for the 
frames which correspond to the annotations of the individual 
instruments and 0.0 otherwise. The frame rate of the target 
function is 100Hz, the same as for the spectrogram. The third 
plot (bottom) shows the output of a trained RNN for the spec
trogram in the top plot. 

beginning. A logarithmic power spectrogram is calculated us
ing a 2048-samples window size and a resulting frame rate 
of 100Hz. The frequency axis is transformed to a logarith
rnic sc ale using twelve triangular filters per octave over a fre
quency range from 20 to 20,000 Hz. This results in a total 
number of 84 frequency bins. Additionally the positive first
order-differential over time of this spectrogram is calculated. 
The resulting differential-spectrogram-frames are stacked on 
top of the normal spectrogram frames, resulting in feature 
vectors with a length of 168 (2x84) values. 

3.2. Recurrent Neural Network 

In this work, a two-layer RNN architecture with label time 
shift is used (tsRNN). It has been shown that these networks 
pertorm as weil as BDRNNs on solo drum tracks, while hav
ing the advantage of being online capable [2]. The RNN 
features a 168 node input layer wh ich is needed to handle the 
input data vectors of the same size. Two recurrent layers, con
sisting of 50 gated recurrent units (GRUs [16]) each, follow. 
The connections between the input and the recurrent layers, 
the recurrent connections, as weIl as the connections between 
the recurrent layer and the next layer are all realized densely 
(every node is connected to all other nodes). A so-called 
dropout layer [17] is situated between the recurrent and the 
output layer. In this layer, connections are randomly disabled 
for every iteration during training. This helps preventing 
overfitting to the training data. The amount of disabled con
nections is controlled by the dropout rate, which was set to 
r d = 0.3. The output layer consists of three nodes with sig
moid transfer functions, wh ich output the activation functions 
for the three instrument classes defined earlier. 

Label time shift refers to the process of shifting the orig-



inal an notations. After transcription, the detected onsets are 
shifted back by the same time. In doing so, the RNN can also 
take a small portion of the sustain phase of the onset's spec
trogram into account. The used delay of 30ms (corresponds 
to three spectrogram frames) in this work is still sufficiently 
small for certain applications like score following and other 
visualizations, while it can be tuned to meet the demands of 
other applications. 

3.3. Peak Picking 

The neurons of the output layer generate activation functions 
for the individual instruments (see fig. 2). The instrument 
onsets are identified using the same peak picking method as 
in [2]: A point n in the function F(n) is considered a peak if 
these terms are fulfilled: 

1. F(n) = max (F(n - m) , ·· . , F(n», 

2. F(n) 2: m ean(F(n - a) , ··· , F(n» + 0, 

3. n - n lp > W, 

where <5 is a variable threshold. A peak must be the maxi
mum value within a window of size m + 1, and exceeding the 
mean value plus a threshold within a window of size a + 1. 
Additionally, a peak must have at least a distance of w + 1 to 
the last detected peak (nl p ). Values for the parameters were 
tuned on a development dataset to be: m = a = w = 2. 

3.4. RNN Training 

When fed with the features at the input nodes, the RNN 
should reproduce the activation functions of the individ
ual instruments at the output neurons. During training, the 
update function adapts parameters of the network (weights 
and biases of neurons) using the calculated error (loss) and 
the gradient through the network. As update function, the 
rmsprop method is used [18]. 

As loss function, the mean of the binary cross-entropy be
tween outputs of the network and target functions is used (see 
fig. 2). Snare drum and hi-hat onsets are considered more 
difficult to transcribe than bass drum [3, 5, 15]. Due to this 
fact, the loss functions of the output neurons for bass drum 
(1.0), snare drum (4.0), and hi-hat (1.5) are weighted differ
ently. This way, errors for snare drum and hi-hat are penalized 
more, wh ich forces the training to focus on them. 

RNN training using rmsprop involves so-called mini
batches. In this work, a mini-batch consists of eight training 
instances. The training instances are obtained by cutting 
the extracted spectrograms into IOO-frame-segments with 
90 frames overlap. The order of the segments for training 
is randomized. To further increase generalization, data
augmentation [19] is used. The training instances are ran
domly augmented using pitch shift (- 5 to + 10 frequency 
bins) and time stretching (scale factors: 0.70, 0.85, 1.00, 
1.30, 1.60). 

Training is structured into epochs, during wh ich the train
ing data is used to optimize the parameters of the network. 
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At the end of an epoch a validation set (25% excluded from 
the training set) is used to estimate the performance of the 
trained network on data not used for training. The training of 
the RNN is aborted as soon as the resulting loss on the valida
tion set has not decreased for 10 epochs. The initial learning 
rate was set to Tl = 0.007, the learning rate is reduced to a 
fifth every 7 epochs. 

All hyperparameters like network architecture, dropout 
rate, augmentation parameters, and learning rate were chosen 
accordingly to experiments on a development dataset, experi
ence, and best practice examples. 

4. EVALUATION 

The well-known metrics precision, recaIl, and F-measure 
are used to evaluate the performance of the presented sys
tem. True positive, false positive, and false negative onsets 
are identified by using a 20ms tolerance window. It should 
be noted that state-of-the-art methods for the ENST-Drums 
dataset [3] as weIl as for the IDMT-SMT-Drums dataset [1], 
use less strict tolerance windows of 30ms and 50ms, re
spectively, for evaluation. However, listening experiments 
showed that distinct events with a delay of 50ms are already 
perceivable. Therefore, in this work, 20ms windows are 
used. 

4.1. Datasets 

For evaluation, two well-known datasets are used. The IDMT
SMT-Drums [1] contains recorded (RealDrum) , synthesized 
(TechnoDrum), and sampled (WaveDrum) drum tracks. It 
comprises 560 files of which 95 are simple drum tracks (of 
approx. 15sec). The rest are single-instrument training tracks. 

As second dataset the ENST-Drums set [7] is used. The 
dataset consists of real drum recordings of three drummers 
performing on three different drum kits. The recordings are 
available as solo instrument tracks and as two mixtures (dry 
and wet). For a subset, accompaniment tracks are included 
(minus-one tracks). The total length of the recorded mate
rial is roughly 75 minutes per drummer. In this work, the 
wet mixes of the minus-one tracks plus accompaniment of all 
three drummers were used. Since the ENST-Drums dataset 
contains more than the three main instruments, only the snare, 
bass, and hi-hat annotations were used. 8l.2% of onsets are 
annotated as snare drum, bass drum, and hi-hat while the re
maining 18.8% cover other cymbals and tom-tom drums. 

4.2. Experiments 

The proposed method was evaluated in four different exper
iments. These were performed using i. the drum tracks of 
the IDMT-SMT-drums dataset (SMT solo), ii. the minus-one 
tracks of the ENST-drums dataset without accompaniment 
(ENST solo), and iii. the minus-one tracks mixed with ac
companiment of aforementioned (ENST acc.). In the ex
periments, on SMT solo a three-fold cross validation on the 



F-measure [%] for individual methods on datasets 
Method 
NMF [1] 
PFNMF[5] 
HMM [3] 
BDRNN [15] 

- tsRNN - --

SMTsolo 
(95.0) 

81.6 (-) 
(-) 

83.3 (96.1) 
92.S - (96.6) 

ENST solo 

77.9 
81.5 
73.2 

- - 83~3- -

ENST acc. 

72.2 
74.7 
66.9 
75.0 

Table 1. Top four rows show resuIts of state-of-the-art al go
rithms. Highest values were achieved at peak picking thresh
olds of 0.10 and 0.15 (ENST solo, SMT solo opt. cf. fig. 3). 
Values in brackets represent results for optimized models 
(SMT solo opt. see sec. 4.2). 

three splits (RealDrum, TechnoDrum, and WaveDrum) of the 
dataset was performed (comparable to the automatie experi
ment in [15] and [5]). Additionally a six-fold cross validation 
on six randomized splits was performed (SMT solo opt.). This 
task is comparable to the semi-automatie experiments in [15], 
and [1]-it is arguably a even harder task, since in a model 
is trained on more than the training data of just one track. In 
both cases the corresponding splits of the training tracks are 
additionally used only for training. 

In the case of ENST solo and ENST ace. the dataset was 
split into three parts consisting of the tracks of one drununer 
and a three-fold cross validation was performed. Training for 
each fold was performed on all tracks of two drummers while 
testing was done on the minus-one tracks (without and with 
accompaniment resp.) of the third drummer and thus on un
seen data. This is consistent with the experiments performed 
in [3, 5, 15]. 

5. RESULTS 

Tab. 1 summarizes the results of the presented method and 
state-of-the-art methods on the used datasets. It can be seen 
that the F-measure values for the tsRNN approach are higher 
than the state of the art for SMT solo and ENST solo, and on 
the same level for ENST aec.Since for training, both tracks 
with and without accompaniment were used, the same mod
els are applied to ENST solo and ENST ace. splits, wh ich 
further demonstrates the capability of the presented method 
to generalize weIl. Fig. 3 shows F-measure and precision
recall curves for the cross-validation results on the individual 
datasets. For these curves the threshold level for peak picking 
was varied in the range 0.05 to 0.95 using steps of 0.05. It 
can be seen that the highest F-measure values are found for 
threshold values of 0.10 and 0.015, which is lower than the 
expected value of around 0.5 (target functions range is 0-1). 
This is due to the fact that the output of the RNN does not 
contain much noise (see fig. 2), which implies that the trained 
RNN is capable of effectively filtering accompaniment. 

Since the target functions contain Iittle noise while strong 
peaks are present for instrument onsets, only little time was 
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Fig. 3. Results of the evaluation on the individual datasets. 
Left plot shows F-measure curve, right plot precision-recall 
curves for different threshold levels (0) for peak picking. Best 
results were achieved at thresholds of 0.10 and 0.15. 

invested optimizing peak picking. Noticeable improvements 
to [2] were achieved by using data augmentation and GRUs 
instead of RNN units for the network. 

6. CONCLUSION 

In this work, an approach for drum transcription from solo 
drum tracks and polyphonic music was introduced. The 
proposed method uses an RNN with two recurrent layers 
consisting of GRUs in combination with label time shift and 
introduces loss function weighting for the individual instru
ments to increase transcription performance. Additionally 
dropout and data augmentation are successfully applied to 
overcome overfitting to the individual drum sounds in the dif
ferent dataset splits. The presented system is online capable 
with a latency of 30ms introduced by the label time shift. 

In contrast to hand-crafted systems and features, where 
the architecture is often difficult to adapt when shortcomings 
are detected, RNNs have shown to be more flexible. A ma
jor advantage of such a technique is that the system can be 
focused on training instances on which the model previously 
failed . In table 1 it can be seen that RNNs are capable of 
learning to filter accompaniment and perform weil also on 
polyphonic music. It has been shown that the transcription F
measure performance of the proposed method is higher than 
the results of state-of-the-art approaches, even when using a 
more stringent tolerance window for evaluation. 
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6
M E TA I N F O R M AT I O N F O R D R U M T R A N S C R I P T S

6.1 overview

The contents of this chapter were published in the following work:

Richard Vogl, Matthias Dorfer, Gerhard Widmer, and Peter Knees.
“Drum Transcription via Joint Beat and Drum Modeling using Con-
volutional Recurrent Neural Networks”. In: Proceedings of the 18th
International Society for Music Information Retrieval Conference (ISMIR).
Suzhou, China, 2017.

In this chapter, a shortcoming of previous works is addressed: sys-
tems introduced so far only focus on drum instrument onset times.
However, depending on the application, additional data which has
to be extracted from the audio signal may be required to create the
desired transcripts. This metadata can, for example, comprise: bar
lines, global and local tempo, time signature, dynamics, and playing
technique for the application of sheet music extraction. Important
metadata that is required for many different applications are the bar
lines (bar boundaries), time signature, and local tempo. This data can
be obtained by using a downbeat and beat tracking system. To this end,
in the publication for this chapter, a beat tracking system is trained
alongside the ADT system in a multi-task fashion. This is done since
beats and drum instrument onsets are usually highly correlated, and it
can be assumed that training on correlated data in a multi-task fashion
will further improve the individual performances on the subtasks.

Additionally, in this work, CNNs and CRNNs for ADT are introduced.
The motivation for using convolutions and combining convolutional
with recurrent layers for a drum transcription system is as follows:
convolutional layers, which process small subsections of the input
spectrograms, are well suited to identify the percussive onsets, which
are represented by temporally localized energy bursts. By adding
recurrent layers after the convolutional stack, the network has the
means to model long term temporal structures, like rhythmic patterns
and beats.

For evaluation, an RNN system similar to previously introduced
ones, and the newly introduced CNN-based and CRNN-based ADT sys-
tems are compared. In previous experiments it had been shown that
bidirectional architectures do not necessarily provide an edge in per-
formance if a label time shift is used. However, a desirable behavior of
RNNs, especially in the context of beat detection, would be to consider
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global rhythmical structures. Since the only main advantage of using
label time shift over bidirectional networks is gaining realtime capa-
bility, a switch to bidirectional architectures was made in this work.
Additionally to the beat tracking and drum transcription performance
evaluation, an evaluation of performance differences when using (i)
multi-task training for beats and drums, (ii) annotated beat informa-
tion as additional input features, and (iii) no beat information, was
performed.

The evaluation reveals that beats and downbeat information is ben-
eficial for drum transcription and that training on beats and drums
in a multi-task fashion can improve the drum transcription perfor-
mance for recurrent architectures. Additionally, the results show that
CRNNs perform better than simple RNN networks, while CNNs exhibit
a comparable performance for ADT on the used datasets.

6.2 contributions of authors

As first author, I contributed the largest part of this work’s content.
Evaluating CNNs was, on one hand, long due, because of their success
in many other tasks. On the other hand, we knew that detecting bass
and snare drum with CNNs works reasonably well from unpublished
experiments conducted by Matthias Leimeister. Using CRNNs, the idea
of using beat tracking to add meta information, as well as using multi-
task learning to improve performance was the logical consequence of
previous work and the other ideas for this work. Besides that, I again
prepared the datasets, updated the experiment source code, designed
and ran experiments, as well as wrote most of the paper.

For this work, Matthias Dorfer contributed a special universal batch-
iterator which can prepare data in the format required for RNN, CNN,
as well as CRNN training. Additionally, he helped with designing the
CNN and CRNN network architecture. He supported me with writing
the paper by helping with the title, abstract, and proofreading.

Gerhard Widmer and Peter Knees acted as supervisors for this work.
They both provided valuable feedback, and helped to improve the
paper.

As mentioned in the acknowledgments, Mark Übel and Jo Thal-
mayer, both Red Bull Music Academy alumni, provided the basis
for drum annotations for the used multi-task dataset. Sebastian Böck
helped with the beat and downbeat annotations, and also provided
some valuable input for beat tracking in general. All annotations of the
data used in this work were double-checked and corrected by myself.
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ABSTRACT

Existing systems for automatic transcription of drum
tracks from polyphonic music focus on detecting drum in-
strument onsets but lack consideration of additional meta
information like bar boundaries, tempo, and meter. We ad-
dress this limitation by proposing a system which has the
capability to detect drum instrument onsets along with the
corresponding beats and downbeats. In this design, the sys-
tem has the means to utilize information on the rhythmical
structure of a song which is closely related to the desired
drum transcript. To this end, we introduce and compare
different architectures for this task, i.e., recurrent, convo-
lutional, and recurrent-convolutional neural networks. We
evaluate our systems on two well-known data sets and an
additional new data set containing both drum and beat
annotations. We show that convolutional and recurrent-
convolutional neural networks perform better than state-of-
the-art methods and that learning beats jointly with drums
can be beneficial for the task of drum detection.

1. INTRODUCTION

The automatic creation of symbolic transcripts from music
in audio files is an important high-level task in music infor-
mation retrieval. Automatic music transcription systems
(AMT) aim at solving this task and have been proposed in
the past (cf. [1]), but there is yet no general solution to this
problem. The transcription of the drum instruments from
an audio file of a song is a sub-task of automatic music
transcription, called automatic drum transcription (ADT).
Usually, such ADT systems focus solely on the detection
of drum instrument note onsets. While this is the necessary
first step, for a full transcript of the drum track more in-
formation is required. Sheet music for drums—equally to
sheet music for other instruments—contains additional in-
formation required by a musician to perform a piece. This
information comprises (but is not limited to): meter, over-
all tempo, indicators for bar boundaries, indications for lo-
cal changes in tempo, dynamics, and playing style of the

c© Richard Vogl, Matthias Dorfer, Gerhard Widmer, Peter
Knees. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Richard Vogl, Matthias Dorfer, Ger-
hard Widmer, Peter Knees. “Drum Transcription via Joint Beat and Drum
Modeling using Convolutional Recurrent Neural Networks”, 18th Inter-
national Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

piece. To obtain some of this information, beat and down-
beat detection methods can be utilized. While beats pro-
vide tempo information, downbeats add bar boundaries,
and the combination of both provides indication for the
meter within the bars.

In this work, neural networks for joint beat and drum
detection are trained in a multi-task learning fashion.
While it is possible to extract drums and beats separately
using existing work and combine the results afterwards,
we show that it is beneficial to train for both tasks together,
allowing a joint model to leverage commonalities of the
two problems. Additionally, recurrent (RNN), convolu-
tional (CNN) and convolutional-recurrent neural network
(CRNN) models for drum transcription and joint beat and
drum detection are evaluated on two well-known, as well
as a new data set.

The remainder of this work is structured as follows. In
the next section, we discuss related work. In sec. 3, we
describe the implemented drum transcription pipeline used
to evaluate the network architectures, followed by a sec-
tion discussing the different network architectures (sec. 4).
In sec. 5, we explain the experimental setup to evaluate the
joint learning approach. After that, a discussion of the re-
sults follows in sec. 6 before we draw conclusions in sec. 7.

2. RELATED WORK

While in the past many different approaches for ADT have
been proposed [11,13,15,16,22,24,25,34,38], recent work
focuses on end-to-end approaches calculating activation
functions for each drum instrument. These methods uti-
lize non-negative matrix factorization (NMF, e.g. adaptive-
NMF in Dittmar et al. [7] and partially fixed NMF in Wu
et al. [37]) as well as RNNs (RNNs with label time-shift
in Vogl et al. [35, 36] and bidirectional RNNs in Southall
et al. [31]) to extract the activation functions from spec-
trograms of the audio signal. Such activation-function-
based end-to-end ADT systems circumvent certain issues
associated with other architectures. Methods which first
segment the song (e.g. using onset detection) and subse-
quently classify these segments [22, 23, 38] suffer from a
loss of information after the segmentation step—i.e. when-
ever the system fails to detect a segment, this information
is lost. Such systems heavily depend on the accuracies of
the single components, and can never perform better than
the weakest component in the pipeline. Additionally, infor-
mation of the input signal which is discarded after a pro-
cessing step might still be of value for later steps.
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Since RNNs, especially long short-term memory
(LSTM) [17] and gated recurrent unit (GRU) [5] networks,
are designed to model long term relationships, one might
suspect that systems based on RNNs [31,35,36] can lever-
age the repetitive structure of the drum tracks and make
use of this information. Contrary to this intuition this is
not the case for RNN-based systems proposed so far. Both
the works of Vogl et al. [35, 36] and Southall et al. [31]
use snippets with length of only about one second to train
the RNNs. This prohibits learning long-term structures
of drum rhythms which are typically in the magnitude of
two or more seconds. In [35], it has been shown that
RNNs with time-shift perform equally well as bidirectional
RNNs, and that backward directional RNNs perform better
than forward directional RNNs. Combining these findings
indicates that the learned models actually mostly consider
local features. Therefore, RNNs trained in such a manner
seem to learn only an acoustic, but not a structural model
for drum transcription.

Many works on joint beat and downbeat tracking have
been published in recent years [2, 9, 10, 19–21, 26]. A dis-
cussion of all the different techniques would go beyond the
scope of this work. One of the most successful methods by
Böck et al. [2] is a joint beat and downbeat tracking sys-
tem using bidirectional LSTM networks. This approach
achieves top results in the 2016 MIREX task for beat de-
tection and can be considered the current state of the art. 1

In this work, a multi-task learning strategy is used to
address the discussed issues of current drum transcription
systems, cf. [4]. The use of a model jointly trained on
drum and beat annotations, combined with longer train-
ing snippets, allows the model to learn long-term relations
of the drum patterns in combination with beats and down-
beats. Furthermore, learning multiple related tasks simul-
taneously at once can improve results for the single tasks.
To this end, different architectures of RNNs, CNNs, and
a combination of both, convolutional-recurrent neural net-
works (CRNNs) [8, 27, 39], are evaluated.

The rationale behind selecting these three methods for
comparison is as follows. RNNs have proven to be well-
suited for both drum and beat detection, as well as learning
long-term dependencies for music language models [30].
CNNs are among the best performing methods for many
image processing and other machine learning tasks, and
have been used on spectrograms of music signals in the
past. For instance, Schlüter and Böck [28] use CNNs to
improve onset detection results, while Gajhede et al. [12]
use CNNs to successfully classify samples of three drum
sound classes on a non-public data set. CRNNs should re-
sult in a model, in which the convolutional layers focus on
acoustic modeling of the events, while the recurrent layers
learn temporal structures of the features.

3. DRUM TRANSCRIPTION PIPELINE

The implemented method is an ADT system using a similar
pipeline as presented in [31] and [36]. Fig. 1 visualizes

1 http://www.music-ir.org/mirex/wiki/2016:
MIREX2016_Results

Figure 1. System overview of the implemented drum tran-
scription pipeline used to evaluate the different neural net-
work architectures.

the overall structure of the system. The next subsections
discuss the single blocks of the system in more detail.

3.1 Feature Extraction

First, a logarithmic magnitude spectrogram is calculated
using a 2048-samples window size and a resulting frame
rate of 100Hz from a 44.1kHz 16bit mono audio signal
input. Then, the frequency bins are transformed to a loga-
rithmic scale using triangular filters (twelve per octave) in
a frequency range from 20 to 20,000 Hz. Finally, the posi-
tive first-order-differential over time of this spectrogram is
calculated and concatenated. This results in feature vectors
with a length of 168 values (2x84 frequency bins).

3.2 Activation Function Calculation

The central block in fig. 1 represents the activation func-
tion calculation step. This task is performed using a neu-
ral network (NN) trained on appropriate training data (see
sec. 4). As in most of the related work, we only consider
three drum instruments: bass- or kick drum, snare drum,
and hi-hat.

While the architectures of the single NNs are different,
they share certain commonalities: i. all NNs are trained
using the same input features; ii. the RNN architectures
are implemented as bidirectional RNNs (BRNN) [29]; iii.
the output layers consist of three or five sigmoid units, rep-
resenting three drum instruments under observation (drum
only) or three drum instruments plus beat and downbeat
(drum and beats), respectively; and iv. the NNs are all
trained using the RMSprop optimization algorithm pro-
posed by Tieleman et al. [33], using mini-batches of size
eight. For training, we follow a three-fold cross validation
strategy on all data sets. Two splits are used for training,
15% of the training data is separated and used for valida-
tion after each epoch, while testing/evaluation is done on
the third split. The NNs are trained using a fixed learn-
ing rate with additional refinement if no improvement on
the validation set is achieved for 10 epochs. During refine-
ment the learning rate is reduced and training continues
using the parameters of the best performing model so far.

More details on the individual NN architectures are pro-
vided in sec. 4.
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Figure 2. Comparison of mode of operation of RNNs, CNNs, and CRNNs on spectrograms of audio signals. RNNs process
the input in a sequential manner. Usually, during training, only sub-sequences of the input signal are used to reduce the
memory footprint of the networks. CNNs process the signal frame by frame without being aware of sequences. Because
of this, a certain spectral context is added for each input frame. CRNNs, like RNNs, process the input sequentially, but
additionally, a spectral context is added to every frame on which convolution is performed by the convolutional layers.

3.3 Preparation of Target Functions

For training the NNs, target functions of the desired out-
put are required besides the input features. These target
functions are generated by setting frames of a signal with
the same frame rate as the input features to 1 whenever an
annotation is present and to 0 otherwise. A separate target
function is created for each drum instrument as well as for
beats and downbeats.

3.4 Peak Picking

In the last step of our pipeline (rightmost block of fig. 1),
the drum instrument onsets (and beats if applicable) are
identified using a simple peak picking method introduced
for onset detection in [3]: A point n in the activation func-
tion fa(n) is considered a peak if these terms are fulfilled:

1. fa(n) = max(fa(n−m), · · · , fa(n)),

2. fa(n) ≥ mean(fa(n− a), · · · , fa(n)) + δ,

3. n− nlp > w,

where δ is a variable threshold. A peak must be the
maximum value within a window of size m + 1, and ex-
ceeding the mean value plus a threshold within a window
of size a + 1. Additionally, a peak must have at least a
distance of w + 1 to the last detected peak (nlp). Values
for the parameters were tuned on a development data set to
be: m = a = w = 2.

The threshold for peak picking is determined on the
validation set. Since the activation functions produced by
the NN contain little noise and are quite spiky, rather low
thresholds (0.1− 0.2) give best results.

4. NEURAL NETWORK MODELS

In this section, we explore the properties of the neural net-
work models considered more closely. Of the NN cat-
egories mentioned before, we investigate three different
types: bidirectional recurrent networks (BRNN), convolu-
tional networks (CNN), and convolutional bidirectional re-
current networks (CBRNN). For every class of networks,

two different architectures are implemented: i. a smaller
network, with less capacity, trained on shorter subse-
quences (with focus only on acoustic modeling), and ii.
a larger network, trained on longer subsequences (with ad-
ditional focus on pattern modeling).

Even though we previously showed that RNNs with la-
bel time-shift achieve similar performance as BRNNs [35,
36], in this work, we will not use time-shift for target la-
bels. This is due to three reasons: i. the focus of this work
is not real-time transcription but a comparison of NN ar-
chitectures and training paradigms, therefore using a bidi-
rectional architecture has no downsides; ii. it is unclear
how label time-shift would affect CNNs; iii. in [2], the
effectiveness of BRNNs (BLSTMs) for beat and down-
beat tracking is shown. Thus, in the context of this work,
using BRNNs facilitates combining state-of-the-art drum
and beat detection methods while allowing us to compare
CNNs and RNNs in a fair manner.

4.1 Bidirectional Recurrent Neural Network

Gated recurrent units (GRUs [5]) are similar to LSTMs in
the sense that both are gated RNN-cell types that facilitate
learning of long-term relations in the data. While LSTMs
feature forget, input, and output gates, GRUs only exhibit
two gates: update and output. This makes the GRU less
complex in terms of number of parameters. It has been
shown that both are equally powerful [6], with the differ-
ence that more GRUs are needed in an NN layer to achieve
the same model capacity as with LSTMs, resulting in more
or less equal number of total parameters. An advantage of
using GRUs is that hyperparameter optimization for train-
ing is usually easier compared to LSTMs.

In this work, two bidirectional GRU (BGRU) architec-
tures are used. The small model (BGRU-a) features two
layers of 50 nodes each, and is trained on sequences of
100 frames; the larger model (BGRU-b) consists of three
layers of 30 nodes each, and is trained on sequences of
400 frames. For training an initial learning rate of 0.007 is
used.
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Frames Context Conv. Layers Rec. Layers Dense Layers
BGRU-a 100 — — 2 x 50 GRU —
BGRU-b 400 — — 3 x 30 GRU —
CNN-a — 9 1xA + 1xB — 2 x 256
CNN-b — 25 1xA + 1xB — 2 x 256
CBGRU-a 100 9 1xA + 1xB 2 x 50 GRU —
CBGRU-b 400 13 1xA + 1xB 3 x 60 GRU —

Table 1. Overview of used neural network model architectures and parameters. Every network additionally contains a
dense sigmoid output layer. Conv. block A consists of 2 layers with 32 3x3 filters and 3x3 max-pooling; conv. block B
consists of 2 layers with 64 3x3 filters and 3x3 max-pooling; both use batch normalization.

4.2 Convolutional Neural Network

Convolutional neural networks have been successfully ap-
plied not only in image processing, but also many other
machine learning tasks. The convolutional layers are con-
structed using two different building blocks: block A con-
sists of two layers with 32 3x3 filters and block B consists
of two layers with 64 3x3 filters; both in combination with
batch normalization [18], and each followed by a 3x3 max
pooling layer and a drop-out layer (λ = 0.3) [32].

For both CNN models, block A is used as input, fol-
lowed by block B, and two fully connected layers of size
256. The only difference between the small (CNN-a) and
the large (CNN-b) model is the context used to classify a
frame: 9 and 25 frames are used for CNN-a and CNN-b re-
spectively. While plain CNNs do not feature any memory,
the spectral context allows the CNN to access surround-
ing information during training and classification. How-
ever, a context of 25 frames (250ms) is not enough to find
repetitive structures in the rhythm patterns. Therefore, the
CNN can only rely on acoustic, i.e., spectral features of the
signal. Nevertheless, with advanced training methods like
batch normalization, as well as the advantage that CNNs
can easily learn pitch invariant kernels, CNNs are well-
equipped to learn a task adequate acoustic model. For
training an initial learning rate of 0.001 is used.

4.3 Convolutional Bidirectional RNN

Convolutional recurrent neural networks (CRNN) repre-
sent a combination of CNNs and RNNs. They feature con-
volutional layers as well as recurrent layers. Different im-
plementations are possible. In this work, the convolutional
layers directly process the input features, i.e. spectrogram
representations, meant to learn an acoustic model (cf. 2D
image processing tasks). The recurrent layers are placed
after the convolutional layers and are supposed to serve as
a means for the network to learn structural patterns.

For this class of NN, the two versions differ in the fol-
lowing aspects: CBGRU-a features 2 recurrent layers with
30 GRUs each, uses a spectral context of 9 frames for con-
volution, and is trained on sequences of length 100; while
CBGRU-b features 3 recurrent layers with 60 GRUs each,
uses a spectral context of 13 frames, and is trained on se-
quences of length 400. For training an initial learning rate
of 0.0005 is used.

Table 1 recaps the information of the previous sections
in a more compact form. Figure 2 visualizes the modes
of operation of the different NN architectures on the input
spectrograms.

5. EVALUATION

For evaluation of the introduced NN architectures, the dif-
ferent models are individually trained on single data sets in
a three-fold cross-validation manner. For data sets which
comprise beat annotations, three different experiments are
performed (explained in more detail in section 5.2); using
data sets only providing drum annotations, just the drum
detection task is performed.

5.1 Data Sets

In this work, the different methods are evaluated using
three different data sets, consisting of two well-known and
a newly introduced set.

5.1.1 IDMT-SMT-Drums v.1 (SMT)

Published along with [7], the IDMT-SMT-Drums 2 data
set comprises tracks containing three different drum-set
types. These are: i. real-world, acoustic drum sets (ti-
tled RealDrum), ii. drum synthesizers (TechnoDrum), and
iii. drum sample libraries (WaveDrum). It consists of 95
simple drum tracks containing bass drum, snare drum and
hi-hat only. The tracks have an average length of 15s and
a total length of 24m. Also included are additional 285
shorter, single-instrument training tracks as well as 180
single instrument tracks for 60 of the 95 mixture tracks
(from the WaveDrum02 subset)—intended to be used for
source separation experiments. These additional single in-
strument tracks are used as additional training samples (to-
gether with their corresponding split) but not for evalua-
tion.

5.1.2 ENST Drums (ENST)

The ENST-Drums set [14] contains real drum recordings
of three different drummers performing on different drum
kits. 3 Audio files for separate solo instrument tracks

2 https://www.idmt.fraunhofer.de/en/business_
units/m2d/smt/drums.html

3 http://perso.telecom-paristech.fr/˜grichard/
ENST-drums/
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Input Features Target Functions
Spectrogram Beats Drums Beats

DT 3 3

BF 3 3 3

MT 3 3 3

Table 2. Overview of experimental setup. Rows repre-
sent individual tasks and show their input feature and target
function combinations.

as well as for two mixtures are included. Additionally,
accompaniment tracks are available for a subset of the
recordings—the so called minus-one tracks. In this work,
the wet mixes (contains standard post-processing like com-
pression and equalizing) of the minus-one tracks were
used. They make up 64 tracks of 61s average length and a
total length of 1h.

Evaluation was performed on the drum-only tracks
(ENST solo) as well as the mixes with their accompani-
ment tracks (ENST acc.). Since the ENST-Drums data set
contains more than the three instruments under observa-
tion, only the snare, bass, and hi-hat annotations were used.

5.1.3 RBMA Various Assets 2013 (RBMA13)

This new data set consists of the 30 tracks of the freely
available 2013 Red Bull Music Academy Various As-
sets sampler. 4 The sampler covers a variety of elec-
tronically produced music, which encompasses electronic
dance music (EDM) but also singer-songwriter tracks and
even fusion-jazz styled music. Three tracks on the sampler
do not contain any drums and are therefore ignored. An-
notations for drums, beats, and downbeats were manually
created. Tracks in this set have an average length of 3m
50s. The total length of the data set is 1h 43m.

This data set is different from the other two data sets in
three aspects: i. it contains quite diverse drum sounds, ii.
the drum patterns are arranged in the usual song-structure
within a full length track, and iii. most of the tracks contain
singing voice, which showed to be a challenge for systems
solely trained on music without singing voice. The annota-
tions for drums and beats have been manually created and
are publicly available for download. 5

5.2 Experimental Setup

To compare the different NN architectures, and evaluate
them in the context of ADT using joint learning of beat
and drum activations, the following experiments were per-
formed.

5.2.1 Drum Detection (DT)

In this set of experiments, the features as explained in
sec. 3.1 and target functions generated from the drum an-
notations described in sec. 3.3 are used for NN training.

4 https://rbma.bandcamp.com/album/various-
assets-not-for-sale-red-bull-music-academy-
new-york-2013

5 http://ifs.tuwien.ac.at/˜vogl/datasets/

SMT ENST RBMA13
solo acc. DT BF MT

GRUts [36] 92.5 83.3 75.0 - - -
BGRU-a 93.0 80.9 70.1 59.8 63.6 64.6
BGRU-b 93.3 82.9 72.3 61.8 64.5 64.3
CNN-a 87.6 78.6 70.8 66.2 66.7 63.3
CNN-b 93.4 85.0 78.3 66.8 65.2 64.8
CBGRU-a 95.2 84.6 76.4 65.2 66.1 66.9
CBGRU-b 93.8 83.9 78.4 67.3 68.4 67.2

Table 3. F-measure results for the evaluated models on
different data sets. The columns DT, BF, and MT show
results for models trained only for drum detection, trained
using oracle beats as additional input features, and simul-
taneously trained on drums and beats, respectively. Bold
values represent the best performance for an experiment
across models. The baseline can be found in the first row.

These experiments are comparable to the ones in the re-
lated work, since we use a similar setup. As baseline, the
results in [36] are used. The results of this set of experi-
ments allow to compare the performance of different NN
architectures for drum detection.

5.2.2 Drum Detection with Oracle Beat Features (BF)

For this set of experiments, in addition to the input features
explained in sec. 3.1, the annotated beats, represented as
the target functions for beats and downbeats, are included
as input features. As targets for NN training only the drum
target functions are utilized. Since beat annotations are re-
quired for this experiment, only data sets comprising beat
annotations can be used. Using the results of these experi-
ments, it can be investigated if the prior knowledge of beat
and downbeat positions is beneficial for drum detection.

5.2.3 Joint Drum and Beat Detection (MT)

This set of experiments represents the multi-task learning
investigation. As input for training, again, only the spec-
trogram features are used. Targets for training of the NNs
comprise, in this case, drum and beat activation functions.
As discussed in the introduction, in some cases it can be
beneficial to train related properties simultaneously. Beats
and drums are closely related, because usually drum pat-
tern are repetitive on a bar-level (separated by downbeats)
and drum onsets often correlate with beats.

The insight which can be drawn from these experi-
ments is whether simultaneous training of drums, beats,
and downbeats is beneficial. It is of interest if the result-
ing performance is higher than the one achieved for DT;
and also if it is below, comparable, or even surpasses the
results in the BF experiment series.

Table 2 gives an overview of the properties of the ex-
periments and the used feature/target combination.

5.3 Evaluation Method

To evaluate the performance of the different architectures
and training methods, the well-known metrics precision,
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Figure 3. Results for RBMA13 data set, highlighting the
influence of oracle beat features (BF) and multi-task learn-
ing (MT). While recurrent models (left and right) benefit,
convolutional models (center) do not.

recall, and F-measure are used. These are calculated for
drum instrument onsets as well as beat positions. True pos-
itive, false positive, and false negative onset and beat po-
sitions are identified by using a 20ms tolerance window.
This is in line with the evaluation in [36] which is used as
baseline for the experiments of this work. Note that other
work, e.g. [7, 25, 31], uses less strict tolerance windows of
30ms or 50ms for evaluation.

6. RESULTS AND DISCUSSION

Table 3 shows the F-measure results for the individual NN
architectures on the data sets used for evaluation. The re-
sults for BGRU-a and BGRU-b on the ENST data set are
lower than for the baseline, although the models should be
comparable. This is due to the fact that in [36] data aug-
mentation is applied. This is especially helpful in the case
of the ENST data set, since e.g. the pitches of the base
drums vary greatly over the different drum kits. The re-
sults for CNN-a are lower than the state of the art, which
implies that the context of 9 frames is too small to detect
drum events using a CNN. All other results on the ENST
and SMT data sets represent an improvement over the state
of the art. This shows that CNN with a large enough spec-
tral context (25 frames in this work) can detect drum events
better than RNNs. A part of the large increase for the ENST
data set can be attributed to the fact that CNNs can model
pitch invariance easier than RNNs.

The results for the MT experiments show the follow-
ing tendencies: For the BGRU-a and BGRU-b models, an
improvement can be observed when applying multi-task
learning. Compared to using oracle beats (BF) for train-
ing, the improvement is higher for BGRU-a and similar in
the case of BGRU-b. This result is interesting for two rea-
sons: i. although BGRU-a is trained on short sequences, an
improvement can be observed, and ii. the improvement is
comparable to that when using oracle beats (BF) although
the beat tracking results are low. This could imply that
multi-task learning is also beneficial for the acoustic model
of the system. As expected, the CNNs (CNN-a, CNN-
b) can not improve when using multi-task learning, but
rather the results deteriorate. In case of the convolutional-

BLSTM [2] 85.6
BGRU-a 46.4
BGRU-b 46.2
CNN-a 44.9
CNN-b 46.9
CBGRU-a 47.6
CBGRU-b 48.8

Table 4. F-measure results for beat detection for the multi-
task learning experiments compared to a state-of-the-art
approach (first row) on the RBMA13 set.

recurrent models, the result for CBGRU-a is similar to
BGRU-a. In case of CBGRU-b no improvement of drum
detection performance using multi-task learning can be ob-
served, although it is the case using oracle beats (BF). We
attribute this to the fact that CBGRU-b has enough capacity
for good acoustic modeling, while the low beat detection
results limit the effects of multi-task learning on this level.

Table 4 shows the F-measure results for beat and down-
beat tracking. The results are all below the state-of-the-art
beat tracker used as baseline [2]. This is due to several
factors. In [2], i. much larger training sets for beat and
downbeat tracking are used, ii. the LSTMs are trained on
full sequences of the input data, giving the model more
context, and iii. an additional music language model in the
form of a dynamic Bayesian network (DBN) is used.

The results for CNNs and CRNNs show that convolu-
tional feature processing is beneficial for drum detection.
The finding considering drum detection results for multi-
task learning are also promising. The low results of beat
and downbeat tracking are certainly a limiting factor and
probably the reason for the lack of improvement for MT
over DT in the case of BGRU-b. As a next step, to better
leverage multi-task learning effects, beat detection results
must be improved using similar techniques as in [2].

7. CONCLUSIONS

In this work, convolutional and convolutional-recurrent
NN models for drum transcription were introduced and
compared to the state of the art of recurrent models. The
evaluation shows that the new models are able to outper-
form this state of the art. Furthermore, an investigation
whether i. beat and downbeat input features are benefi-
cial for drum detection, and ii. this benefit is also achiev-
able using multi-task learning of drums, beats, and down-
beats, was conducted. The results show that this is the
case, although the low beat and downbeat detection results
achieved with the implemented architectures is a limiting
factor. While the goal of this work was not to improve
the capabilities of beat and downbeat tracking per se, fu-
ture work will focus on improving these aspects, as we be-
lieve this will have an overall positive impact on the per-
formance of the joint model. The newly created data set
consisting of freely available music and annotations for
drums, beats and downbeats will be an asset for this line
of research to the community.
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[3] Sebastian Böck and Gerhard Widmer. Maximum filter
vibrato suppression for onset detection. In Proc. 16th
Intl Conf on Digital Audio Effects (DAFx), 2013.

[4] Rich Caruana. Multitask learning. In Thrun and Pratt
(eds.) Learning to learn, pages 95–133. Springer,
1998.

[5] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
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7
T R A N S C R I B I N G M O R E D R U M I N S T R U M E N T S

7.1 overview

This contents of this chapter were published in the following work:

Richard Vogl, Gerhard Widmer, and Peter Knees. “Towards Multi-
Instrument Drum Transcription”. In: Proceedings of the 21st International
Conference on Digital Audio Effects (DAFx). Aveiro, Portugal, 2018.

Previous works in this thesis, as well as most of the approaches pro-
posed in recent years, focus on three drum instruments, namely bass
drum, snare drum, and hi-hat. The aim of this work is to make first
steps towards an ADT system that can deal with more than just these
three instruments. Two label systems featuring eight and 18 different
instrument classes are introduced and used besides the traditional
three-class system. A major challenge of using more instrument labels
is that most of the instrument classes besides the traditionally used
ones are very sparsely represented in publicly available datasets. To
overcome this issue, a large-scale dataset synthesized from MIDI tracks
is introduced. Additionally, a second version of the synthetic data
is created by balancing the dataset’s instrument class distributions
by exchanging individual instruments within tracks. This is done in
order to check if avoiding the underrepresentation of scarcely played
instruments helps during network training. Finally, different train-
ing strategies to leverage the synthetic dataset are evaluated using
CNN-based and CRNN-based methods, similar to the ones used in the
previous publication. A related work that uses similar approaches was
independently published by Mark Cartwright and Juan P. Bello [12] at
the same time.

The evaluation reveals that while cross-validation on the balanced
synthetic dataset shows performance improvements on underrepre-
sented drum instrument classes, this does not generalize to recorded
datasets. Another interesting finding is that a network trained on the
unbalanced artificial dataset generalizes surprisingly well to recorded
datasets. The results indicate that the destruction of natural drum
patterns when balancing the dataset conditions recurrent models on
wrong prior distributions, which is responsible for the poor perfor-
mance in that case. Finally, by using pre-training on the synthetic data
and fine tuning the models on real world data, a slight improvement
for the multi class problem can be observed. An in-depth evalua-
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96 transcribing more drum instruments

tion using confusion matrices for individual drum instruments under
observation provides additional insights.

7.2 contributions of authors

As first author of this work I contributed almost all of this work’s
content. Trying to work with more drum instruments was one of
the reasons I started working with neural networks for ADT, since
first experiments with NMF into this direction made clear that they
are not well suited for this task. To evaluate multi-instrument drum
transcription systematically, it was necessary to have a dataset with
enough data for all instruments under observation. This was critical to
be able to check if the imbalance of training data is the main reason for
bad performance, or if other factors also play a role. Looking into the
types of errors ADT systems make, and why, was something I have been
discussing with colleagues working on ADT in general, but especially
with Carl Southall. The confusion matrices used in this work are partly
a result of those discussions. I collected, created, and prepared the
new dataset, wrote necessary code to run the experiments, designed
and performed the evaluation, as well as wrote the paper.

Gerhard Widmer and Peter Knees, again, acted as supervisors for
this work. They both helped to improve the paper by proofreading
and providing valuable feedback.
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ABSTRACT

Automatic drum transcription, a subtask of the more general auto-
matic music transcription, deals with extracting drum instrument
note onsets from an audio source. Recently, progress in transcrip-
tion performance has been made using non-negative matrix fac-
torization as well as deep learning methods. However, these works
primarily focus on transcribing three drum instruments only: snare
drum, bass drum, and hi-hat. Yet, for many applications, the abil-
ity to transcribe more drum instruments which make up standard
drum kits used in western popular music would be desirable. In
this work, convolutional and convolutional recurrent neural net-
works are trained to transcribe a wider range of drum instruments.
First, the shortcomings of publicly available datasets in this con-
text are discussed. To overcome these limitations, a larger syn-
thetic dataset is introduced. Then, methods to train models using
the new dataset focusing on generalization to real world data are
investigated. Finally, the trained models are evaluated on publicly
available datasets and results are discussed. The contributions of
this work comprise: (i.) a large-scale synthetic dataset for drum
transcription, (ii.) first steps towards an automatic drum transcrip-
tion system that supports a larger range of instruments by eval-
uating and discussing training setups and the impact of datasets
in this context, and (iii.) a publicly available set of trained mod-
els for drum transcription. Additional materials are available at
http://ifs.tuwien.ac.at/~vogl/dafx2018.

1. INTRODUCTION

Automatic drum transcription (ADT) focuses on extracting a sym-
bolic notation for the onsets of drum instruments from an audio
source. As a subtask of automatic music transcription, ADT has
a wide variety of applications, both in an academic as well as in
a commercial context. While state-of-the-art approaches achieve
reasonable performance on publicly available datasets, there are
still several open problems for this task. In prior work [1] we iden-
tify additional information—such as bar boundaries, local tempo,
or dynamics—required for a complete transcript and propose a
system trained to detect beats alongside drums. While this adds
some of the missing information, further work in this direction is
still required.

Another major shortcoming of current approaches is the lim-
itation to only three drum instruments. The focus on snare drum
(SD), bass drum (BD), and hi-hat (HH) is motivated by the facts
that these are the instruments (i.) most commonly used and thus
with the highest number of onsets in the publicly available datasets;
and (ii.) which often define the main rhythmical theme. Neverthe-
less, for many applications it is desirable to be able to transcribe a
wider variety of the drum instruments which are part of a standard

drum kit in western popular music, e.g., for extracting full tran-
scripts for further processing in music production or educational
scenarios. One of the main issues with building and evaluating
such a system is the relative underrepresentation of these classes
in available datasets (see section 2).

In this work we focus on increasing the number of instru-
ments to be transcribed. More precisely, instead of three instru-
ment classes, we aim at transcribing drums at a finer level of granu-
larity as well as additional types of drums, leading to classification
schemas consisting of eight and 18 different instruments (see ta-
ble 1). In order to make training for a large number of instruments
feasible, we opt for a single model to simultaneously transcribe all
instruments of interest, based on convolutional and convolutional
recurrent neural networks. Especially in the case of deep learn-
ing, a considerable amount of processing power is needed to train
the models. Although other approaches train separate models for
each instrument in the three-instrument-scenario [2, 3], for 18 in-
struments it is more feasible to train a single model in a multi-task
fashion (cf. [4]). To account for the need of large volumes of data
in order to train the chosen network architectures, a large synthetic
dataset is introduced, consisting of 4197 tracks and an overall du-
ration of about 259h.

The remainder of this paper is organized as follows. In sec-
tion 2 we discuss related work, followed by a description of our
proposed method in section 3. Section 4 provides a review of ex-
isting datasets used for evaluation, as well as a description of the
new, large synthetic dataset. Sections 5 and 6 describe the con-
ducted experiments and discuss the results, respectively. Finally,
we draw conclusions in section 7.

2. RELATED WORK

There has been a considerable amount of work published on ADT
in recent years, e.g., [5, 6, 7, 8, 9]. In the past, different combi-
nations of signal processing and information retrieval techniques
haven been applied to ADT. For example: onset detection in com-
bination with (i.) bandpass filtering [10, 11], and (ii.) instrument
classification [5, 6, 7]; as well as probabilistic models [8, 12].
Another group of methods focus on extracting an onset-pseudo-
probability function (activation function) for each instrument un-
der observation. These methods utilize source separation tech-
niques like Independent Subspace Analysis (ISA) [13], Prior Sub-
space Analysis (PSA) [14], and Non-Negative Independent Com-
ponent Analysis (NNICA) [15]. More recently, these approaches
have been further developed using Non-Negative Matrix Factor-
ization (NMF) variants as well as deep learning [1, 3, 16, 17].

The work of Wu et al. [18] provides a comprehensive overview
of the publications for this task, and additionally performs in-depth
evaluation of current state-of-the-art methods. Due to the large
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Table 1: Classes used in the different drum instrument classifica-
tion systems. Labels map to General MIDI drum instruments: e.g.
bass drum: 35, 36; side stick: 37; etc. The mapping is available on
the accompanying website.

number of classes instrument name3 8 18
BD BD BD bass drum
SD SD SD snare drum

SS side stick
CLP hand clap

TT
HT high tom
MT mid tom
LT low tom

HH HH
CHH closed hi-hat
PHH pedal hi-hat
OHH open hi-hat
TB tambourine

RD RD ride cymbal

BE RB ride bell
CB cowbell

CY CRC crash cymbal
SPC splash cymbal
CHC Chinese cymbal

CL CL clave/sticks

number of works and given the space limitations, in the remainder
of this section, we will focus on work that is directly relevant with
respect to the current state of the art and methods focusing on more
than three drum instrument classes.

As mentioned, the state of the art for this task is currently de-
fined by end-to-end activation function based methods. In this con-
text, end-to-end implies using only one processing step to extract
the activation function for each instrument under observation from
a digital representation of the audio signal (usually spectrogram
representations). Activation functions can be interpreted as proba-
bility estimates for a certain instrument onset at each point in time.
To obtain the positions of the most probable instrument onsets,
simple peak picking [19, 20, 1, 3, 2, 16, 15] or a language-model-
style decision process like dynamic Bayesian networks [21] can be
used. These methods can be further divided into NMF based and
deep neural network (DNN) based approaches.

Wu et al. [16] introduce partially fixed NMF (PFNMF) and
further modifications to extract the drum instrument onset times
from an audio signal. Dittmar et al. [17] use another modification
of NMF, namely semi adaptive NMF (SANMF) to transcribe drum
solo tracks in real time, while requiring samples of the individual
drum instruments for training. More recently, recurrent neural net-
works (RNNs) have successfully been used to extract the activation
functions for drum instruments [19, 20, 2]. It has also been shown
that convolutional (CNNs) [1, 3] and convolutional recurrent neu-
ral networks (CRNNs) [1] have the potential to even surpass the
performance of RNNs.

The majority of works on ADT, especially the more recent
ones, focus solely on transcribing three drum instrument (SD, BD,
HH) [9, 19, 20, 1, 2, 3, 16, 8, 17, 7, 8]. In some works multi-
ple drum instruments are grouped into categories for transcription
[5] and efforts have been made to classify special drum playing
techniques within instrument groups [22]. However, only little
work exists which approach the problem of transcribing more than

Figure 1: Overview of implemented ADT system using DNNs.

three individual drum instruments [15], furthermore, such a sys-
tem has—to our knowledge—never been evaluated on currently
available public drum transcription datasets.

In [6], a set of MIDI drum loops rendered with different drum
samples are used to create synthetic data in the context of ADT.
Using synthetic data was a necessity in the early years of music in-
formation retrieval (MIR), but due to the continuous efforts of cre-
ating datasets, this has declined in recent years. However, machine
learning methods like deep learning, often requirer large amounts
of data, and manual annotation in large volumes is unfeasible for
many MIR tasks. In other fields like speech recognition or im-
age processing, creating annotations is easier, and large amounts
of data are commonly available. Using data augmentation can, to
a certain degree, be used to overcome lack of data, as has been
demonstrated in the context of ADT [20]. In [23] an approach to
resynthesizes solo tracks using automatically annotated f0 trajec-
tories, to create perfect annotations, is introduced. This approach
could be applicable for ADT, once a satisfactory model for the full
range of drum instruments is available. At the moment such anno-
tations would be limited to the three drum instrument classes used
in state-of-the-art methods.

3. METHOD

In this work, we use an approach similar to the ones introduced in
[2] and [19], for drum transcription. As mentioned in the introduc-
tion, a single model trained in a multi-task fashion will be used.
Creating individual models for each instrument is an option [2, 3],
however, in the context of this work it has two downsides: First,
training time will scale linearly with the amount of models, which
is problematic when increasing the number of instruments under
observation. Second, training multi-task models in the context
of ADT can improve the performance [1]. Other state-of-the-art
methods based on NMF [16, 17] are less suitable for a multi-task
approach, since the performance of NMF methods is prone to de-
grade for basis matrices with higher rank.

Thus, the method proposed in [1] seems most promising for
the goal of this work. We will only use CNNs and CRNNs, since
simple RNNs do not have any advantage in this context. The im-
plemented ADT system consists of three stages: a signal prepro-
cessing stage, a DNN activation function extraction stage, and a
peak picking post processing stage, identifying the note onset. The
system overview is visualized in figure 1, and the single stages will
be discussed in detail in the following subsections.

3.1. Preprocessing

During signal preprocessing, a logarithmic magnitude spectrogram
is calculated using a window size of 2048 samples (@44.1kHz in-
put audio frame rate) and choosing 441 samples as hop size for a
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Figure 2: Architecture comparison between the CNN and CRNN
used for activation function extraction.

100Hz target frame rate of the spectrogram. The frequency bins
are transformed to a logarithmic scale using triangular filters in
a range from 20 to 20,000 Hz, using 12 frequency bins per oc-
tave. Finally, the positive first-order-differential over time of this
spectrogram is calculated and stacked on top of the original spec-
trogram. The resulting feature vectors have a length of 168 values
(2x84 frequency bins).

3.2. Activation Function Extraction

The activation function extraction stage is realized using one of
two different DNNs architectures. Figure 2 visualizes and com-
pares the two implemented architectures. The convolutional parts
are equivalent for both architectures, however, the dense output
layers are different: while for the CNN two normal dense layers
are used (ReLUs), in case of the CRNN two bidirectional RNN
layers consisting of gated recurrent units (GRUs) [24] are used. As
already noted in [1], GRUs exhibit similar capabilities as LSTMs
[25], while being more easy to train.

The combination of convolutional layers which focus on local
spectral features, and recurrent layers which model mid- and long-
term relationships, has been found to be one of the best performing
models for ADT [1].

3.3. Peak Picking

To identify the drum instrument onsets, a standard peak picking
method introduced for onset detection in [26] is used. A peak at
point n in the activation function fa(n) must be the maximum
value within a window of size m+1 (i.e.: fa(n) = max(fa(n−
m), · · · , fa(n))), and exceeding the mean value plus a threshold
δ within a window of size a + 1 (i.e.: fa(n) ≥ mean(fa(n −
a), · · · , fa(n))+ δ). Additionally, a peak must have at least a dis-
tance of w + 1 to the last detected peak nlp (i.e.: n − nlp > w,).
The parameters for peak picking are the same as used in [1]: m =
a = w = 2. The best threshold for peak picking is determined on
the validation set. As observed in [3, 20, 1], appropriately trained
DNNs produce spiky activation functions, therefore, low thresh-
olds (0.1− 0.2) give best results.

3.4. Training and Evaluation

Training of the models is performed using Adam optimization [27]
with mini-batches of size 100 and 8 for the CNNs and CRNNs re-
spectively. The training instances for the CNN have a spectral con-
text of 25 samples. In case of the CRNN, the training sequences
consist of 400 instances with a spectral context of 13 samples. The
DNNs are trained using a fixed learning rate (lr = 0.001) with
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Figure 3: Label distributions of the different datasets used in this
work.

additional refinement if no improvement on the validation set is
achieved for 10 epochs. During refinement the learning rate is re-
duced (lr = lr · 0.2) and training continues using the parameters
of the best performing model so far.

A three-fold cross-validation strategy is employed, using two
splits during training, while 15% of the training data is separated
and used for validation after each epoch (0.5% in case of the large
datasets, to reduce validation time). Testing is done on the third,
during training unseen, split. Whenever available, drum solo ver-
sions of the tracks are used as additional training material, but
not for testing/evaluation. The solo versions are always put into
the same splits as their mixed counterparts, to counter overfitting.
This setup is consistently used through all experiments, when-
ever datasets are mixed or cross-validated, corresponding splits are
used.

For audio preprocessing, peak picking, and calculation of eval-
uation metrics, the madmom1 python framework was used. DNN
training was performed using Theano2 and Lasagne3. For a more
details on C(R)NN training and a comparison of their working
principles in the context of ADT, we kindly refer the reader to our
previous work [1] due to space limitations and a different focus of
this work.

4. DATASETS

There are a number of publicly available datasets for ADT with
varying size, degree of detail, and number of classes regarding the
drum instrument annotations. As noted in the introduction, current
state-of-the-art approaches limit the instruments under observation
to the three most common ones (SD, BD, HH). This is done by
ignoring other instruments like tom-toms and cymbals, as well as

1https://github.com/CPJKU/madmom
2https://github.com/Theano/Theano
3https://github.com/Lasagne/Lasagne
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Table 2: F-measure (mean/sum) results of implemented ADT
methods on public datasets for different class systems. The first
line indicates state-of-the-art F-measure results in previous work
using CNN and CRNN ADT systems in a three-class scenario.

CL model ENST MDB RBMA13
3 SotA [1] — / 0.78 — / — — / 0.67

3 CNN 0.75 / 0.77 0.65 / 0.72 0.53 / 0.63
CRNN 0.74 / 0.76 0.64 / 0.70 0.55 / 0.64

8 CNN 0.59 / 0.63 0.68 / 0.65 0.55 / 0.44
CRNN 0.65 / 0.70 0.68 / 0.63 0.55 / 0.50

18 CNN 0.69 / 0.49 0.76 / 0.47 0.62 / 0.31
CRNN 0.75 / 0.67 0.77 / 0.55 0.64 / 0.39

grouping different play styles like closed, opened, and pedal hi-
hat strokes. In order to investigate ways of generating a model
which is capable to transcribe more than these three instruments,
two classification systems, i.e., a medium and a large one, for drum
instruments of a standard drum kit are defined. Table 1 shows the
two sets of classes, which contain eight and 18 labels respectively,
alongside with the classic three-class set used in state-of-the-art
works and the mapping used between these classes.

In the following we discuss publicly available ADT datasets
and their limitations, leading to the description of the large volume
synthetic dataset introduced for training of our models.

4.1. ENST Drums (ENST)

The ENST Drums4 dataset published by Gillet and Richard [28]
in 2005, is commonly used in ADT evaluations. The freely avail-
able part of the dataset consists of single track audio recordings
and mixes, performed by three drummers on different drum kits.
It contains recordings of single strokes for each instrument, short
sequences of drum patterns, as well as drum tracks with additional
accompaniment (minus-one tracks). The annotations contain la-
bels for 20 different instrument classes.

For evaluation, the wet mixes (contain standard post-processing
like compression and equalizing) of the minus-one tracks were
used. They make up 64 tracks of 61s average duration and a total
duration of 1h. The rest of the dataset (single strokes, patterns)
was used as additional training data.

4.2. MDB-Drums (MDB)

The MDB-Drums dataset5 was published in [29] and provides drum
annotations for 23 tracks of the Medley DB dataset6 [30]. The
tracks are available as drum solo tracks with additional accompa-
niment. Again, only the full mixes are used for evaluation, while
the drum solo tracks are used as additional training data. There are
two levels of drum instrument annotations, the second providing
multiple drum instruments and additional drum playing technique
details in 21 classes. Tracks have an average duration of 54 sec-
onds and the total duration is 20m 42s.

4http://perso.telecom-paristech.fr/~grichard/
ENST-drums/

5https://github.com/CarlSouthall/MDBDrums
6http://medleydb.weebly.com/

Table 3: F-measure results (mean/sum) of the implemented net-
works on synthetic datasets.

CL model MIDI MIDI 1% MIDI bal.

3 CNN 0.74 / 0.84 0.70 / 0.79 — / —
CRNN 0.74 / 0.84 0.68 / 0.77 — / —

8 CNN 0.64 / 0.63 0.63 / 0.69 0.54 / 0.58
CRNN 0.74 / 0.82 0.69 / 0.73 0.58 / 0.70

18 CNN 0.66 / 0.39 0.65 / 0.39 0.59 / 0.18
CRNN 0.73 / 0.70 0.69 / 0.62 0.63 / 0.52

4.3. RBMA13 (RBMA13)

The RBMA13 datasets7 was published alongside [1]. It consists
of 30 tracks of the freely available 2013 Red Bull Music Academy
Various Assets sampler.8 The tracks’ genres and drum sounds of
this set are more diverse compared to the previous sets, making
it a particularly difficult set. It provides annotations for 23 drum
instruments as well as beat and downbeats. Tracks in this set have
an average duration of 3m 50s and a total of 1h 43m.

4.4. Limitations of current datasets

A major problem of publicly available ADT datasets in the context
of deep learning is the volume of data. To be able to train DNNs
efficiently, usually large amounts of diverse data are used (e.g. in
speech and image processing). One way to counter the lack of data
is to use data augmentation (as done in [20] for ADT). However,
data augmentation is only helpful to a certain degree, depending
on the applicable augmentation methods and the diversity of the
original data.

Given the nature of drum rhythms found in western popular
music, another issue of ADT datasets is the uneven distribution
of onsets between instrument classes. In case of the available
datasets, this imbalance can be observed in figure 3. While it is
advantageous for the model to adapt to this bias, in terms of over-
all performance, this often results in the trained models to never
predict onsets for sparse classes. This is due to the number of po-
tential false negatives being negligible, compared to the amount of
false positives produced in the early stages of training. To counter
a related effect on slightly imbalanced classes (BD, SD, HH in the
three-class scenario), a weighting of the loss functions for the dif-
ferent classes can be helpful [20]. Nevertheless, a loss function
weighting cannot compensate for the problem in the case of very
sparse classes.

Since manual annotation for ADT is a very resource intensive
task, a feasible approach to tackle these problems is to create a
synthetic dataset using the combination of symbolic tracks, e.g.
MIDI tracks, drum synthesizers and/or sampler software.

4.5. Synthetic dataset (MIDI)

For generating the synthetic dataset, a similar approach as in [6]
was employed. Since the focus of this work is the transcription
of multiple drum instruments from polyphonic music, full MIDI
tracks of western popular music were used instead of MIDI drum
loops. First, every MIDI track from a freely available online col-
lection9 was split into a drum and accompaniment track. Using

7http://ifs.tuwien.ac.at/~vogl/datasets/
8https://rbma.bandcamp.com/album/
9http://www.midiworld.com
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Figure 4: Instrument class details for evaluation results on MIDI
and MIDI bal. for 8 and 18 instrument classes using the CRNN.
First value (SUM) represents the overall sum F-measure results.

timidity++10, the drum tracks were rendered utilizing 57 different
drum SoundFonts11. The used SoundFonts were collected from
different online sources, and great care was taken to manually
check and correct the instrument mappings and overall suitabil-
ity. They cover a wide range of drum sounds from electronic drum
machines (e.g. TR808), acoustic kits, and commonly used com-
binations. The SoundFonts were divided into three groups for the
three evaluation splits, to counter overfitting to drum kits. The
accompaniment tracks were rendered using a full General MIDI
SoundFont. Using the MIDI tracks, drum annotations as well as
beat and downbeat annotations were generated. After removing
broken MIDI files, very short (< 30s) as well as very long (> 15m)
tracks, the set contains 4197 tracks with an average duration of 3m
41s and a total duration of about 259h. As with the other datasets,
we only use the mixes for evaluation, while the drum solo tracks
are used as additional train-only data.

Figure 3 shows that the general trend of the drum instrument
class distribution is similar to the smaller datasets. This is not sur-
prising since the music is of the same broad origin (western pop-
ular music). Since one of the goals of creating this dataset was
to achieve a more balanced distribution, some additional process-
ing is necessary. Due to the fact that we can easily manipulate the
source MIDI drum files, we can change a certain amount of in-
struments for several tracks to artificially balance the classes. We
did this for the 18 classes as well as for the 8 classes and gen-
erated two more synthetic datasets consisting of the same tracks,
but with drum instruments changes so that the classes are balanced
within their respective drum instrument class system. This was
done in a way to switch instruments which have a similar expected
usage frequency within a track, while keeping musicality in mind.
Ideal candidates for this are CHH and RD: exchanging them makes
sense from a musical standpoint, as well in terms of usage fre-
quency. On the other hand, BD and CRC are close in expected
usage frequency but switching them can be questionable from a
musical standpoint, depending on the music genre. A full list of
performed switches for the balanced versions can be found on the
accompanying webpage.

10http://timidity.sourceforge.net/
11https://en.wikipedia.org/wiki/SoundFont

Table 4: F-measure results (mean/sum) for the CRNN model on
public datasets when trained on different dataset combinations.
The top part shows results for the 8 class scenario, while the bot-
tom part shows results for the 18 class scenario. Whenever the
MIDI set is mixed with real world datasets, only the 1% subset is
used, to keep a balance between different data types.

8 instrument classes
train set ENST MDB RBMA13
all 0.61 / 0.64 0.68 / 0.64 0.57 / 0.52
MIDI 0.65 / 0.68 0.70 / 0.61 0.57 / 0.51
MIDI bal. 0.61 / 0.57 0.66 / 0.52 0.56 / 0.47
all+MIDI 0.58 / 0.62 0.67 / 0.57 0.57 / 0.52
all+MIDI bal. 0.61 / 0.64 0.68 / 0.56 0.56 / 0.51
pt MIDI 0.64 / 0.69 0.72 / 0.68 0.58 / 0.56
pt MIDI bal. 0.61 / 0.63 0.72 / 0.67 0.58 / 0.56

18 instrument classes
train set ENST MDB RBMA13
all 0.71 / 0.58 0.77 / 0.55 0.63 / 0.41
MIDI 0.73 / 0.61 0.77 / 0.53 0.64 / 0.39
MIDI bal. 0.70 / 0.52 0.76 / 0.45 0.63 / 0.35
all+MIDI 0.73 / 0.62 0.77 / 0.54 0.64 / 0.41
all+MIDI bal. 0.72 / 0.57 0.76 / 0.47 0.64 / 0.37
pt MIDI 0.74 / 0.67 0.78 / 0.60 0.64 / 0.47
pt MIDI bal. 0.74 / 0.65 0.78 / 0.58 0.64 / 0.45

A downside of this approach is that the instrument switches
may create artificial drum patterns which are atypical for western
popular music. This can be problematic if the recurrent parts of the
used CRNN architecture start to learn structures of typical drum
patterns. Since these effects are difficult to measure and in order
to be able to build a large, balanced dataset, this consequence was
considered acceptable.

5. EXPERIMENTS

The first set of experiments evaluates the implemented ADT meth-
ods on the available public datasets, using the classic three drum
instrument class labels, as well as the two new drum classification
schemas with 8 and 18 classes, as a baseline. As evaluation mea-
sure primarily the F-measure of the individual drum instrument
onsets is used. To calculate the overall F-measure over all instru-
ments and all tracks of a dataset, two methods are used: First, the
mean over all instruments’ F-measure (=F-measure of track), as
well as the mean over all tracks’ F-measure is calculated (mean).
Second, all false positives, false negatives, and true positives for
all instruments and tracks are used to calculate a global F-measure
(sum). These two values give insight into different aspects. While
the mean value is more conservative for only slightly imbalanced
classes, it is problematic when applied to sets containing only
sparsely populated classes. In this case, some tracks may have
zero occurrences of an instrument, thus resulting in a F-measure
of 1.0 when no instrument is detected by the ADT system. In that
case, the overall mean F-measure value for this instrument is close
to 1.0 if it only occurs in a small fraction of tracks and the system
never predicts it. On the other hand, the sum value will give a F-
measure close to zero if the system never predicts an instrument,
even for sparse classes—which is more desirable in this context.

The second set of experiments evaluates the performance of
the ADT methods on the synthetic datasets, as well as a 1% subset
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Figure 5: This figure shows F-measure results for each instrument, for both the 8 class (top) as well as the 18 class (bottom) scenarios,
exemplary for the ENST dataset. Figures for other sets are found on the accompanying webpage (see sec. 7). The color of bars indicates the
dataset or combinations trained on: all—three public datasets; MIDI—synthetic dataset; MIDI bal.—synthetic set with balanced classes;
all+MIDI—three public datasets plus 1% split of synthetic dataset; all+MIDI bal.—three public datasets plus the 1% split of the balanced
synthetic dataset; pt MIDI and pt MIDI bal.—pre-trained on the MIDI and MIDI bal. datasets respectively and fine tuned on all. The first
set of bars on the left (SUM) shows the overall sum F-measure value.

for each of the instrument classification schemas. This will give
insight in how the systems perform on the synthetic dataset and
how relevant the data volume is for each of the schemas.

In the final set of experiments, models trained with different
combinations of synthetic and real data will be evaluated. The
evaluation will show how well models trained on synthetic data
can generalize on real world data. Mixing the real world datasets
with the symbolic data is a first, simple approach of leveraging a
balanced dataset to improve detection performance of underrep-
resented drum instrument classes in currently available datasets.
To be able to compare the results, models are trained on all of the
public datasets (all), the full synthetic dataset (MIDI), the balanced
versions of the synthetic dataset (MIDI bal.), a mix of the public
datasets and the 1% subset of the synthetic dataset (all+MIDI), and
a mix of the public datasets and a 1% subset of the balanced syn-
thetic datasets (all+MIDI bal.). Additionally, models pre-trained
on the MIDI and MIDI bal. datasets with additional refinement
on the all dataset were included. We only compare a mix of the
smaller public datasets to the other sets, since models trained on
only one small dataset have the tendency to overfit, and thus gen-
eralize not well—which makes comparison problematic.

6. RESULTS AND DISCUSSION

The results of the first set of experiments is visualized in Table 2,
which shows the 3-fold cross-validation results for models trained
on public datasets with 3, 8, and 18 labels. The resulting F-measure
values are not surprising: for the 3-class scenario the values are
close to the reported values in the related work. Differences are
due to slightly different models and hyper-parameter settings for
training. As expected, especially the sum values drop for the cases
of 8 and 18 classes. It can be observed, that the CRNN performs
best for all sets in 18 class scenario and for two out of three sets
for the eight class scenario.

Table 3 shows the results for models trained on synthetic data-
sets with 3, 8, and 18 labels. As expected, there is a tendency for
the models trained on the 1% subset to perform worse, especially

for the CRNN. However, this effect is not as severe as suspected.
This might be due to the fact that, while different drum kits were
used, the synthetic set is still quite uniform, given its size. The
overall results for the balanced sets are worse than for the normal
set. This is expected, since the difficulty of the balanced sets is
much greater than for the imbalanced one (sparse classes can be
ignored by the models without much penalty). Figure 4 shows a
comparison of F-measure values for individual instruments classes
when training on MIDI and MIDI bal. sets. The plot shows, that
performance for underrepresented classes improves for the bal-
anced set, which was the goal of balancing the set. A downside
is that the performance for classes which have a higher frequency
of occurrence in the MIDI dataset decreases in most cases, which
contributes to the overall decrease. However, this effect is less se-
vere in the 8 class case.

A general trend which can be observed, especially in the sce-
narios with more instrument class labels, is that CRNNs consis-
tently outperform CNNs. Since this is true for all other experi-
ments as well, and for reasons of clarity, we will limit the results
for the next plots and tables to those of the CRNN model.

Table 4 shows the F-measure results for the CRNN model
trained on different dataset combinations and evaluated on public
datasets. In figure 5, a detailed look in the context of cross-datasets
evaluation on instrument class basis for the ENST dataset is pro-
vided. As mentioned in section 5, results for models trained on
only one public dataset are not included in this chart. While the
performance for those is higher, they are slightly overfitted to the
individual datasets and do not generalize well to other datasets,
therefore a comparison would not be meaningful. Although an
overall big performance improvement for previously underrepre-
sented classes can not be observed, several interesting things are
visible: (i.) both the models trained solely on the MIDI and the
MIDI bal. datasets generalize surprisingly well to the real world
dataset; (ii.) in some cases, performance improvements for un-
derrepresented classes can be observed (e.g. for 18 classes: LT,
MT, RD, CRC, CHC), when using the synthetic data; (iii.) bal-
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Figure 6: Left column shows matrices for MIDI set, right col-
umn shows matrices for MIDI bal. set, both for the 18 classes sce-
nario. From top to bottom, the matrices display: classic confu-
sions (fn/fp), masking by true positives (fn/tp), and positive mask-
ing (excitement—fp/tp).

ancing the instruments, while effective within the evaluation for
the synthetic dataset, seems not to have a positive effect in the
cross-dataset scenario and when mixing dataset; and (iv.) using
pre-training on the MIDI set with refinement on the all set, seems
to produce models which are better suited to detect underrepre-
sented classes while still performing well on other classes.

To gain more insight into which errors the systems make when
classifying within the 8 and 18 class systems, three sets of pseudo
confusion matrices were created. We term them pseudo confu-
sion matrices because one onset instance can have multiple classes,
which is usually not the case for classification problems. These
three pseudo confusion matrices indicate how often (i.) a false pos-
itive for another instrument was found for false negatives (classic
confusions); (ii.) a true positive for another instrument was found
for false negatives (onset masked or hidden); and (iii) a true posi-
tive for another instrument was found for a false positive (positive
masking or excitement). Figure 6 shows examples of these matri-
ces for the MIDI and MIDI bal. sets in the 18 class scenario. The
images lead to intuitive conclusions: similar sounding instruments

may get confused (BD/LT, CHH/PHH), instruments with energy
over a wide frequency range mask more delicate instruments as
well as similar sounds (HT/BD, CLP/SD), and similar sounding
instruments lead to false positives (LT/MT/HT, RB/RD). Many of
these errors may very well be made by human transcribers as well.
This also strengthens the assumption that instrument mappings are
not well defined: boundaries of the frequency range between bass
drum, low, mid and high toms are not well defined, the distinc-
tion between certain cymbals is sometimes difficult even for hu-
mans, and different hi-hat sounds are sometimes only distinguish-
able given more context, like genre or long term relations within
the piece.

To further improve performance, an ensemble of models trained
on different datasets (synthetic and real, including balanced vari-
ants) can be used. However, experience shows that while these
systems often perform best in real world scenarios and in competi-
tions (e.g. MIREX), they give not so much insight in an evaluation
scenario.

7. CONCLUSION

In this work we discussed a shortcoming of current state-of-the
art automatic drum transcription systems: the limitation to three
drum instruments. While this choice makes sense in the context
of currently available datasets, some real world applications re-
quire transcription of more instrument classes. To approach this
shortcoming, we introduced a new and publicly available large
scale synthetic dataset with balanced instrument distribution and
showed that models trained on this dataset generalize well to real
world data. We further showed that balancing can improve perfor-
mance for usually underrepresented classes in certain cases, while
overall performance may decline. An analysis of mistakes made
by such systems was provided and further steps into this directions
were discussed. The dataset, trained models and further material
are available on the accompanying webpage.12
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D R U M T R A N S C R I P T I O N M E T H O D S I N
C O M PA R I S O N

This chapter covers attempts to evaluate and compare methods for
ADT under controlled conditions. To this end methods introduced in
this work alongside other state of the art methods published in recent
years, are considered. As mentioned in the introduction, a second
class of drum transcription methods prevalent in recent related work
are NMF-based approaches. Besides them, other deep-learning-based
methods using a similar processing pipeline and network architectures
are the predominant class of systems being used in ADT publications
of recent years. This chapter covers the contents of three works which
are part of the list of additional publications of this thesis. The first
one is an overview article on drum transcription which also performs
a thorough evaluation of NMF-based and RNN-based ADT systems:

Chih-Wei Wu, Christian Dittmar, Carl Southall, Richard Vogl, Ger-
hard Widmer, Jason Hockman, Meinhard Müller, and Alexander Lerch.
“A Review of Automatic Drum Transcription”. In: IEEE Transactions on
Audio, Speech and Language Processing 26.9 (2018).

Furthermore, this chapter covers two MIREX submissions for the
drum transcription task from 2017 and 2018. In them, modifications of
methods presented in the previous chapters are introduced and the
results of those methods for the drum transcription task are presented:

Richard Vogl, Matthias Dorfer, Gerhard Widmer, and Peter Knees.
“MIREX Submission For Drum Transcription 2017”. In: MIREX ex-
tended abstracts, 18th International Society for Music Information Retrieval
Conference (ISMIR). Suzhou, China, 2017.

Richard Vogl and Peter Knees. “MIREX Submission For Drum Tran-
scription 2018”. In: MIREX extended abstracts, 19th International Society
for Music Information Retrieval Conference (ISMIR). Paris, France, 2018.

The following sections will provide a brief overview of the findings
in these publications.

8.1 comparison of state-of-the-art systems

This section will focus on experiments and findings presented in the
drum transcription review article by Wu et al. [105]. First, this work

105
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presents an detailed introduction to the drum transcription task. Then
a detailed related work section follows, providing an overview of
all relevant publications dealing with ADT. After discussing different
processing steps commonly used in ADT systems, a new classification
scheme for drum transcription methods is introduced. The classifi-
cation scheme is designed to be extensible which allows future ap-
proaches using yet unknown technologies to be covered. A large part
of the article deals with describing current RNN-based and NMF-based
systems. Subsequently, ten different variants of state-of-the-art ADT

methods are evaluated and their performance under equal test con-
ditions is compared. To this end, three different evaluation strategies
on three well-known publicly available drum transcription datasets
are introduced. The three evaluation strategies are: (i) a three-fold
cross-validation on the natural splits of each dataset, (ii) a randomized
70/15/15% train/validation/test split evaluation, and (iii) a cross-
dataset evaluation.

The results show that, overall, RNN and NMF systems both perform
well on the used datasets. However, RNN systems have the tendency to
outperform NMF systems on more complex data, while also providing
more flexibility for future improvements and adaptations. For example,
the necessary relatively large number of columns for the basis matrix of
unconstrained NMF systems is a major challenge when trying to adapt
NMF-based methods to transcribe more than three drum instruments.
On the other hand, NMF-based systems require very little training data
compared to data requirements of NN-based systems. Depending on
the application, both method classes can be valid choices.

8.2 mirex challenge

MIREX [56] is an annually held event which aims at evaluating MIR al-
gorithms and methods on common data under equal conditions. Often,
different evaluation strategies and datasets are used in publications
which introduce methods to solve MIR tasks. MIREX was introduced
to provide the infrastructure for a comparison of these methods in
a controlled environment. The MIREX community usually holds its
meeting alongside the International Society for Music Information
Retrieval (ISMIR) conference, where also results are published.

A MIREX drum transcription task was first introduced in 2005 with
the first installation of MIREX. The task was re-run in 2006, using
an extended set of data, consisting of three datasets covering a va-
riety of musical genres. The focus was on three drum instruments,
namely bass drum, snare drum, and hi-hat, as was customary at that
time. For evaluation, F-measure, precision, and recall (as discussed in
Section 2.1.3, this is a common and valid strategy), are used.

After not being run for eleven years, the drum transcription task
was reestablished in 2017, using two of the three original evaluation
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Algorithm type fm mean BD fm SD fm HH fm

RV1 [94] CRNN 0.71 0.82 0.70 0.53

RV2 [94] RNN 0.67 0.78 0.67 0.51

RV3 [94] CNN 0.68 0.81 0.64 0.51

RV4 [94] ensemble 0.70 0.81 0.70 0.52

CS1 [79] RNN 0.61 0.79 0.55 0.46

CS2 [79] RNN 0.63 0.78 0.57 0.49

CS3 [79] RNN 0.63 0.78 0.58 0.49

CW1 [106] NMF 0.51 0.68 0.48 0.38

CW2 [106] NMF 0.55 0.70 0.55 0.40

CW3 [106] NMF 0.53 0.67 0.46 0.42

Table 8.1: F-measure (fm) results for the 2017 MIREX drum transcription task.
RV1-RV4 represent methods introduced in this thesis, and slight
variations thereof. The individual columns represent overall mean
F-measure results (fm mean), results for bass drum (BD), snare
drum (SD), and hi-hat (HH).

datasets alongside three newly created sets. The new evaluation data
covers a variety of tracks and shorter excerpts, comprising recorded
music pieces of different genres as well as synthetic data, with and
without accompaniment. As in the first renditions in 2005 and 2006, the
evaluation only targeted bass drum, snare drum, and hi-hat. This was
due to the fact that most state-of-the-art systems still only considered
these instruments. With the introduction of systems that were trying to
deal with a larger variety of drum instruments, in 2018, a second sub-
task considering a total of eight drum instruments was additionally
introduced. To this end, another dataset was added to the pool of
evaluation data.

There are two different submission protocols for MIREX: algorithms
can be submitted for so-called train/test tasks, or simply as pre-trained
models. For train/test tasks, trainable algorithms are submitted which
are then trained and subsequently evaluated on separate datasets on
the MIREX servers. In case of pre-trained algorithms, systems trained
on a public training set are submitted and are then evaluated on a
secret test set. For the drum transcription task a pre-trained-model
submission protocol was chosen. This was due to the fact that many
methods for this task are based on deep learning for which training is
computationally expensive, making it difficult to run a train/test task.

The results of the 2017 evaluation are shown in Table 8.1, while
results of the 2018 tasks can be found in Table 8.2 and Table 8.3.
The complete description of submissions and detailed results can be
found on the drum transcription task’s results pages, hosted on the
MIREX wiki website: http://www.music-ir.org/mirex/wiki/2017:Drum_

Transcription_Results and http://www.music-ir.org/mirex/wiki/2018:

Drum_Transcription_Results.

http://www.music-ir.org/mirex/wiki/2017:Drum_Transcription_Results
http://www.music-ir.org/mirex/wiki/2017:Drum_Transcription_Results
http://www.music-ir.org/mirex/wiki/2018:Drum_Transcription_Results
http://www.music-ir.org/mirex/wiki/2018:Drum_Transcription_Results
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*Algorithm comment fm mean fm sum KD fm SD fm HH fm

RV1 [94] CRNN 0.69 0.74 0.78 0.69 0.53

RV2 [94] CNN 0.65 0.72 0.75 0.65 0.50

CS2 [79] RNN 0.63 0.70 0.78 0.59 0.50

CS4 [79] RNN 0.62 0.68 0.77 0.58 0.47

JAR1 [40] CNN 0.69 0.72 0.78 0.65 0.53

JAR2 [40] CNN 0.68 0.73 0.78 0.65 0.53

JAR3 [40] CNN 0.69 0.73 0.79 0.65 0.54

JAR5 [40] CNN 0.67 0.71 0.77 0.63 0.53

JS1 0.61 0.62 0.75 0.59 0.43

JS2 0.62 0.64 0.78 0.63 0.40

JS3 0.61 0.62 0.76 0.63 0.36

JS4 0.57 0.58 0.73 0.61 0.32

Table 8.2: F-measure (fm) results for the 2018 MIREX drum transcription task
for three drum instrument classes. RV1 and RV2 represent ap-
proaches introduced in this work. The individual columns repre-
sent overall mean F-measure results (fm mean), results for bass
drum (BD), snare drum (SD), and hi-hat (HH).

The results show that research at the moment focuses on NN-based
approaches, which seem to outperform NMF-based techniques on
diverse data. Furthermore, transcribing more than three instruments
seems to be particularly difficult. Nevertheless, a performance boost
in the case of eight instrument classes can be observed when using
the method proposed in Chapter 7. Overall, methods introduced in
this thesis have been the most successful for recent renditions of the
MIREX drum transcription tasks.

8.3 contributions of authors

For the ADT overview article [105], my main contributions were writing
the RNN parts together with Carl Southall, writing the challenges
section, and running my methods on the data used for evaluation.
I additionally helped writing the rest of the article by proofreading,
drafting some of the figures, contributing to the related work sections,
and helping to design the new classification scheme in discussions
and writing.

For both MIREX submissions I prepared the algorithms for submis-
sion and wrote the extended abstracts. Matthias Dorfer contributed
to the first submission by helping with the work for the original pa-
per [94]. Gerhard Widmer and Peter Knees, acted as supervisors and
provided feedback for the extended abstracts.

Additionally, I was responsible for running the ADT MIREX task as
one of three task captains for both instances. As such, I sent out the
call for submissions and updated the MIREX wiki page, helped collect
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and prepare the datasets, collected the submissions and extended
abstracts from participants, ran the evaluation, created result tables
and updated the MIREX result pages.
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S Y N O P S I S

The individual chapters of this part introduce the main publications
of this thesis that focus on automatic drum pattern generation. Similar
as in the previous part, the introduced methods are based on deep
learning techniques. While in the first three works the generation
engine is based on RBMs, the last work uses GANs to create symbolic
drum patterns. The publications also introduce different user interface
(UI) prototypes used for testing the drum pattern generation engines.
To evaluate these systems, qualitative and quantitative user studies
are conducted.

The first work, covered in Chapter 10, introduces an RBM-based
drum pattern generation approach. As UI, a simple step-sequencer-
based graphical user interface (GUI) controlled with a mouse alongside
a hardware MIDI controller is used. The focus of this work is pattern
variation, i.e. the starting point for the generative model is a drum
pattern provided by the user. This seed pattern is used to implicitly
extract rhythmical properties (latent variables learned during training)
which are then used to generate patterns in the vicinity of the seed
pattern in the latent variable space. As a first attempt of evaluating
such a prototype, a small-scale user study is conducted.

In Chapter 11 the RBM generation engine and UI introduced in
Chapter 10 is evaluated in detail using two different user studies.
To this end, a qualitative user study with eleven experts as well as
a large scale web-based survey are conducted. In these studies the
RBM-based drum pattern generator is evaluated against a GA-based
approach, a database-lookup approach, and patterns generated by
an expert. The patterns which were created by an expert act as a
baseline. A statistical analysis and a discussion of the interviews
reveal that each approach has strengths and weaknesses regarding
different investigated properties.

Chapter 12 deals with introducing improvements to the RBM pattern
generation engine. In comparison to the method used in Chapter 10

and 11, drum patterns for all instruments are generated simultane-
ously and a different distance metric is used to measure pattern
similarity. Furthermore, based on feedback of the previous user stud-
ies, new features are added to the UI while the interaction paradigm is
switched from mouse/hardware-controller-based to a touch-interface-
based UI. Similarly as in the previous chapter, a qualitative user study
consisting of interviews with ten experts was conducted, where the
new UI and new features are evaluated. Additionally, a randomized

113
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Figure 9.1: Timeline of publications and brief overview of topics covered in
them, with corresponding chapters.

A/B comparison between the RBM-based approach used in Chapter 11

and the improved version from this chapter is performed.
The fourth work, which is discussed in Chapter 13, introduces a

novel drum pattern generation engine using GANs. Since GANs are
notoriously difficult to train, much work was invested to select and
fine tune model architecture as well as training approach. To be able
to control properties of generated patterns, the GAN is conditioned on
genre as well as on features representing complexity and loudness
extracted from the drum patterns. As training data for GAN training,
two different datasets are used. The first one consists of drum patterns
extracted from a large scale synthetic dataset featuring drum annota-
tions. The second one is created by transcribing drum tracks of a large
scale genre dataset using the drum transcription approach introduced
in Chapter 7. The resulting pattern generation engine is demonstrated
in an updated version of the touch UI prototype introduced in Chap-
ter 12.

Figure 9.1 puts the individual publications into perspective and
provides an overview of the timeline while indicating the chapters in
which those publications can be found.
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D R U M PAT T E R N G E N E R AT I O N W I T H R B Ms

10.1 overview

The contents for this chapter were published in the following paper:

Richard Vogl and Peter Knees. “An Intelligent Musical Rhythm Vari-
ation Interface”. In: Companion Publication 21st International Conference
on Intelligent User Interfaces. Sonoma, CA, USA, 2016.

As discussed in Section 2.2.1, a promising approach for drum pat-
tern generation is to use RBMs. In this chapter, such an RBM-based
drum pattern variation engine is introduced. The RBM is trained on a
dataset derived from example drum loops from Native Instruments’
Maschine1 software. For training, persistent contrastive divergence [86]
with additional modifications enforcing latent variable selectivity and
sparsity [27], is used. For generating new drum patterns, a seed pat-
tern entered by the user is provided as input for the RBM. Subsequently,
Gibbs sampling is performed to generate variations of the seed pat-
tern. Doing so allows the RBM to be primed with a latent variable state
corresponding to the desired properties for newly generated drum
patterns. The idea is that this way the Gibbs sampling will produce
new and interesting drum patterns that exhibit similar properties as
the entered seed pattern. Alongside the pattern generation engine, a
simple UI prototype is introduced. The prototype consists of a step
sequencer interface using a mouse to input patterns, while parameters
for pattern generation are modified via a hardware MIDI controller.

For evaluation, a small-scale user study consisting of qualitative
expert interviews is used. In the user study ten experts from the
field of music production and performance are interviewed while
exploring the prototype. The results of this study give indications that
RBMs are, to a certain degree, able to produce musically meaningful
drum patterns. Furthermore, the findings indicate that while the
UI prototype could find application in a studio environment, a live
application would be problematic.

1 https://www.native-instruments.com/en/products/maschine/

production-systems/maschine/
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10.2 contributions of authors

For this work I was responsible for data preparation, RBM training, UI

development, conducting the experiments and interviews, as well as
writing the paper.

Peter Knees acted as supervisor and helped with writing the paper
by providing valuable feedback.

As indicated by the acknowledgments, the original data used for
RBM training was collected by Matthias Leimeister, and the basis on
which the UI prototype was built was provided by Michael Hlatky
as part of a common interface definition used for the experiments
covered in Chapter 11.
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Abstract
The drum tracks of electronic dance music are a central
and style-defining element. Yet, creating them can be a
cumbersome task, mostly due to lack of appropriate tools
and input devices. In this work we present an artificial-
intelligence-powered software prototype, which supports
musicians composing the rhythmic patterns for drum tracks.
Starting with a basic pattern (seed pattern), which is pro-
vided by the user, a list of variations with varying degree of
similarity to the seed pattern is generated. The variations
are created using a generative stochastic neural network.
The interface visualizes the patterns and provides an in-
tuitive way to browse through them. A user study with ten
experts in electronic music production was conducted to
evaluate five aspects of the presented prototype. For four of
these aspects the feedback was generally positive. Only re-
garding the use case in live environments some participants
showed concerns and requested safety features.

Author Keywords
Rhythm pattern generation; restricted Boltzmann machines;
machine learning; neural networks; generative stochastic
models.
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Introduction

Figure 1: An EDM track being
arranged in a DAW software.
DAWs are programs used to
produce music. The horizontal
colored bars represent the tracks
for instruments. The orange track
contains the basic rhythmic pattern
and its variations during build-ups,
breaks, and fills.

Nowadays, more than ever before, digital tools for music
production play an important role in the workflow of mu-
sic producers. Such tools cover applications like digital
audio workstations (DAWs; see figure 1), integrated hard-
ware/software solutions like grooveboxes, and software
tools and plugins like synthesizers and audio effects. The
GiantSteps1 project focuses on simplifying the workflow of
music producers by developing intelligent agents for the
usage in electronic dance music (EDM) production and per-
formance.

As yet, drum tracks are built by arranging rhythm patterns
from a pattern library, or by creating patterns manually. Us-
ing predefined patterns bears the risk of sounding unorigi-
nal, while creating them manually is a time consuming task
and requires more musical knowledge. Entering rhythm pat-
terns in a DAW is done using a mouse or MIDI controllers
(keyboards and drum pads) to set notes in a piano roll (see
figure 2) or similar editor. Step-sequencer-like interfaces
are usually a feature of grooveboxes and drum machines
and are typically found in setups for live performances.

Figure 2: A piano roll editor
showing a manually entered
rhythm pattern.

When it comes to samplers and synthesizers for drums in
EDM, a wide variety of commercial products as well as a
lively research community exist. However, there are few
works on automated drum rhythm variation and creation.
In the works of Kaliakatsos–Papakostas et al. [2] and Ó
Nuanáin et al. [4] genetic algorithms to generate rhythmic
patterns are used. Genetic algorithms tend to produce ran-
dom variations and the results strongly depend on the used
fitness function.

Restricted Boltzmann machines (RBM, introduced in [5])
form a group of generative stochastic neural networks which
are well suited for pattern generation. Battenberg et al. [1]

1http://www.giantsteps-project.eu/

Figure 3: Screenshot of the prototype. The 4 by 16 step
sequencer array poses as visualization and input for the drum
rhythm patterns. Beneath the array are controls for playback, the
pattern variation control to determine the degree of variation, and
controls for tempo and swing (all also controllable through a
hardware interface).

use a variant, the conditional RBM, to classify the meter of
drum patterns. They mention the capability of the learned
model to generate drum patterns similar to the training
data, given a seed pattern. Lattner et al. [3] use a similar
method to predict the evolution of features for song seg-
mentation.

In this work, we present an intuitive interface for drum pat-
tern generation. Underlying the interface, an RBM, trained
on a database of drum patterns is used to create variations
of a seed pattern. In addition to presenting the implemented
prototype, we report on user feedback we gathered from in-
terviews conducted with experts during hands-on sessions
to evaluate the prototype.

UI and Method
The developed prototype aims at supporting the producer
of an EDM track creating variations of drum patterns, as
well as providing creative input for creating new drum pat-
terns. The visualization and input interface for these pat-



terns within the prototype employ the well established step
sequencer user interface (UI) paradigm. The controls for
pattern variation are implemented as a dial on which the
variations are placed ordered by sparsity and similarity to
the seed pattern. Figure 3 shows a screenshot of the proto-
type’s UI.

Figure 4: The evolution of the
visible nodes of the RBM while
creating pattern variations for the
snare drum. The x-axis represent
the index of the visible node of the
RBM. The y-axis represents the
number of Gibbs sampling step,
starting at the top with the original
input pattern and progressing
downwards. Active nodes are
represented by white, inactive
nodes by black pixels.

The output of the prototype is sent via MIDI (Musical Instru-
ment Digital Interface),2 making the integration into existing
setups easy. All UI components, with the exception of the
step sequencer array, can be controlled by an external MIDI
hardware controller. Musicians and producers are familiar
with controlling production software with MIDI controllers –
especially in the context of live performances.

To generate meaningful, yet creative patterns, a process
which combines obedience to musical rules with elements
of surprise and unpredictability is needed. In order to ful-
fill this requirement, Gibbs sampling of an RBM was cho-
sen as variation method. Apart from being well researched,
RBMs feature a technique called clamping, which improves
the quality of the generated patterns greatly. For details on
Gibbs sampling, clamping, and RBM training, the reader is
referred to the work by Hinton et al. [6]. RBMs are neural
networks and have to be trained on representative training
data. As training data a set of 16,513 one-bar drum pat-
terns was used. The patterns were extracted from the sam-
ple drum loop library of Native Instrument’s Maschine3 soft-
ware. The library consists of drum patterns for EDM, Hip
Hop, and RnB. Since the main focus of this work is EDM,
this library was well suited.

To generate variations of the seed pattern, first the seed
pattern is entered into the visible layer of the RBM. Then
variations for every instrument are generated individually

2https://en.wikipedia.org/wiki/MIDI
3http://www.native-instruments.com/en/products/maschine/

production-systems/maschine-studio/

by clamping all other instruments and performing several
Gibbs sampling steps. Figure 4 shows the evolution of the
visible layer of the RBM performing Gibbs sampling steps.
It can be observed how the snare pattern (nodes 16-31)
evolves while the other instruments (nodes 0-15 and 32-
63) are clamped to their original values. The sorted single-
instrument-pattern lists are then combined to full rhythm
patterns by using bass drum, snare drum, open, and closed
hi-hat patterns at the same indices.

Early Prototype Evaluation
To evaluate the quality of the generated patterns, as well
as the interaction with the UI, a user study was conducted
of which we report first findings. To this end we interviewed
ten experts in EDM creation in a guided, informal way while
they were exploring the prototype – see figure 5. Table 1
summarizes the number of positive responses for five eval-
uated aspects we deemed crucial for the success of such
an interface.

Over two thirds of the users (seven of ten) considered the
variations to maintain the basic rhythmic idea they entered.
Only participants who entered patterns untypical for EDM,
complained that the variations did not conserve their basic
rhythmic idea. This can easily be explained by the fact that
the RBM was trained on EDM patterns and therefore tried
to converge on these kind of patterns.

Nine out of ten participants considered the variations pro-
duced by the prototype to be musically meaningful. Eight
participants commented positively on the way they interact
with the prototype (step sequencer, variation dial and hard-
ware controller), as exemplified by these quotes:

“It works like it should, so I think it is quite user
friendly. [...] I also think the scrolling [through the
variations] is cool because it is fast and practical.”
JKU-15-05



“I have tested quite a lot of hardware sequencer
things and I think a feature like that would be pretty
cool, actually. Especially if it has lots of variations
like we had right there.” JKU-15-08

Regarding the use of the prototype in live performances,
the participants presented themselves cautious. Six out of
ten participants stated that they could imagine to use the
prototype in a live environment. Some of the participants
would use this kind of tool only with the addition of features
like a preview function (visually or audible) or the option to
limit the degree of variation. The idea of using the prototype
in a studio environment was met with enthusiasm. Partici-
pants were eager to use the prototype to create variations
and get inspiration from it in a production context.

Figure 5: A study participant using
the prototype to explore pattern
variations. A MIDI hardware
controller is used to enable a more
direct interaction.

Conclusion
We presented a prototype for an intelligent rhythm agent to
assist musicians and producers in the context of EDM pro-
duction and live performances. A user study was conducted
to evaluate both the pattern variation algorithm as well as
the UI of the prototype. The study shows that the interaction
concept of the prototype is something most participants can
imagine working with. It also implies that the acceptance
of such a tool in a studio environment would be high, while

aspect positive comments (out of 10)
seed rhythm is preserved 7
patterns are meaningful 9
prototype interaction 8
would use live 6
would use in studio 9

Table 1: Number of participants giving positive responses wrt. the
topics of interest of the user study. The total number of
participants (N ) was ten.

concerns were raised about precision and reliability when it
comes to live performance scenarios. The created patterns
were mostly considered musical and in many cases per-
ceived to reflect the basic rhythmic idea of the seed pattern.
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11
E VA L U AT I O N O F D R U M PAT T E R N G E N E R AT I O N
M E T H O D S

11.1 overview

The contents for this chapter were published in the following article:

Richard Vogl, Matthias Leimeister, Cárthach Ó Nuanáin, Sergi Jordà,
Michael Hlatky, and Peter Knees. “An Intelligent Interface for Drum
Pattern Variation and Comparative Evaluation of Algorithms”. In:
Journal of the Audio Engineering Society 64.7/8 (2016).

This publication introduces and compares three different drum
pattern variation systems: (i) a GA-based, (ii) an RBM-based, and (iii)
a database-lookup-based approach. The MIDI-controller-based UI in-
troduced in Chapter 10 is used as a common interface to test these
methods. Two different user studies are conducted to evaluate the
individual drum pattern generation systems. Data for the first study
is collected using an online survey. In the web form of the survey, a
visual representation alongside an audio rendering of the drum pat-
terns are presented to the participants. After listening to seed patterns
and variations, participants are asked to rate certain aspects of the
generated patterns. For this quantitative study additional variations
provided by an expert are used as a baseline for evaluation. Addition-
ally, a qualitative study consisting of eleven interviews with music
production experts was conducted. The questions of interest covered
by the interviews comprise both, aspects of the generated patterns
and usability of the UI prototype.

The evaluation reveals that the individual systems have strong
points in different areas. While the database-based approach appears
to be more conservative, which results in more trust but also less
creative patterns, the GA-based approach produces more wild and
inspiring patterns which makes it less applicable in live environ-
ments. The RBM-based approach provides a compromise between the
databased-based and GA-based approach, producing more varying
patterns without being too unpredictable, and conserving basic prop-
erties of the seed pattern. Participants were also questioned about
usability of the user interface. While feedback regarding the interac-
tion with the system was generally positive, five participants deemed
the application in a live setting to be problematic. However, most
participants found the UI suitable in a studio or production setting.
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Drum tracks of electronic dance music pieces are a central and style-defining element. Yet,
creating them can be a cumbersome task, mostly due to lack of appropriate tools and input
devices. In this work we use a UI prototype that aims at supporting musicians to compose the
rhythmic patterns for drum tracks, to compare different algorithms for drum pattern variation.
Starting with a basic pattern (seed pattern), which is provided by the user, a list of variations
with varying degrees of similarity to the seed pattern is generated. The variations are created
using one of the three algorithms compared: (i) a similarity-based lookup method using a
rhythm pattern database, (ii) a generative approach based on a stochastic neural network, and
(iii) a genetic algorithm using similarity measures as a target function. The interface visualizes
the patterns and provides an intuitive way to browse through them. User test sessions with
experts in electronic music production were conducted to evaluate aspects of the prototype and
algorithms. Additionally a web-based survey was performed to assess perceptual properties of
the variations in comparison to baseline patterns created by a human expert. The web survey
shows that the algorithms produce musical and interesting variations and that the different
algorithms have their strengths in different areas. These findings are further supported by the
results of the expert interviews.

0 INTRODUCTION

Nowadays, more than ever before, digital tools for music
production play an important role in the workflow of music
producers. Such tools cover applications like digital audio
workstations (DAW), integrated hardware/software solu-
tions like grooveboxes, and software tools and plugins like
synthesizers and audio effects. In the GiantSteps project,
we focus on simplifying the workflow of music producers
by developing intelligent agents for the usage in electronic
dance music (EDM) production and performance.1

Usually, drum tracks are built by arranging rhythm pat-
terns from a pattern library or by creating patterns manually.
Using predefined patterns bears the risk of sounding unorig-
inal, while creating them manually is a time-consuming task
and requires more musical knowledge. Entering rhythm pat-
terns in a DAW is typically done using a mouse or MIDI
controllers (keyboards and drum pads) to set notes in a pi-
ano roll or similar editor. Step-sequencer-like interfaces are

1 http://www.giantsteps-project.eu/

usually a feature of grooveboxes and drum machines and
are found in many setups for live performances.

The aim of this work is to build a tool that supports mu-
sicians in an intuitive way at creating variations or finding
inspiration for new drum rhythm patterns. Maintaining the
basic style, or rhythmical idea, while providing meaning-
ful and interesting—maybe even surprising—variations is
a main goal.

When it comes to samplers and synthesizers for drums
in EDM, a wide variety of commercial products as well as
a lively research community exist. However, there are few
works on automated drum rhythm variation and creation.

1 RELATED WORK

Some commercial products in the field of music produc-
tion include tools that attempt to automate the creation of
a drum track. In Apple’s Logic Pro software,2 the user can

2 http://www.apple.com/logic-pro/
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Fig. 1 Screenshot of the prototype. The 4-by-16 step sequencer array acts as visualization and input for the drum rhythm patterns.
Beneath the array are controls for playback, the pattern variation control, buttons for algorithm selection, and controls for tempo and
swing (all also controllable through a hardware interface).

create a Drummer track that contains basic drum patterns
that can be changed via an interactive GUI. After choos-
ing a genre-specific drummer (e.g., Rock) and drum kit,
the style of the drum track can be varied by moving in a
two-dimensional panel that represents the dimensions soft-
loud and simple-complex. Steinberg’s Groove Agent3 is a
drum plugin that comes with a big selection of drum kits
and loops that can be arranged to a full drum track in a
DAW project. It includes a mode for performance (Style
Player), in which the user can choose different styles of
patterns based on intensity and complexity. An interesting
feature is the automatic mode that varies the complexity of
patterns on the fly. EZ Drummer by Toontrack4 provides a
large library of drum patterns together with the option for
searching matching patterns based on a seed pattern that
the user can record. Since these products are mainly po-
sitioned for the production of rock and alternative music,
they are only to a certain degree applicable for EDM. Fur-
thermore, professional producers often refrain from using
out-of-the-box patterns for fear of sounding unoriginal.

The scientific community mainly focuses on methods
and algorithms providing the underlying functionality. Of
special interest is the question how the human perception of
rhythm, especially the notion of similarity, can be modeled.
Toussaint [20] introduces and compares several measures
for the similarity of two rhythmic patterns. Among them are
the Hamming distance, edit distance, Euclidean distance of
inter-onset-interval vectors, and the interval-ratio-distance.
To gain insight into similarity of the patterns, phylogenetic
trees are built based on the computed distance matrices—a
bioinformatics technique that is originally used to visu-
alize the relationship of DNA sequences. In the work of
Kaliakatsos-Papakostas et al. [9] an automatic drum rhythm
generation tool based on genetic algorithms is described. It

3 http://www.steinberg.net/en/products/vst/groove agent/
4 https://www.toontrack.com/product/ezdrummer-2/

generates variations of a base rhythm and allows the user
to set parameters of the generation process such as diver-
gence between the base rhythm and the generated ones. Ó
Nuanáin et al. [12] use a similar approach for rhythm pat-
tern variation using genetic algorithms. Sioros and Guedes
[15] introduce a system that recombines MIDI drum loops
in realtime based on a measure for complexity of rhythmic
patterns. The complexity is measured by means of synco-
pation and density. A more detailed discussion of different
approaches for measuring syncopation in the same con-
text is presented in [16]. Apart from approaches that com-
pute similarity between rhythmic patterns on a symbolic
representation, there exist methods that consider other as-
pects of rhythmic similarity. Holzapfel and Stylianou [7]
use the scale transform to develop a tempo invariant rhyth-
mic similarity measure for music. Jensen et al. [8] as well
as Gruhne and Dittmar [5] use logarithmic autocorrelation
functions calculated on different forms of onset density
functions to obtain tempo invariant rhythmic features. Other
works investigate properties of swing and try to quantify the
swing-ratios of rhythmic patterns in audio recordings, e.g.,
[3, 11].

Given training data, machine learning methods can
be used to train generative models for rhythm patterns.
Paiement et al. [13] introduce a probabilistic model for rel-
ative distances between rhythms, which is applied to sub-
sequences of patterns. This is in turn used to predict the
continuation of a rhythmic pattern given its past, utilizing
a hidden Markov model (HMM). Another group of widely
used generative models are restricted Boltzmann machines
(RBM) [6]. Boulanger-Lewandowski et al. [2] use an ex-
tension of RBMs with recurrent connections to model and
generate polyphonic music. Battenberg and Wessel [1] use
another variant, the conditional RBM, to analyze drum pat-
terns for their meter. They mention the capability of the
learned model to generate drum patterns similar to the
training data given a seed pattern. This idea was further
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developed in the work by Vogl and Knees [21] to build a
drum rhythm variation tool based on an RBM and a step
sequencer interface. In this work, this prototype is further
extended by incorporating and extensively comparing two
more variation algorithms.

2 PATTERN VARIATION USER INTERFACE

To be able to compare and evaluate different algorithms,
we extended the interface prototype presented in [21] to
accommodate three variation methods that can be selected
via the UI. Fig. 1 shows the UI of the prototype.

It resembles a standard drum step sequencer, provid-
ing four instruments (bass-drum, snare, open, and closed
hi-hat) programmed within one 4/4 measure bar of 16th
notes. This type of interface was chosen since it represents
one of the prevalent interfaces for drum track creation in
EDM. In this context, we focus solely on the variation of
the plain symbolic rhythm patterns. Hence, we deliberately
decouple the pattern from aspects of accentuation, micro
timing, and swing, which are considered independent di-
mensions and should remain under the control of the artist.
For controlling tempo and swing, the presented UI exhibits
respective knobs. The latter allows the user to set an ad-
ditional swing ratio that shifts either 8th or 16th notes to
create a “swing feel.” These parameters enable the users
to recreate a rhythmic style they usually work with, while
keeping the UI complexity at the necessary minimum.

A central UI element is the variation browsing knob and
the controls to set and reset the pattern for which the varia-
tions should be created. After pressing the “variation” but-
ton, the selected algorithm generates variations. These vari-
ations are ordered ascending regarding the number of active
notes. By turning the variation knob to the left, the varia-
tions will become more sparse; when turning the knob to
the right the variations will become more dense. By press-
ing the reset button, the variation knob jumps back to the
seed pattern. Above the variation knob are buttons to select
one of the three variation algorithms. The assignment is
randomized after every start of the prototype to avoid any
bias introduced by the order. The output of the interface is
sent via MIDI. All UI elements can be controlled via MIDI,
making it possible to use an external hardware controller,
or integrating the prototype into a DAW software.

3 PATTERN VARIATION ALGORITHMS

The aim of the presented algorithms is to support the user
in creating interesting drum tracks based on an initial seed
pattern. Hence, the variation algorithm receives a one-bar
pattern of kick, snare, closed hi-hat, and open hi-hat notes
as input. Based on this, a set of 32 new patterns is computed
and returned to the UI as suggested variations of the seed
pattern. This set is sorted according to density of note events
per bar. The seed pattern is placed in the list according to its
own density as a starting point for exploring the patterns.
Two of the following algorithms are data-driven as they
require model training or a database lookup. Therefore,
we first describe the collection of rhythm patterns that has

Fig. 2. Rhythm patterns as binary vectors of size four. Depicted
are examples for two equal vectors, vectors with missing notes
(or additional notes if the right vector is used as reference), and
vectors with both missing and additional notes. The columns to the
right show the corresponding Hamming and modified Hamming
distance.

been used throughout the experiments as database and for
model training.

3.1 Data Set
Maschine5 is an integrated hardware/software groove

box application that is focused on the production of ur-
ban and electronic music. The application and its extension
packs contain a large library of drum sound samples and
examples for drum patterns.

This collection of drum patterns was used to compile a
data set for the development of rhythm pattern variation
algorithms. Using the MIDI export function of the appli-
cation, the example drum patterns have been exported to
MIDI files and cut into patterns of one bar length. From the
exported samples, only the instruments kick, snare, closed
hi-hat, and open hi-hat were used. The resulting patterns
were checked for exact repetitions and some were removed
based on musical constraints. For example, only patterns
containing between two and six bass drum notes per bar,
between one and five snare drum notes, as well as at least
two hi-hat notes were kept. This was done to exempt breaks
and very sparse patterns from the database. The final set
consists of 2,752 unique patterns.

3.2 Modified Hamming Distance
Both the database-driven approach (Sec. 3.3) as well as

the neural-network-based method (Sec. 3.4) use a rhythm
pattern similarity function. To calculate the similarity, the
rhythm patterns are represented as 64-bit (16 notes, 4 instru-
ments = 64 notes) binary vectors. Then the number of bits
with different values between the two vectors is counted
(= Hamming distance). An additional offset (64) is added
if one vector compared to the other has additional as well
as missing notes. See Fig. 2 for examples. This choice was
made based on the findings in [20] and [12] as well as the
goal to favor patterns that have as much overlap as possible
with the seed pattern. It is supposed to create the sensa-
tion of a steady evolution when browsing the resulting list
of variation patterns, which was sorted using this distance
function.

3.3 Database-Driven Approach
The database-driven algorithm (referred to as DB in the

following) is based on retrieving patterns similar to the seed

5 http://www.native-instruments.com/products/maschine
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pattern from a database and suggesting these as variations.
For the rhythm pattern database, the patterns extracted from
Maschine (cf., Sec. 3.1) were used. The modified Hamming
distance is used to compute the similarity of the seed pat-
tern (query) to every pattern in the database (targets). In
case the target pattern contains more notes, but also misses
notes from the query, the pattern is modified by adding the
missing notes from the query pattern. As a result, gener-
ated patterns with more notes than the query always contain
all notes from the query pattern. The resulting patterns are
sorted according to the computed distance and a list of the
32 most similar patterns is returned.

3.4 Neural Network Based Method
To generate meaningful, yet creative patterns, a process

that combines obedience to musical rules with elements
of unpredictability is needed. To achieve this, Restricted
Boltzmann machines (RBMs, introduced in [17]), which
are generative stochastic neural networks, are used. From
training, they learn a probability distribution defined by the
training data. From this distribution samples can be drawn,
which can be used for pattern generation.

RBMs consist of two layers of artificial neurons: the
visible layer, which is used as both in- and output and a
hidden layer that represents latent variables. The neurons
are fully linked only between the two layers (hence the name
“restricted”). Fig. 4 depicts an example of a small RBM
with four visible nodes and three hidden nodes. The RBM
used in this work consists of 64 nodes in the visible layer,
which correspond to the notes (16x4) in the step sequencer
grid (see Fig. 1). The hidden layer consists of 500 nodes.
The training was done using the Lrn2 framework of the
Lrn2Cre8 project.6

The RBM is trained using the Maschine rhythm pat-
tern data set by means of persistent contrastive divergence
(PCD) [19] training. Additionally, latent selectivity and
sparsity, as described in [4], as well as drop-out [18] for
training are used.

To generate variations of the seed pattern, first, the seed
pattern is entered into the visible layer of the RBM. Then,
variations for every instrument are generated individually
by clamping (nodes fixed to their original input values) all
other instruments and performing several Gibbs sampling
steps. A Gibbs sampling step consists of (i) calculating the
values for the hidden layer by using the input values in the
visible layer and the learned network weights, (ii) binarizing
the values of the hidden layer by applying the sigmoid
function and a random threshold, and (iii) calculating new
values for the visible layer by using the values in the hidden
layer and the network weights. Fig. 3 shows the evolution
of the visible layer of the RBM performing Gibbs sampling
steps. It can be observed how the snare pattern (nodes 16–
31) evolves while the other instruments (nodes 0–15 and
32–63) are clamped to their original values. For more details
on Gibbs sampling, clamping, and RBM training, the reader

6 https://github.com/OFAI/lrn2

Fig. 3. The evolution of the visible nodes of the RBM while
creating pattern variations for the snare drum. The x-axis represent
the index of the visible node of the RBM. The y-axis represents
the index of the Gibbs sampling step, starting at the top with the
original input pattern and progressing downwards. Active nodes
are represented by black, inactive nodes by white pixels.

Fig. 4. Structure of a Restricted Boltzmann Machine. White cir-
cles represent the visible and gray circle the hidden nodes. Be-
tween the two layers, the nodes are fully connected, while nodes
within the same layers are not connected.

is referred to the work by Hinton et al. [6] and the other
references provided.

The generated single-instrument patterns are sorted us-
ing our modified Hamming distance. The sorted single-
instrument pattern lists are then combined to full rhythm
patterns by using bass drum, snare drum, open, and closed
hi-hat patterns at the same indices. This approach will sub-
sequently be referred to as RBM.

3.5 Genetic Algorithm
Genetic algorithms are frequently used in algorithmic

composition and other creative applications in what is of-
ten called “generative art.” In essence, a genetic algorithm
involves successive splicing, pairing, and mutating of data
structures in a simulated program of natural selection. At
the core of a genetic algorithm lies the fitness function
that determines whether individuals fulfill some solution
criteria.
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Table 1. Mnemonics used in the article.

Algorithms DB database based method
RBM neural network based method
GEN genetic algorithm based method
EXP patterns created by an expert

Variations sp1 sparse variation close to seed (–3)
den1 dense variation close to seed (+3)
den2 dense variation far from seed (+6)

In [12], a genetic algorithm that generates rhythmic pat-
terns using an automatic fitness function by determining
similarity of new patterns to a seed pattern, was presented.
In this work an adapted version of this method is used to
meet the constraints and requirements of the UI prototype.

The initial population pool is initialized with a uniformly
random distributed set of 16x4 binary pattern genomes, con-
forming to the kick, snare, and hi-hat representation used in
this work. The algorithm commences and iterates through
successive stages of evolution. During a single stage of evo-
lution, patterns from the population pool are selected and
paired for mating. New patterns are generated by selecting
two parent patterns for crossover (bits from each are copied
to the child) and mutation (a very small portion of the child
is randomly modified). The fitness of these new patterns is
determined by measuring their rhythmic similarity to the
input target pattern using a distance function. The evalua-
tion in [12] revealed that the Hamming distance correlates
best with human judgments when dealing with polyphonic
patterns. For this reason, as well as to remain consistent
with the distance measures used in the other algorithmic
approaches, in this work the Hamming distance is used.

Achieving a balance between pattern diversity and rea-
sonable convergence time is one of the main challenges.
To this end, two adjustments to the method presented in
[12] are made. First, a more conventional roulette selection
scheme [14] is adapted: candidates from the population are
chosen for pairing and splicing from the fittest 100 members
only. Second, a stage of elitism in the selection procedure
is introduced: a small fraction of the fittest individuals are
simply copied to the next generation. This fraction can be
tweaked for drastic decreases in the algorithm’s conver-
gence time.

We run the algorithm and store the best member from
each generation in a list to get a diverse spread of rhythmic
patterns in terms of target similarity. From this list 32 pat-
terns are chosen from equidistantly distributed indexes, to
be returned to the UI. The genetic algorithm approach will
subsequently be referred to as GEN.

Table 1 summarizes the mnemonics of the different al-
gorithms for better comprehension.

4 EVALUATION—EXPERT INTERVIEWS

To evaluate all three algorithms as well as the UI proto-
type, two separate studies have been carried out. The first
study consists of interviews conducted with experts in EDM
production and performance. The study’s aim was to gather

feedback on the quality of the variations produced by the
single algorithms as well as on the usability of the UI. Sec.
5 covers the second study. It is a web-based survey in which
variations of selected seed patterns were to be rated. The
goal of this survey was to obtain quantitative data on various
properties of the variation algorithms.

4.1 Method
We conducted interviews with musicians experienced in

working with DAWs and producing EDM and/or perform-
ing EDM live. The interviews were conducted in a guided
and informal way inspired by the “thinking aloud” method
[10]. The participants were introduced to the prototype by
briefly explaining aim and functionality. Then they were
asked to explore the functions and algorithms of the proto-
type while talking about their experience and thoughts. For
every interview, the algorithm button assignment was ran-
domized to avoid experimenter bias. The interviews were
recorded and transcribed for later analysis.

The aim was to get answers to five core aspects we
deemed crucial for the success of a rhythm pattern vari-
ation tool:

1. Is the basic rhythm of the seed pattern preserved in
the variations?

2. Are variations musically meaningful?
3. Is the interaction with the prototype intuitive?
4. Would the prototype be useful in a live environment?
5. Would the prototype be useful in a studio/production

environment?

Additional comments on feature requests, use-case sce-
narios, and UI interaction were collected.

4.2 Interview Results
In total, 11 interviews were conducted with musicians in

their private studios, at the HAMR’15 hackday in Málaga,
and at the Red Bull Music Academy in Paris. After being
introduced to the prototype, the participants spent on av-
erage 23 minutes (min.: 17, max.: 30 minutes) exploring
the behavior of the three pattern variation algorithms (i.e.,
about 8 minutes per algorithm on average). Five participants
used multiple seed patterns (up to three patterns), while the
others just used one seed pattern to generate variations.
Participants were encouraged to browse through the whole
list of variations to get an overall image of how the sin-
gle algorithms behave. Table 2 summarizes the comments
of the interviewees regarding the five aspects of interest
identified earlier.

Comments were considered to be positive whenever the
interviewees explicitly expressed a positive impression re-
garding the aspects. For example:

• Rhythm and musicality:
“That [generating variations] actually worked: It
adds stuff on the right, it removes on the left.” JKU-
15-09
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Table 2. Number of participants giving positive responses wrt.
the topics of interest of the user study.

Aspect Algo. Positive comments

rhythm is preserved DB 10 91.0%
RBM 8 72.7%
GEN 5 45.5%

patterns are musical DB 11 100%
RBM 10 91.0%
GEN 7 63.6%

prototype interaction 9 81.8%

would use live 6 54.5%

would use in studio 10 91.0%

Note: The total number of participants (N) was eleven.

• Prototype interaction:
“It works like it should, so I think it is quite user
friendly. [. . .] I also think the scrolling [through the
variations] is cool because it is fast and practical.”
JKU-15-05

• Studio and live usage:
“I would say it would be interesting, in this form, for
a studio [. . .]. But it would be very inefficient in a
live setting.” RBMA-15-04

Most feature requests were uttered in the context of
live environments. The most demanded features requested
were, among other things: (i) a preview function, visually
or audible—mentioned six times, (ii) a way to store or
bookmark patterns—mentioned four times, and (iii) an op-
tion to make patterns switch only on the downbeat during
playback—mentioned twice.

5 EVALUATION—WEB SURVEY

To substantiate the findings from the expert interviews
and evaluate properties of the generated rhythm patterns
quantitatively, we additionally conducted a web-based sur-
vey. Based on the feedback gathered so far, we were specif-
ically interested in the algorithms’ generated variations in
terms of rhythm preservation, difference in detail, inter-
estingness, suitability as substitution, and suitability as fill
(see below). We define four research questions (RQ) cov-
ering these properties. These RQs are additionally used to
structure the evaluation and results (cf., Sec. 5.2):

• RQ I: Are there significant differences between the
individual algorithms for each property?

• RQ II: Do the variations capture the basic rhythm of
the seed patterns?

• RQ III: Is the sorting within the list provided by the
algorithm reasonable?

• RQ IV: Are the investigated properties independent
or are these aspects correlated?

These properties are evaluated against a baseline consist-
ing of pattern variations created by a human expert.

Table 3. List of seed patterns of the web survey.

Note: OHH stands for open hi-hat, HH for hi-hat, SD for snare drum,
and BD for bass drum. Beneath the pattern name a typical tempo
range for the pattern is provided. As tempo for the audio renderings,
the mean of the range was chosen.

5.1 Method
Eight one-bar rhythm patterns (see Table 3), which repre-

sent distinctive characteristic styles found in electronic and
urban music, were selected as basic seed patterns. For each
basic pattern/algorithm combination, three variations were
generated. Additionally, posing as a fourth “algorithm” and
providing a baseline, a human, i.e., a musician familiar with
different EDM styles, created three variations for each seed
pattern (referred to as EXP in the following). The three vari-
ations were taken from the variation lists generated by the
algorithms in an automated process. They were selected
at the following distances to the seed within the list: –3
(sparse variation; in the following referred to as sp1), +3
(dense variation; den1), and +6 (den2). The mnemonics for
the variations can also be found in Table 1. This results
in a total number of 12 variations (four algorithms, each
three variations) for one seed pattern. The maximum total
number of patterns to evaluate per survey participant was,
therefore, 96 patterns.

In the survey, we asked five questions to investigate the
research questions defined earlier:

• How well does this pattern capture the basic rhythm
of the original pattern? (Referred to as rhythm in the
following)
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Fig. 5. Evaluation page of the web survey. On the left side the original pattern, and the first variation can be seen. In the top right, the
single questions are explained. In the lower right the six-point Likert scales for the five questions are shown.

• How different in terms of details is this pattern com-
pared to the original pattern? (difference)

• Consider this pattern a variation of the original. How
interesting is this pattern as a variation of the original
pattern? (interesting)

• Would it make sense to use this pattern as a substi-
tute for the original pattern as a continuous rhythm
pattern in a song? (substitution)

• Would it make sense to use this pattern as a single bar
variation (drum-fill) of the original pattern within a
song? (fill)

The answers to these questions were collected as the
score on a six-point Likert scale (no neutral answer, thus
“forced choice”).

The survey was conducted by means of a web appli-
cation. On the first page general information such as age,
gender, and questions about musical activity were collected.
Subsequently, every seed pattern was represented on a sin-
gle page where answers to the five questions for the twelve
variations had to be provided. Visual aids in the form of
images of the rhythm pattern in the step sequencer grid,
as well as a rendered audio version of the rhythm patterns
using genre specific drum kits were provided. Fig. 5 shows
a screenshot of a evaluation page of the web survey. The
sequence of the seed patterns (= survey pages) as well as
the sequence of the variations was randomized per user to
avoid bias caused by a certain order of the variations. It
was not mandatory that all seed patterns were processed by
every participant. The progress was stored after each page
and it was possible to continue the survey at another point
in time.

5.2 Survey Results
The web survey was online from October 2015 until

January 2016 and was distributed to local contacts and ad-
vertised on the Music-IR and the SMC mailing lists. In
total, 43 users participated for which 1,536 entries were
recorded. Every entry consists of scores for the five sur-
vey questions (rhythm, difference, interesting, substitution,
and fill) for one of the three variations (sp1, den1, and
den2) of a certain algorithm (one of DB, RBM, GEN, or
EXP) of a specific seed pattern. This results in 384 data
points per algorithm and 512 data points per variation. Fig.
6 shows the distribution of data points among the single
seed patterns.

The resulting data set has a strong bias towards male par-
ticipants: Only 2 out of 43 participants (4.7%) are female.
Over 90% (39 out of 43) of the participants are able to read
sheet music and almost half of them (20 out of 43) play
some kind of percussive instrument.

We conducted one-way ANOVA analysis with consec-
utive Post-Hoc tests to analyze if the mean scores of the
answers to the individual survey questions have signifi-
cant differences, i.e., we test against the null hypothesis
that there is no difference in the mean scores of the dif-
ferent algorithms (including the expert user EXP). First,
the single distributions were tested for homogeneity of
variances using Levene’s test. In case of homogeneous
variances an ANOVA with subsequent Ryan-Einot-Gabriel-
Welsch Range Post-Hoc test was used. In case of inhomoge-
neous variances, additionally a Welch test with subsequent
Games-Howell Post-Hoc test was used (p = 0.05 for all
tests). This setup is used to find answers to the four re-
search questions (RQ) defined earlier:
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Fig. 6. Distribution of data points among the single seed patterns used in the web-based survey.

Fig. 7. Mean scores of each algorithm for the aspects evaluated.
The black bars indicate homogeneous subsets according to signif-
icance analysis. The series with asterisk use only a subset of the
full data set: rhythm* and substitution* are calculated using only
variations sp1 and den1, fill* was calculated using only variation
den2.

RQ I: Are there significant differences between the in-
dividual algorithms for each property? Fig. 7 shows the
evaluation results comparing the means of the individual
algorithms for all survey questions. The baseline is repre-
sented by the scores for the expert patterns (EXP) that are
visualized as diamonds in Fig. 7.

For this evaluation, apart from the full data set, two data
subsets were additionally used: In the case of rhythm* and
substitution* all entries with den2 as variation were ex-
cluded. This was done to check if scores for rhythm and
substitution increase if only the similar variations are con-
sidered. In the case of fill* only entries with the more distant
variation den2 were used. This set was used to gain in-
sight if scores for fill increase for dense patterns which are
more different.

For rhythm, all algorithms perform equally well or better
than the baseline. Significantly worse than the baseline are:
GEN in the case of rhythm*, DB and RBM in both cases of
difference and interesting, GEN in both cases of substitution
and substitution*, and DB and RBM in the case of fill. In all
other cases the algorithms perform equally well or better
than the baseline patterns created by the expert.

The algorithms are able to reproduce the basic rhythm
pattern of the seed patterns as good as the expert. While
RBM and DB fail to produce as interesting and differ-

Fig. 8 Mean scores for rhythm (left) and difference (right) for each
algorithm split by variation. The black bars indicate homogeneous
subsets according to significance analysis.

ent patterns as the expert, GEN does not generate sub-
stitutes as well as the expert. Since fill* is more relevant
in a real-live scenario (in the interviews users tended to
browse to the far right to look for fills), all algorithms
can be considered to produce fills equally well as the ex-
pert, while GEN still performs significantly better than DB
and RBM.

RQ II: Do the variations capture the basic rhythm of
the seed patterns? The analysis to RQ I shows that for
rhythm, all algorithms perform equally well or better than
the human expert when calculating means over the full data
set. For this question the data is split into three subsets for
the variations sp1, den1, and den2. This is done in order
to check if rhythm stays the same regardless of the degree
of variation. In the left plot of Fig. 8 it can be observed
that rhythm does not stay the same for the single variations,
not even for EXP which was the baseline. In the case of
RBM and EXP only the pattern den2 scores significantly
worse. DB performs equally well for den1 and den2 but
significantly worse for sp1. Also GEN scores worse for
den2 and even more so for sp1.

We can summarize that for den2 the rhythm scores are
generally worse than for den1. This leads to the assumption
that it is difficult for the algorithms (but also for the expert)
to reproduce the basic rhythm for more different patterns.
The only exception to this is the DB approach, which can
be explained by the fact that DB never changes the basic
rhythm pattern when producing patterns with more notes,
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as explained in Sec. 3.3. On the other hand DB seems to
fail to provide sparse patterns with the same basic rhyth-
mic structure. This is probably caused by the fact that the
database consists of a limited number of patterns, therefore
it is hard to find sparse patterns with the same basic rhythm.
GEN fails to provide good patterns not only for den2 but
also for sp1, which was also observable in the interviews:

“To the left it [GEN] just goes crazy.” JKU-15-01

“If I turn to the right, there were many things which were
OK, but on the left side not so much. [. . .] [GEN] went
completely crazy on the left side.” JKU-15-03

While the results for RBM are comparable to the ex-
pert baseline (EXP), GEN and DB seem to have problems
reproducing sparse patterns that capture the basic rhythm.

RQ III: Is the sorting within the list provided by the
algorithm reasonable? To evaluate this question two as-
sumptions regarding the scores for difference are tested.
The first assumption is, that variations sp1 and den1 score
equally since they were taken at the same distance to the
seed pattern. Second, for variation den2 the score should
raise since the distance was twice as large compared to
den1. The right plot in Fig. 8 shows the evaluation results
for RQ III. Only for RBM both assumptions are true. The
second assumption is true for all algorithms, only the as-
sumption that sp1 and den1 score equally has to be rejected
for DB, GEN, and EXP. sp1 is, in fact, always rated to be
more different than den1. Since this is even the case for the
baseline (EXP) one could assume that sparse patterns are
generally perceived more different than dense patterns with
the same distance.

Apart from the fact that sparse patterns generally seem
to be rated more different than dense patterns, the sorting
can be considered reasonable.

RQ IV: Are the investigated properties independent or
are these aspects correlated? Fig. 9 visualizes the corre-
lation between the answers to the survey questions. Only
the pair rhythm/fill shows no significant correlation, which
might imply that for fills it is not important if the basic
rhythmic feel is preserved. Substitution and fill show a
weak negative correlation that seems reasonable, since pat-
terns rarely qualify for both categories. Interesting shows a
slight positive correlation with rhythm and difference. This
could imply that participants only find patterns interesting
if they conserve the basic rhythm while introducing change.
There is a strong positive correlation between interesting
and fill that implies that participants tend to consider in-
teresting patterns suitable as fills. Difference shows a weak
positive correlation with fill that might imply that fills are
supposed to be different from the basic rhythm. Substitu-
tion and rhythm also turn out to correlate strongly posi-
tively, which comes as no surprise since substitutes should,
in general, be similar to the basic rhythm patterns. The
same line of reasoning can be applied to the strong nega-
tive correlation between substitution and difference. Since
rhythm also correlates strongly negatively with difference,
the aforementioned correlation might be merely a transient

Fig. 9. Symmetric correlation matrix of Spearman’s correla-
tion values (ρ) and significance levels (p) for the answers to
the survey questions. The upper right half visualizes the value
(darker=higher) and direction (negative / positive) of the correla-
tion. The lower left half contains the numeric values.

effect caused by the two very strong correlations of rhythm
with difference (negative) and substitution (positive).

6 CONCLUSION

We presented three different algorithms to create vari-
ations of one bar drum rhythm patterns as well as the
extension of an interface prototype. The aim of the pro-
totype is to support EDM producers and performers to find
suitable drum patterns. We used the prototype to test and
evaluate the variation algorithms by means of two studies:
A series of qualitative expert interviews and a quantita-
tive web-based survey. The expert interviews show that the
interaction concept of the prototype is something most par-
ticipants can imagine working with. It also implies that the
acceptance of such a tool in a studio environment would be
high, while concerns were raised about precision and reli-
ability when it comes to live performance scenarios. The
patterns created by the database-based approach (DB) and
the neural-network-based method (RBM) were mostly con-
sidered musical and in many cases perceived to reflect the
basic rhythmic idea of the seed pattern. While the genetic
algorithm (GEN) produced usable patterns in many cases,
it was considered more suitable for fills and creative explo-
ration. The web-based study, using an expert-created base-
line, allows interesting insights that support the findings of
the expert interviews: GEN produces patterns suitable for
fills that have a tendency to be more different and interest-
ing than the ones produced by RBM or DB, which in turn
are more conservative and suitable as substitute patterns
for basic rhythms. The findings of the two studies support
each other and shed light on the properties of the compared
methods as well as on the perception of rhythm variations
of users in general.

Accompanying materials covering the raw survey data,
images and audio renderings of the survey patterns,
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the UI prototype, a short demo video, and the train-
ing configuration for the RBM are available at: https://
github.com/GiantSteps/rhythm-pattern-variation-study
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Based Rhythmic Pattern Generation and Variation with Ge-
netic Algorithms,” in Proc. 12th Sound and Music Comput-
ing Conf. (2015).

[13] J.-F. Paiement, Y. Grandvalet, S. Bengio, and D.
Eck, “A Generative Model for Rhythms,” in NIPS Work-
shop on Brain, Music and Cognition (2007).

[14] D. Shiffman, S. Fry, and Z. Marsh, The Nature of
Code (Daniel Shiffman, 2012).

[15] G. Soros and C. Guedes, “Complexity Driven Re-
combination of MIDI Loops,” in Proc. 12th Intl. Society
for Music Information Retrieval Conf. (2011).

[16] G. Sioros, A. Holzapfel, and C. Guedes, “On Mea-
suring Syncopation to Drive an Interactive Music System,”
in Proc. 13th Intl. Society for Music Information Retrieval
Conf. (2012).

[17] P. Smolensky, “Information Processing in Dynami-
cal Systems: Foundations of Harmony Theory,” in Parallel
Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1, pp. 194–281 (MIT Press, 1986).

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I.
Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way
to Prevent Neural Networks from Overfitting,” J. Ma-
chine Learning Research, vol. 15, no. 1, pp. 1929–1958
(2014).

[19] T. Tieleman and G. Hinton, “Using Fast Weights
to Improve Persistent Contrastive Divergence,” in
Pro. 26th Intl. Cons. on Machine Learning (2009),
http://dx.doi.org/10.1145/1553374.1553506.

[20] G. Toussaint, “A Comparison of Rhythmic Similar-
ity Measures,” in Proc. 5th Intl. Cons. on Music Information
Retrieval (2004).

[21] R. Vogl and P. Knees, “An Intelligent Musical
Rhythm Variation Interface,” in Companion Publication
21st Intl. Cons. on Intelligent User Interfaces (2016),
http://dx.doi.org/10.1145/2876456.2879471.

512 J. Audio Eng. Soc., Vol. 64, No. 7/8, 2016 July/August



PAPERS INTELLIGENT INTERFACE FOR DRUM PATTERN VARIATION

THE AUTHORS

Richard Vogl Matthias Leimeister Cárthach Ó Nuanáin Sergi Jordà
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12
T O U C H U I F O R D R U M PAT T E R N VA R I AT I O N

12.1 overview

The contents for this chapter were published as the following paper:

Richard Vogl and Peter Knees. “An Intelligent Drum Machine for
Electronic Dance Music Production and Performance”. In: Proceedings
of the 17th International Conference on New Interfaces for Musical Expres-
sion (NIME). Copenhagen, Denmark, 2017.

In this work, a new UI based on a multi-touch interface is presented.
The goal is to make manipulation of the step sequencer grid simpler,
assuming that interaction with the touch UI is more direct and feels
more natural. Additionally, knobs which can be placed on the touch
screen and used to control virtual knobs, are tested. The variation
engine, which is based on an RBM similar to the one used in Chapter 10,
is further improved. Shortcomings and feature requests identified in
the user study in Chapter 11 are fixed and incorporated, respectively.

For evaluation, again, a small scale qualitative user study is per-
formed to evaluate (i) the new touch-based UI against the old proto-
type, and (ii) the two different RBM variation engines in a randomized
A/B setup. The newly added UI features as well as the physical knob
extensions to the touch UI are separately evaluated. Findings of the
evaluation show that the touch interface and new variation engine was
favored, while the physical knobs did not add any additional value
for the majority of the participants. In general, participants found
the touch interface more practical and usable than the mouse-based
prototype—especially for live settings.

12.2 contributions of authors

As main author I created almost all of the content for this work. I
created the new touch-UI based prototype, updated the RBM based
pattern variation system, designed the experiments, conducted inter-
views, evaluated results, and wrote the paper.

Peter Knees acted as supervisor and helped with writing the paper
and experiment design.
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ABSTRACT
An important part of electronic dance music (EDM) is the
so-called beat. It is defined by the drum track of the piece
and is a style defining element. While producing EDM, cre-
ating the drum track tends to be delicate, yet labor intensive
work. In this work we present a touch-interface-based pro-
totype with the goal to simplify this task. The prototype
aims at supporting musicians to create rhythmic patterns
in the context of EDM production and live performances.
Starting with a seed pattern which is provided by the user,
a list of variations with varying degree of deviation from
the seed pattern is generated. The interface provides sim-
ple ways to enter, edit, visualize and browse through the
patterns. Variations are generated by means of an artifi-
cial neural network which is trained on a database of drum
rhythm patterns extracted from a commercial drum loop
library. To evaluate the user interface as well as the quality
of the generated patterns a user study with experts in EDM
production was conducted. It was found that participants
responded positively to the user interface and the quality of
the generated patterns. Furthermore, the experts consider
the prototype helpful for both studio production situations
and live performances.

Author Keywords
Rhythm pattern generation; restricted Boltzmann machines;
machine learning; neural networks; generative stochastic
models.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interfaces, Input
devices and strategies

1. INTRODUCTION
Electronic dance music (EDM) covers a wide range of gen-
res with common production techniques, heavily utilizing
synthesizers, sampling, digital effects, and sequencer soft-
ware or digital audio workstations (DAWs). While these
tools are nowadays also used in rock, pop, and other music
production processes, they are more prominently featured
in and are the foundation of EDM.

An important stylistic property of most EDM genres is
the utilization of style-specific repetitive rhythmic patterns,

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

the so-called beat. For shaping and defining the beat, the
drum track of the piece and its rhythmic interaction with
other instruments are essential. Creating the drum track
of an EDM arrangement is, therefore, of high importance
and can be time consuming. In this paper we present an
intelligent software prototype — implemented as touch in-
terface on a tablet computer — aiming at helping musicians
to accomplish this task. More precisely, the developed pro-
totype supports the musician or producer of an EDM track
in adding variation to a drum track by intelligently provid-
ing creative input for drum pattern creation.

In the prototype’s current implementation, we use a step
sequencer representation for drum patterns with four drum
instruments (kick, snare, hi-hat, open hi-hat) and 16 steps
at which these instruments can be either on or off. As arti-
ficial intelligence engine, a generative stochastic neural net-
work, concretely a restricted Boltzmann machine trained on
EDM drum patterns, is implemented. It is used to gener-
ate stylistically suited variations of a given drum pattern.
In this context, using loops from drum libraries is usually
undesired because it makes the results predictable, boring,
and available to everyone (regardless of skill), putting artis-
tic identity in jeopardy. Ultimately, the prototype aims
at supporting musicians to create original and interesting
rhythmic patterns in the context of EDM production and
live performances. To assess the suitability of the presented
approach in these tasks, we performed a qualitative user
study with expert users in electronic music production. We
discuss the outcomes of this study after reviewing related
work and detailing the algorithmic and technical implemen-
tation.

2. RELATED WORK
There are only a few commercial products for automated
rhythmic pattern variation and creation. With Groove Agent,1

Steinberg provides a drum plugin covering a wide variety of
drum kits and loops. It also features a mode which allows
variation of the complexity of patterns on the fly. Apple’s
DAW, Logic Pro,2 features an automatic drummer plugin
which allows the user to select a certain drum kit sound
and music style. The patterns played can be changed by
controlling complexity and loudness in a two-dimensional
system using an x/y pad. These tools aim at amateur and
semi-professional production and recording of alternative
and rock tracks, and find therefore little use in EDM pro-
ductions.

In the work of Kaliakatsos-Papakostas et al. [8], a method
for automatic drum rhythm generation based on genetic al-
gorithms is introduced. The method creates variations of a
rhythm pattern and allows the user to change parameters

1
http://www.steinberg.net/en/products/vst/groove_agent

2
http://www.apple.com/logic-pro
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such as level of variation between the original and the gener-
ated patterns. In the work of Ó Nuanáin et al. [9] a similar
method for rhythm pattern variation is presented using ge-
netic algorithms in combination with different, more simple,
fitness functions. This approach was one of the methods
evaluated in [19] where it has been shown that it is more
difficult to generate patterns with consistent style using ge-
netic algorithms.

When working with lists of rhythm patterns and sorting
or ranking is required, similarity measures for such patterns
are needed. In the work of Toussaint [15] several similarity
measures for rhythmic patterns are discussed: The Ham-
ming distance, edit distance, Euclidean distance of inter-
onset-interval vectors, and the interval-ratio-distance are
compared by building phylogenetic trees based on the com-
puted distance matrices. Holzapfel and Stylianou [6] use
audio signals as input and present a tempo invariant rhyth-
mic similarity measure utilizing the scale transform. Other
methods which can be applied to audio signals are presented
by Jensen et al. [7] as well as Gruhne and Dittmar [4]. Both
works obtain tempo invariant rhythmic features by applying
logarithmic autocorrelation to different onset density func-
tions. Since this work focuses on the use of symbolic rep-
resentations of rhythm patterns, similarity measures based
on audio signals are unsuitable. Therefore, primarily the
methods compared in [15] were relevant.

A group of widely used generative models are restricted
Boltzmann machines (RBMs) [11, 5]. Battenberg et al. [1]
use a variation, the conditional RBM, to analyze drum pat-
terns and classify their meter. They mention the capabil-
ity of the learned model to generate drum patterns simi-
lar to the training data given a seed pattern. Boulanger-
Lewandowski et al. [2] use an extension of an RBM with re-
current connections to model and generate polyphonic mu-
sic. In the work of Vogl and Knees [18] a drum pattern
variation method based on an RBM is demonstrated. In
[19] different pattern variation methods for drum rhythm
generation are evaluated using two user studies. It shows
that RBMs are capable of reasonably generating drum pat-
terns.

In the current work, a system which is able to create
meaningful variations of a seed pattern is presented. Weak-
nesses identified in the interface in [19] are considered and a
touch-interface-based prototype is introduced. The RBM-
based variation method is further improved and the system
is evaluated using a qualitative user study involving ten ex-
perts in electronic music production.

3. INTELLIGENT PATTERN VARIATION
METHOD

The centerpiece of the prototype is the artificial intelligence
driven pattern variation engine. Its task is to create rhythm
patterns as variations of a seed pattern utilizing sampling
of an RBM. For the training of the RBM a data set of EDM
and urban music drum rhythm patterns had to be created.
RBMs are two layered neural networks which can be used to
generate patters. Fig. 1 shows the basic structure and com-
ponents of a simple RBM. This pattern generation method
was chosen for several reasons. Training and sampling of
RBMs is well researched and RBMs have been shown to
be applicable for pattern generation in general. Further-
more, sampling of RBMs is computationally efficient and
can be performed sufficiently fast also on low-end portable
devices to ensure reasonable response times for user inter-
action. When sampling from RBMs, a seed pattern, which
determines the characteristics of the generated patterns, can
be provided.

v1 v2 v3 v4

h1 h2 h3

Figure 1: Simplified visualization of the structure of
RBMs. The lower layer in white represents the vis-
ible nodes (vn) while the upper layer in gray repre-
sents the hidden nodes (hm). Every connection be-
tween two nodes has an assigned weight (wmn) and
every node has its own bias value (bvn and bhm for
visible and hidden nodes respectively – not shown
in the diagram).

3.1 Training Data Set
For training, a data set of 2,752 unique one-bar drum pat-
terns containing bass drum, snare drum, and hi-hat onsets
was used. The patterns were taken from the sample drum
loop library of Native Instrument’s Maschine3. The ex-
ported patterns were split into one bar segments, quantized
to 16th notes, and converted into a 64 bit (for the 4 by 16
rhythm patterns) binary vector format. Finally, duplicate
patterns, as well as patterns which did not meet musical
constraints were removed. Only patterns with two to six
bass drum notes per bar, one to five snare drum notes, and
at least two hi-hat notes were kept. This was done to ex-
clude very sparse breaks as well as too dense fills from the
data set. The Maschine library contains drum patterns for
EDM and other urban music like Hip Hop and RnB. Since
the main focus of this work is EDM, this library was well
suited.

3.2 Network Training
The used RBM consists of 64 visible nodes, which repre-
sent the 16 by 4 drum patterns (16 steps per bar for four
instruments), and 500 nodes in the hidden layer. The train-
ing for the RBM was performed using the lrn2 framework
of the lrn2cre8 project4. As training algorithm, persistent
contrastive divergence (PCD) introduced by Tieleman et
al. [14] was used. This method represents an improved ver-
sion of the well-known contrastive divergence (CD) method
introduced by Hinton et al. [5] in 2006. Additionally, latent
selectivity and sparsity as described in the work of Goh et
al. [3] as well as Drop-out [13] was used to reduce overfitting.

The output of a training run are the weights and biases
of the neural network. These are used by the variation
algorithm to create the rhythm patterns in the context of
the provided seed pattern.

3.3 Pattern Generation
While training of the RBM is similar to [19], the pattern
generation was adapted to overcome shortcomings of the
method identified in the evaluation of [19].

To use the trained RBM for pattern generation, the seed
pattern is first converted to the 64 bit vector format by
concatenating the 16 steps of the sequencer grid of each
instrument (cf. fig. 2). This vector is then used as input for
the visible layer of the RBM. In contrast to [19] no clamping
is used and variations are generated for all instruments at

3
http://www.native-instruments.com/en/products/maschine/

production-systems/maschine-studio/
4
http://lrn2cre8.eu/
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Figure 2: Values of visible layer nodes of the RBM
while creating pattern variations. The x-axis repre-
sents the index of the visible node. On the y-axis,
the number of Gibbs step is indicated starting at the
top with the original input pattern and progressing
downwards. Black pixels represent 1 and white 0.
Only the first 64 iterations of Gibbs sampling are
shown.

once using Gibbs sampling.
A Gibbs sampling step consists of: i. Calculating the val-

ues of the hidden layer (hm) by multiplying the input layer’s
values (in) with the corresponding weights (wnm) plus bias
of the hidden layer (bhm):

hm = bhm +
N∑

n=0

in · wnm (1)

where N is the total number of nodes in the visible layer.
ii. Applying the logistic sigmoid function to map the val-
ues of the hidden layer into the interval [0, 1] (hsm) and
subsequent binarization with random threshold (sampling):

hsm =
1 + tanh(hm

2
)

2
(2)

hbm =

{
1, for hsm ≥ t

0, else
(3)

where t is a random threshold in the interval [0, 1] and hbm
is the binarized value of hm. iii. Calculating the updated
values for the visible layer by multiplying the values of the
hidden layer with the corresponding weights (wnm) plus bias
of the visible layer (bvn):

in = bvn +
M∑

m=0

hbm · wnm (4)

where M is the total number of nodes in the hidden layer.
To visualize this, fig. 2 shows the values of the nodes in the
visible layer during several steps of Gibbs sampling.

In contrast to the pattern variation method used in [19],
in this work for every seed pattern 64 variations are gener-
ated and only the most suitable (i.e., similar) 32 patterns
are presented to the user. This is done to achieve a greater
possibility of obtaining an equal number of more dense and
more sparse variations. Furthermore, patterns which are
very dissimilar to the seed pattern can be discarded.

To arrange the generated patterns in a meaningful way,
the patterns are sorted in two steps. First, the patterns
are divided into two lists according to the number of active
notes in them. One list contains patterns with fewer active

notes than the seed pattern (sparse list), while the other one
contains only pattern with more or equal number of active
notes (dense list). Second, these lists are sorted according
to their similarity to the seed pattern. To build the final
list used for the variation dial, the 16 most similar patterns
from the sparse list are arranged ascending, followed by the
seed pattern, followed by the 16 most similar patterns from
the dense list arranged descending. It should be noted that
in rare cases, given a very sparse or dense seed pattern, it
may occur that the 64 generated variations do not contain
16 more dense or more sparse patterns. In that case more
patterns from the other sub list are used to obtain a final
list size of 32 patterns.

3.4 Distance Measure
To sort the pattern lists, a similarity measure for rhythm
patterns is required. Although Toussaint [15] observes that
the Hamming distance is only moderately suited as a dis-
tance measure for rhythmic patterns, it is widely used in
the literature (see [9, 10, 19]). Since the requirements in
this work are similar to the ones in [19], likewise a modified
Hamming distance is implemented. To calculate the stan-
dard Hamming distance, simply the differences between the
binary vectors of the two rhythm patterns are counted. I.e.
for every note in the 16-by-4 grid a check is performed if
its state is the same (on/off) in both patterns. If it is not,
the distance is increased by one. The modified Hamming
distance used in this work weights the individual instru-
ments differently: Differences in the bass drum track con-
tribute with four to the distance, snare drum notes with
eight, closed hi-hat notes with one, and open hi-hat notes
with four. This is done to take the importance of the
drum instruments regarding the perceived differences be-
tween rhythm patterns into account. While additional or
missing closed hi-hat notes only change the overall rhyth-
mic feel of a pattern very little, additional snare drum or
bass drum notes often change the style of the pattern com-
pletely. The values for the weighting were determined ex-
perimentally and using the results of the web survey in [19].

4. USER INTERFACE
In fig. 3, a screenshot of the prototype’s UI is shown. For
input and visualization of drum patterns in the UI, the well
established step sequencer concept is employed. A drum
step sequencer, as for example the famous hardware se-
quencer Roland TR-808, allows the user to activate certain
notes for different drum instruments by pressing push but-
tons in a fixed grid. These patterns are then played back
in an endless loop. This concept was used since it is one
of the prevalent drum machine interfaces for EDM produc-
tion. Drum patterns used in this work consist of one bar
with notes for bass drum, snare drum, open and closed hi-
hat. The time grid resolution is quantized to 16th notes,
which is simplification commonly used in step sequencers.
The controls for pattern variation are implemented as two
buttons (set/reset) and a central dial on which the vari-
ations are placed ordered by sparsity and distance to the
seed pattern. Variations are generated by pressing the set
button. The seed pattern is expected not to be highly com-
plex, nor too simple, to give the variation algorithm enough
freedom to find variations in both directions. During ex-
ploration of the patterns, the seed pattern can always be
quickly accessed by pressing the “reset” button.

Next to the pattern variation controls a start/pause play-
back button and knobs to control the tempo in beats per
minute (BPM) and the ratio of swing for 8th notes can be
found. The selected tempo and swing-ratio do not affect
the pattern variation but rather provide the possibility to
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Figure 3: Screenshot of the UI. It consists of a 4 by
16 button array which poses as the visualization and
input of the step sequencer. Beneath it are pattern
storage, controls for playback, the pattern variation
controls, and controls for tempo and swing. The
blue blocks in the lower half of a step sequencer
block visualize the pattern under preview. It can
be activated by pressing the blue commit button in
the pattern variation control section of the UI.

tune the rendering of the entered beat to match the musical
style desired by the user.

The utilization of a touch-base interface allows the user to
enter and change patterns in the step sequencer grid more
easily and without the use of a mouse or track pad. This
is expected to improve the acceptance of such a tool in live
environments where simplicity and robustness of the input
methods are obligatory. On the other hand this means that
a widespread and accepted input method, namely physi-
cal knobs of MIDI controllers are not necessary, since all
knobs can be controlled via the touch surface. While it
is possible to map the input knobs and buttons to exter-
nal MIDI controllers, in this work, another input method,
namely knobs which can be used on the touch surface were
evaluated. Fig. 4 shows the usage of such knobs on an iPad
running the software prototype. The concept of physical
knobs which can be used on a touch interface is not new
(see e.g. ROTOR5 or Tuna Knobs6). Using such knobs al-
lows the combination of two powerful input methods with
individual strengths. While the multi-touch interface pro-
vides an easy way of manipulating rhythm patterns, phys-
ical knobs might provide a greater degree of precision than
fingers on a touch interface.

Improvements proposed in [19] cover: i. a pattern stor-
age, ii. an optional pattern preview system, and iii. the
possibility to activate new patterns only at the start of a
new bar.

The pattern storage which is located beneath the step
sequencer grid can be used to store patterns by tapping the
plus sign. Stored patterns are displayed as a list of small
thumbnails of the sequencer grid and can be brought back
to the step sequencer by tapping the patterns. The store
can be cleared using the “clear store” button beneath the
store grid.

The pattern preview function is integrated into the step
sequencer. When the preview is switched on, the active
pattern is depicted using white blocks in the sequencer. If
the variation dial is used to browse through the variations,

5
http://reactable.com/rotor/

6
http://www.tunadjgear.com/

Figure 4: A physical knob used to control the varia-
tion dial on the touch surface. While the used knob
is an improvised prototype, commercial products
already exist for this purpose.

they are not immediately used for playback but rather visu-
alized as blue blocks in the lower half of the step sequencer
grid. See fig. 3 which shows a screenshot of a pattern being
visualized in preview mode while another pattern is active.
To use the currently previewed pattern, the commit button
(“cmt”) has to be pressed.

The prototype can be synchronized with other instru-
ments using Ableton’s Link technology.7 The output of the
prototype is sent via MIDI to be further processed in a DAW
or synthesized using an external MIDI instrument. Alter-
natively, an internal drum synthesizer can be used to render
audio playback of the patterns.

5. EVALUATION
To evaluate the interaction with the prototype as well as the
quality of the generated patterns compared to the prototype
presented in [18], a qualitative user study was conducted.
To this end, experts were interviewed using a questionnaire
as guideline. The experts were required to have experi-
ence in i. using DAWs or similar music production soft-
ware, ii. producing or performing electronic music live, and
iii. using drum step sequencers and/or drum roll editors.
The software prototype used in [19] was made available by
the authors as accompanying materials of the article8.

During a session, participants were introduced to the two
prototypes and the aim and functionality was explained.
They were asked to input rhythm patterns they usually
work with and let the prototype generate a list of varia-
tions for these patterns. After browsing through the pat-
terns and exploring the features of the systems, users were
interviewed about their experience with the prototypes and
their preferences. Specifically, they were asked to rate the
following properties on five point Likert scales: i. The us-
ability of the prototypes, ii. the application of such a tool
in a live performance or iii. in a studio production envi-
ronment, iv. preferred input method (MIDI controller and
mouse, touch interface, or touch interface combined with
physical knobs), and v. usefulness of the additional features
in the touch-interface-based prototype.

Additionally to the UI evaluation, the differences between
the pattern variation algorithms were also tested. To this

7
https://www.ableton.com/en/link/

8
https://github.com/GiantSteps/rhythm-pattern-variation-study
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Vogl et al. [19] Present work
Consistency 3.7 3.9
Musicality 4.2 4.4
Difference 3.2 2.9
Difference RMSE 0.6 0.3
Interestingness 3.8 4.0
Substitute 3.8 4.4
Fill 4.0 3.6

Table 1: Mean values of participant rating for the
two algorithms. For difference additionally the
RMSE to the neutral value (3) is provided.

end, both algorithms were implemented in the touch-interface-
based prototype. Participants were asked to browse through
variation lists generated by both algorithms for seed pat-
terns of their choice. After that, they were asked to rate
both algorithms in the following categories on five point Lik-
ert scales: i. Consistency of the variations with the seed pat-
tern, ii. musicality and meaningfulness of created patterns,
iii. difference of created patterns to the seed pattern, iv. cre-
ativity and interestingness of created patterns, v. suitability
of created patterns for a continuous beat, and vi. suitability
of patterns for fills or breaks. These categories correspond
roughly to the ones used in the web survey in [19]. The
order in which the algorithms were tested was randomized
to avoid experimenter bias. The Likert scale for the dif-
ference rating ranged from “too similar” to “too different”,
therefore the optimal answer “just right” was placed in the
middle. This is also reflected in the evaluation section: For
the difference ratings additionally root mean square errors
(RMSE) towards the optimal value (3) are provided.

A more general discussion including topics like the proto-
type’s concept and applicability, positive and negative ex-
periences during the experiment, UI details, missing fea-
tures, and the participant’s usual workflow and preferred
tools concluded the sessions.

6. RESULTS AND DISCUSSION
The interviews were conducted during the period between
June and October of 2016. In total ten experts participated
in the survey. Their mean age is 31.1, the gender distri-
bution is 9 male and one self-identified neither as male nor
female. Seven participants had formal musical education
whereas three are autodidacts. Eight participants actively
play an instrument and all use DAWs on a regular basis,
are familiar with step sequencers and have several years of
experience in electronic music production.

Tab. 1 shows the mean values for the participants’ rat-
ings of the comparison between the variation algorithm used
in [19] (top) and the one presented in this work (bottom).
Since the number of participants of ten is too low for mean-
ingful statistical significance analysis the numbers merely
indicate tendencies. Nevertheless, a Wilcoxon signed ranks
test was used to test for significance in the rating differences
in aspects of the two UIs, and the two variation algorithms.
As expected, the observed improvements are not significant
(alpha=.05) due to small sample size, except for assessment
of usability, where the touch based UI was considered better
usable. The ratings in combination with in depth discus-
sions with the participants show a clear preference towards
the UI and variation generation algorithm presented in this
work. The only exception being the suitability of the gen-
erated patterns for fills. This can be explained by the fact
that outlier patterns are discarded by the variation algo-
rithm and therefore it produces patterns more similar to
the seed pattern, which may be less suitable for fills. The

exact definition of fills depends on the music style, e.g. the
“amen-break” is originally a fill but forms the basis of the
continuous rhythms in drum-and-bass and breakbeat mu-
sic. Generally, patterns which greatly differ from the basic
rhythms, but somehow fit the given style can be considered
as fills and breaks. For the tasks at hand, we relied on the
individual understanding and definition of the expert users.

Tendencies regarding the ratings for the UI are similarly
consistent. Ratings for usability are significantly higher for
the touch interface (mean: 4.7/4.3). The difference is even
greater for the suitability in live scenarios (mean: 4.0/3.5).
While 50% of the participants uttered concerns about the
practicality of using a mouse to enter rhythm patterns on
stage, only two participants were concerned that the touch
device is not suitable for a live performance. One partic-
ipant’s reservations regarding the touch interface did not
concern the way of interaction but rather if the hardware
(iPad) would survive the harsh conditions on stage and on
the road (heat, mechanical strain, spilled drinks, etc.). The
second one raised concerns regarding the touch interface’s
precision and reliability in a live environment. Regarding
the applicability of the prototypes in a studio or production
setting, the difference was smaller, but still in favor of the
touch based prototype (mean: 4.7/4.6). The comment of
one participant nicely summarizes the tenor of the users:

“Using the touch interface is definitely faster and
easier [...] compared to entering patterns with a
mouse.” Participant03

Regarding the preferences of the input method, a clear
tendency towards the touch interface was observable: Six
participants preferred the touch interface, three were un-
decided, and only one voted in favor of the physical con-
troller and mouse system. Regarding the touch-compatible
physical knob prototypes, seven participants preferred the
touch-only approach, one was undecided, and two preferred
using the physical knobs.

The additional features were generally received very pos-
itively. Only two participants were unsure if the feature to
start new patterns only with a new bar was useful. All other
participants were in favor for all three additional features.

In the discussions with the participants several key mes-
sages were identified. Three participants considered the ar-
rangement of the patterns in the one-dimensional list of the
variation wheel as being unclear or ambiguous:

“It seems a bit random to me. I can browse
through the list [...] but I cannot look for some-
thing specific.” Participant04

While the idea of a simple one-dimensional variation dial
introduced in [18] was well suited to conduct experiments
regarding the quality of variation algorithms, it might be
an over-simplification for user interaction. After all two
different properties (sparseness and similarity) are projected
into one dimension. Participants suggested to solve this by
adding the option to change the sorting of the list or by
using an x/y variation pad similar to the one used for the
Drummer plugin of the Logic Pro DAW.

While the visual preview was a well received feature,
two participants missed an acoustic preview or “pre-listen”
mode. Finding suitable audio material for remixing by lis-
tening to it on separate headphones is a common technique
used by DJs in live situations.

Almost all participants (8/10) mentioned that they use a
drum roll editor within their DAW to produce drum rhythm
patterns. One explicitly stated that he tries to avoid it:

“I use the piano roll editor in Cubase if I have
to, but it is a real pain.” Participant04
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7. CONCLUSION
In this work we presented a touch-interface-based proto-
type to assist musicians and producers in the context of
EDM production with creating the drum track. This is
accomplished by providing variations of a basic rhythmic
pattern entered by the user. The variations are created
utilizing Gibbs sampling of an RBM trained on appropri-
ate rhythm patterns. The implemented method builds on
established algorithms and improves them. Accessing and
browsing through the patterns is accomplished using a sim-
ple interface built around a central dial.

A user study was conducted to evaluated both the pat-
tern variation algorithm as well as the user interface of the
prototype. The results of the study show that musicians
and producers consider the interface intuitive. It is also
shown that acceptance of the system in a live scenario is
higher than for the compared prototype while acceptance
in a production setting is still given. The pattern variation
algorithm was considered to produce patterns more consis-
tent with the seed pattern than the compared system, but
only at the expense of the capability to create patterns suit-
able for fills and breaks.

The UI incorporates additional features requested by par-
ticipants of a similar study. These features cover a preview
for generated patterns, a pattern storage, and the ability
to start patterns only at bar changes. These features were
received positively by the participants. While the idea of
using physical knobs on a touch interface was interesting
for many participants, most participants preferred using a
simple touch interface without additional knobs, especially
in live settings.

Considering the feedback of the expert users, it can be
concluded that such a system could find acceptance in the
area of EDM production and performance. To achieve this,
the prototype will still have to be improved in regard of the
UI’s visual design as well as the arrangement and browsing
metaphor of the drum patterns.

To support more drum instruments prevalent in EDM
production a larger and more diverse training data set for
the variation method will be necessary. To obtain such a
data set, automatic drum transcription methods (e.g., [17,
12, 16, 20]) could be utilized. Using such an approach would
also allow to expand this method to be applicable on other
music genres outside of EDM. However, to gain acceptance
in the community of producers and musicians of other music
genres an entirely different approach for pattern visualiza-
tion and input might be required, since the used step se-
quencer representation is, at the moment, prominently tied
to the field of EDM production. Nonetheless, from the re-
sults obtained in this study, we are confident that the use of
generative models provides a valuable addition to the cur-
rent paradigms of music production practice and helps in
building intelligent and therefore more intuitive and effec-
tive interfaces.
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[9] C. Ó Nuanáin, P. Herrera, and S. Jordà. Target-based
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13
D R U M PAT T E R N G E N E R AT I O N W I T H G A N S

13.1 overview

This chapter is an extended version of the following demonstration
paper:

Hamid Eghbal-Zadeh et al. “A GAN based Drum Pattern Genera-
tion UI Prototype”. In: Late Breaking/Demos, 19th International Society
for Music Information Retrieval Conference (ISMIR). Paris, France, 2018.

In this chapter a novel GAN-based drum pattern generation method
is introduced. Using the new model, the number of instruments is
increased to eight and the number of time steps per bar is increased to
32 (32nd notes). The used GAN architecture consists of a convolutional
recurrent generator and discriminator. The recurrent layers operate
on a sequence of musical bars, while the convolutions are responsible
to model onsets within one bar. This enables this model to be rained
on a sequence of bars, and also to generate an arbitrary number of
bars as a consistent sequence of bars. In this context, it is important to
use sequences of bars of drum patterns which are representative of
drum tracks used in real music. Thus, as training data for this model,
two different datasets containing drum tracks from real music are
used. While the first set consists of symbolic drum patterns extracted
from MIDI files, the second one comprises drum patterns extracted
from real songs (audio) using a drum transcription system. The GUI

used in previous user studies was updated to fit the needs of the
new generative model: First, the step sequencer grid was adapted
to be able to represent the 8-by-32 patterns. Second, the UI can now
handle patterns consisting of several bars. Third, the variation controls
were adapted, now featuring an additional x/y pad which controls
the continuous latent variables used for conditioning the generative
model.

Section 13.3 will additionally provide details on the technical imple-
mentation of the pattern generation system as unpublished original
work.
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ABSTRACT

Tools which support artists with the generation of drum
tracks for music productions have gained popularity in re-
cent years. Especially when utilizing digital audio work-
stations, using e.g. predefined drum loops can speed up
drafting a musical idea. However, regarding variation and
originality of drum patterns, methods based on generative
models would be more suited for this task. In this work
we present a drum pattern generation prototype based on a
step sequencer interface which allows to explore the suit-
ability of generative adversarial networks for this task.

1. INTRODUCTION

Automatic music generation has been an active field of re-
search for several years. While early attempts mostly use
rule-based and probabilistic models, recent systems focus
on machine learning and artificial intelligence based meth-
ods [6,14]. These methods can be divided into two groups:
i) methods focusing on generating audio signals and ii)
methods that create symbolic music. Generative systems
that focus on full music tracks may find application in the
context of media arts or for automatic sound track gen-
eration e.g. for video games. In this work we focus on
generating only drum tracks which is a relevant task in the
context of digital music production. Generating a symbolic
drum track can be a labor intensive task, while involving
repetitive steps. To draft musical ideas quickly, it is often
desirable to have a simple and fast method to create a ba-
sic drum track. Some digital audio workstations (DAWs)
and drum sequencers thus provide predefined drum loops
to enable such a workflow. Apple’s Logic Pro X DAW fea-
tures a so called Drummer plugin to create drum tracks,
which allows to interactively vary loudness and complex-
ity, besides other parameters. While for the early stages
of writing music, these approaches help to speed up the
process, musicians and producers often refrain from using
these technologies for the end product. This is due to the
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Figure 1. UI of the proposed prototype.

fact that out-of-the-box patterns bear the danger of sound-
ing unoriginal.

To incorporate more natural variation and thus over-
come these downsides, generative approaches for drum
tracks can be used. Early methods for symbolic drum track
generation built on genetic algorithms (GAs) [5, 7, 8, 11].
Vogl et al. [12] use restricted Boltzmann machines (RBMs)
to achieve this. Recent works show that generative adver-
sarial networks (GANs [4]) can be used for music gen-
eration; both for symbolic music [3, 14] as well as au-
dio [2, 10]. In this work, GANs are used to directly gen-
erate symbolic drum tracks, parameterizable and control-
lable in a similar fashion as the Drummer plugin in Logic
Pro X.

2. METHOD

The drum pattern variation engine is implemented using
a GAN. The network is trained on sets of 8-by-32 matrix
representations of drum patterns. Each of these matrices
represent a bar of music, while the eight rows represent
different drum instruments and the 32 columns individual
discrete time steps (32nd notes). For this work dynamics
(changes in volume for each onset) are ignored as a sim-
plification.

2.1 Network Structure and Training

The structure of the GAN is based on a convolutional re-
current design. Four deconvolution layers with 3x3 filters
are used to generate a bar (8x32 matrix), while recurrent
connections over bars are used to model the temporal evo-
lution of patterns. This way, a varying number of bars can



be considered during training or inference.
As loss for GAN training a Wasserstein loss [1] in com-

bination with additional conditioning on genre, and two
features extracted from the one-bar drum patterns (com-
plexity and loudness) are used.

2.2 Training Data

A MIDI dataset of popular songs published as part of [13]
serves as training data for the GAN. First, drum tracks
were extracted from the full MIDI files and then converted
to the 8-by-32 matrix per bar representation. The genre
tags for this data were created by parsing the MIDI file
names to extract artist name and utilizing an artist to genre
lookup (Spotify API 1 ). Additionally a large scale genre
dataset of two-minute electronic dance music (EDM) sam-
ples was used [9]. To extract symbolic drum tracks, a state-
of-the-art drum transcription system [13] was applied.

3. UI

Figure 1 shows the basic user interface of the prototype.
The main area features a eight-by-32 step-sequencer grid.
Step sequencers have been shown to be an effective input
method for drum pattern creation, however, they only al-
low a discrete time grid. Beneath the step-sequencer grid,
an x/y pad allows control of complexity and loudness for
pattern creation. Additionally controls for playback con-
trol, genre, tempo, and swing ratio allow customization of
the drum patterns.

4. CONCLUSION

In this work we present a GAN based drum pattern gen-
eration prototype, trained using large scale drum pattern
datasets. These datasets were extracted from MIDI songs
and two minute audio excerpts utilizing a drum tran-
scription system. The UI follows well-known interface
paradigms used for drum pattern generation.
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13.3 method

As mentioned in the introduction to this chapter, for this prototype
a GAN [28] is used as pattern generation method. GANs consist of a
generator and a discriminator network. These two networks can be
seen as opponents in a min/max game, where the generator tries to
produce patterns which are indistinguishable from real patterns sam-
pled from the training dataset; while the discriminator tries to identify
generated patterns. In training these two networks simultaneously,
both the generator and discriminator improve. For a more detailed
introduction to GANs, we refer the reader back to Section 2.3.7.

A goal of this work is to add additional inputs to the generator
which allow to control certain qualities of the generated drum pat-
terns. To this end, genre tags and two features extracted from the
symbolic drum patterns are used. In case of the pattern features two
continuous inputs are used while the genre tag is represented by a
one-hot encoded binary vector of size 26 (one bit for each used genre).
These values are used as additional inputs for the generator next to the
uniform random noise vector. Additionally, these values are also used
as additional outputs for discriminator training. This setup forces the
discriminator to extract these values from input patterns and, as a con-
sequence, the generator to embed these features within the generated
patterns. Note that while the discriminator and generator compete in
terms of the discriminator output (real v.s. generated pattern class)
they have to cooperate in terms of the additional features. Training
the generator with these additional inputs makes the learned pattern
distribution of the generator dependent on the input variables and
allows a certain degree of control of the generator during inference.
The next subsections will cover details of the network architecture,
training data, and training strategy.

13.3.1 Network Architecture

For the GAN used in this work, both generator and discriminator
feature a convolutional recurrent architecture. The idea behind this is
that while convolutions process a single bar to model local patterns
and structures, the recurrent layers ensure that a repetitive structure
and dependencies in the sequence of bars can be modeled.

Another advantage of using a recurrent layer to model sequences of
bars is that variable length sequences can be used for both, training
and inference. This makes the model more flexible in the context of
available training data and possible applications. Figure 13.1 visualizes
an example of a sequence of single-bar patterns and how convolutions
and the recurrent layer are involved as part of the generator network.

The detailed structure of both the generator and discriminator net-
works are provided in Figure 13.2. In the case of the generator, the
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Figure 13.1: A sequence of one-bar patterns as output of the generator. Note
that the recurrent layer models dependencies between bars.

Figure 13.2: Architecture of the used GAN model. Note that while for the
discriminator convolutional layers are used, in the case of the
generator transposed convolutions in combination with normal
convolutions are implemented. The numbers for each layer des-
ignate: (i) number of filters, (ii) filter size, and (iii) in parentheses
strides for transposed convolutions and dilation ratio for di-
lated convolutions. The recurrent layers are implemented as
bidirectional GRUs. As input for the generator (i) a uniformly
distributed noise vector of size 100, (ii) the vector with the two
features (complexity and loudness of drum patterns), and (iii)
the one-hot encoded genre vector with size 26 (26 different
genres) are used. The discriminator’s outputs comprise (i) the
discriminator output (real or generated pattern), (ii) output for
predicted feature (same as for the generator’s input: complex-
ity and loudness), and (iii) output vector for one-hot encoded
predicted genre (same as for the generator’s input).
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task of the network is to generate an Ni × Nt × Nb tensor from an
(Nn + Nc + Nd)× Nb matrix sampled from the latent space, where Ni
is the number of instruments (8 for the implemented prototype), Nt

is the number of time steps per bar (32), Nb the number of bars (e.g.
4), Nn the size of input noise for the generator (100), Nc the size of
continuous conditional inputs (2, complexity and loudness), and Nd
the size of discrete one-hot conditional input (26, number of genres).
This is achieved by a combination of convolutions and transposed
convolutions. The individual choices for number of layers, filter sizes,
and strides are optimized to achieved the correct output size. For
training and inference, the input variables are copied for each bar to
be generated. This makes the recurrent connections the only source
of variation for consecutive patterns in a sequence of bars, ensuring
consistence. Of course for other applications, e.g. to generate a con-
tinuous cross-fading between different styles, different choices can be
viable.

The primary role of the discriminator network is to decide if the
Ni × Nt × Nb patterns are real or generated. This is modeled using
a single sigmoid output. Additionally, the discriminator is tasked to
reproduce the discrete one-hot genre label (softmax output) as well as
the two continuous features (sigmoid outputs). All this is achieved by
using a stack of dilated and normal convolutions, compare Figure 13.2.
The reasoning behind using 1× 4 dilated filters for the first two layers
is based on the time resolution of the drum patterns: In the context of
this work, one bar is modeled by 32 discrete time steps, and we only
consider patterns in 4/4 time signature. The main rhythmical structure
is, therefore, based on quarter notes, and a typical rhythmical pattern
is usually built from integer number subdivisions. Thus, the 1× 4
dilations allow the network to easily focus patterns based on 8th and
quarter notes (32/4 = 8 ).

13.3.2 Training Data

Since the goal is to generate realistic sequences of drum patterns by
using a recurrent GAN architecture, it is imperative to use suitable
examples for training. To this end, two different pattern datasets are
created. The first set is extracted from the large scale synthetic MIDI

drum transcription dataset introduced in Chapter 7. Using the drum
annotations and additional beat annotations extracted from the MIDI

files, sequences of one-bar patterns are generated. Artist names are
extracted using the track titles to generate genre lists for each track
by using the Spotify1 application programming interface (API). By
filtering out tracks without artist name, and artist names that cannot
be matched with artists in the Spotify API, a final set of 2583 tracks is
obtained. The tracks have an average length of around 100 bars. The

1 https://developer.spotify.com/console

https://developer.spotify.com/console
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genre count genre count genre count

classical 3 dance 466 metal 114

pop 140 rap 6 blues 248

folk 357 trance 1 indie 39

ska 1 house 11 electro 10

grunge 309 jazz 41 swing 6

break 5 funk 46 country 119

emo 1 punk 95 soul 39

disco 50 hip hop 11 rock 465

Table 13.1: Resulting genre tags, and number of tracks for the MIDI subset.

genre count genre count

house 1000 dubstep 999

funk-r-and-b 1000 progressive-house 1000

hip-hop 999 tech-house 1000

reggae-dub 1000 dj-tools 998

drum-and-bass 998 glitch-hop 999

electronica 1000 trance 1000

indie-dance-nu-disco 996 minimal 999

deep-house 1000 pop-rock 999

hard-dance 998 chill-out 1000

breaks 999 techno 1000

hardcore-hard-techno 998 psy-trance 999

electro-house 1000

Table 13.2: The 23 genre tags and number of tracks for the Beatport subset.

detailed genre tags provided by the Spotify API are simplified using
the genre list shown in Table 13.1.

The second set consists of drum patterns extracted from an audio
dataset. This is done by utilizing the drum transcription model for
eight instrument classes published in [101]. The audio material is
obtained by downloading a set of around 23 000 two-minute samples
alongside genre annotations from the Beatport website. This audio
file collection is a superset of the GiantSteps datasets [47] and an
artifact of creating these sets. In the case of this dataset, the original
genre annotations as provided on the Beatport platform, displayed
in Table 13.2, are used. Note that the dj-tools tracks are not used for
training, since they mostly do not contain music, but sound effects
and other audio material. The tracks of this set contain approximately
63 bars on average.

Using the symbolic drum patterns, two features used to condition
the generator during training are extracted for each bar. Note that
the calculation for both is arbitrary and their validity is to be eval-
uated in user studies. The first feature is a measure of complexity
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of the pattern; in this context we mainly aim at identifying patterns
used as fills. Thus, only instruments often used in fills contribute to
this complexity features: bass drum, snare drum, and tom-toms. The
complexity measure is now defined as the number of onsets of these
instruments within one bar.

The second feature is designed to represent the perceived loudness
of a pattern. To this end, the number of onsets of instruments that
are more dominant (snare drum, cymbal, cowbell) and the number of
onsets of instruments with a soft sound (bass drum, tom-tom, ride)
are counted. The loudness measure is defined as the ratio between
loud onsets and soft onsets.

Both the values for the complexity and loudness measure are nor-
malized to the range 0–1 for both datasets.

13.3.3 Training Strategy

Two individual models are trained using the two different datasets.
For training, an adam [46] optimizer is used.

For the first experiments, a simple binary cross-entropy for sigmoid
outputs and a categorical cross-entropy loss for the one-hot genre
output was used. However, empirical testing showed that better results
are achieved using a Wasserstein loss [1, 2] with gradient penalty [30].
To be able to implement a Wasserstein loss, it is necessary to remove
all non-linearities from the discriminator’s outputs (i.e. all outputs are
now linear). This also implicates that the outputs of the discriminator
can no longer be interpreted as originally intended, but rather act as
(Lipschitz continuous) functions measuring the similarity between the
training data distribution and the generator’s output data distribution.

13.4 future work

As already done for other drum pattern generation methods presented
in this thesis, a qualitative evaluation using expert interviews will
be conducted to evaluate the pattern generation method, the user
experience of the UI, and suitability of control modalities for the
generative model. The feedback from this user study will again be
incorporated into future iterations of the prototype. Besides these, the
next steps for the generative model will be to investigate options to
add velocity/dynamics as well as micro timing, whenever applicable.

13.5 contributions of authors

This work consists of equal contributions by Hamid Eghbal-zadeh and
myself.

I was responsible for collecting and creating the datasets, as well as
preparing the data for GAN training. I also designed the batch iterator
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for network training, updated the UI to work with the new pattern
variation engine, created some of the network architectures, including
the CRNN architecture which was used in the end for both models. I
was involved in creating the code basis for GAN training, helped fixing
bugs and optimizing loss functions, etc. for GAN training. For the
demo submission I wrote most of the text for the paper and created
the figure of the UI prototype. I wrote all of the original contend on
this topic for this thesis.

Hamid Eghbal-zadeh introduced me to GANs and created the basis
of the code for GAN training, modifications for WGAN training, as well
as the basis for conditional GAN training. He helped with running the
training and with debugging the code. Additionally, he proofread the
extended abstract for the demo submission.

Gerhard Widmer and Peter Knees acted as supervisors and provided
valuable feedback throughout the process.
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D ATA S E T S

This chapter summarizes the datasets that were created alongside
the publications which make up this thesis. Datasets are a valuable
resource for the research community, since collecting data and creating
annotations is a very time consuming task.

14.1 large scale edm dataset

The dataset discussed in this section is related to the following publi-
cation:

Peter Knees, Angel Faraldo, Perfecto Herrera, Richard Vogl, Sebas-
tian Böck, Florian Hörschläger, and Mickael Le Goff. “Two Data Sets
for Tempo Estimation and Key Detection in Electronic Dance Music
Annotated from User Corrections”. In: Proceedings of the 16th Interna-
tional Society for Music Information Retrieval Conference (ISMIR). Malaga,
Spain, 2015

This work is part of the list of additional publications of this thesis.
In the paper, two datasets consisting of electronic dance music (EDM)
tracks were introduced. The music in these datasets consists of the
two minute audio excerpts provided by the Beatport platform1. In
the process of creating these datasets, a total of 22981 tracks was
downloaded from the Beatport platform. This number results from
downloading approximately 1000 tracks for each of the 23 genres tags
which are used on the Beatport platform. While only a subset of these
tracks have been used to create the key and tempo datasets published
in the original publication [47], genre annotations for all tracks are
provided by the artists. Annotations and an audio download tool of
the key and tempo datasets can be found at:
https://github.com/GiantSteps/giantsteps-tempo-dataset and
https://github.com/GiantSteps/giantsteps-key-dataset.

The full dataset consisting of 22981 tracks with genre annotations
has been used as basis for training a drum pattern generation GAN in
Chapter 13. This was done by using the ADT approach introduced in
Chapter 7 and 6 to extract large amounts of drum patterns alongside
the genre annotations of this dataset. For more details on this dataset,
see Chapter 13.

1 https://www.beatport.com/
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14.2 large scale synthetic dataset

In Chapter 7 a publicly available large scale synthetic drum transcrip-
tion dataset was created. The dataset consists of music synthesized
from MIDI songs downloaded from a MIDI song database website con-
taining mainly pop and rock songs. Songs are available as drum solo
tracks as well as mixed tracks with accompaniment. Drums were
synthesized using a variety of manually double checked and cor-
rected drum sound fonts. Additionally, the dataset is available in
balanced variants, normalizing the number of onsets for each drum
instrument. This is achieved by switching the notes of certain drum
instruments for individual tracks, for example replacing all hi-hat
notes with ride notes. By doing this in a systematic way, the notes
for each instrument under observation can be balanced almost per-
fectly. Parts of this set have been used for the 2018 MIREX eight-class
drum transcription task. The dataset is available for download at
http://ifs.tuwien.ac.at/~vogl/dafx2018/ For more details on this
dataset see Chapter 7.

14.3 rbma multi-task dataset

In the course of the GiantSteps2 project, a dataset consisting of freely
available music from the Red Bull Music Academy3 (RBMA) was cre-
ated. While this dataset is currently not yet published in its entirety,
parts of it have been published [94] and been used in the MIREX drum
transcription task. For a description of the already published parts,
see Chapter 6. The full dataset not only contains detailed drum in-
strument annotations, but also key, chords, tempo, as well as beat and
downbeat annotations. Annotations for drums, beats, key, and chords
were manually created by several annotators. It provides annotations
for tracks from the 2011

4 and 2013
5 RBMA Various Assets samplers.

The music covers a variety of electronically produced and recorded
songs of diverse genres.

14.4 contributions of authors

In case of the EDM datasets created using the Beatport platform [47],
the main work was conducted by Peter Knees. I was responsible for
creating the scripts for downloading and organizing the full set of
audio tracks, extracting the genre part of the dataset, and helped
writing the paper. Creating the key and tempo annotations was done
by Peter Knees, Ángel Faraldo, and Perfecto Herrera. Sebastian Böck,

2 http://www.giantsteps-project.eu

3 http://www.redbullmusicacademy.com/

4 http://daily.redbullmusicacademy.com/2012/02/various-assets

5 http://daily.redbullmusicacademy.com/2014/01/various-assets-nyc-2013

http://ifs.tuwien.ac.at/~vogl/dafx2018/
http://www.giantsteps-project.eu
http://www.redbullmusicacademy.com/
http://daily.redbullmusicacademy.com/2012/02/various-assets
http://daily.redbullmusicacademy.com/2014/01/various-assets-nyc-2013
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Florian Hörschläger, and Mickael Le Goff ran the evaluation of state-
of-the-art methods to create the baseline results for the datasets. For
the use of the dataset for GAN training in the context of drum pattern
generation I ran the drum transcription and beat tracking on the full
dataset and created the drum patterns.

The synthetic MIDI datasets used in Chapter 7 was completely cre-
ated by myself. It is published alongside the work introducing methods
for multi-instrument drum transcription [101].

For the RBMA dataset, I was responsible to organize and lead the
annotation effort partly done by external annotators. Because the
quality requirements, especially for drum annotations, was quite high,
I double checked all drum annotations and manually corrected large
parts of the annotations. Sebastian Böck helped with creating the beat
and downbeat annotations.
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C O N C L U S I O N

To conclude the thesis, this chapter will start with a critical view on
the presented works, discuss future work, and review overall findings
in a broader context. In Section 15.1, the publications of this thesis are
analyzed from a critical standpoint and possible minor shortcomings
and chances for improvement are identified. After that, open problems
in the context of ADT and drum pattern generation as well as directions
to tackle them will be pointed out. The last section of this chapter
and thesis will then discuss choices, findings, and results in a broader
context and also discuss overall implications of this work. For a more
detailed discussion of the individual methods and findings, the reader
is referred to the publications in corresponding chapters.

15.1 a critical view

The work covered in the publications included in this thesis was de-
signed, written, and published over the course of four years. The
quality of conducted experiments and scientific writing reflect the
author’s growth of knowledge, experience, repertoire of evaluation
methods, and scientific writing skills within this time. This can es-
pecially be observed by looking at the implemented deep learning
techniques throughout the different works (especially in the context
of ADT), since I started my work on deep learning more or less at
the same time. In the following, the individual publications shall be
revisited with a critical eye from a current standpoint, identifying
minor shortcomings and room for improvement.

[92] Richard Vogl, Matthias Dorfer, and Peter Knees. “Recurrent
neural networks for drum transcription”. In: Proceedings of the 17th
International Society for Music Information Retrieval Conference (ISMIR).
New York, NY, USA, 2016.

From a current standpoint, in this work, a rather naïve implementa-
tion of neural networks is used for drum transcription. As we know
now, plain RNNs have drawbacks with respect to modeling long-term
structural relations. Nevertheless, the evaluation performed in this
work does not suffer from that fact, since the focus is more on local
properties of the onsets. This is also the only ADT work in which no
three-fold cross-validation on natural splits of the datasets is employed.
Rather, a randomized 70/15/15% train/validation/test evaluation,
as well as a cross-dataset evaluation is performed. In general, this
strategy will yield better performance results than the three-fold cross-
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validation on natural splits, since train and test data are more similar.
In this work this strategy was used, because such a randomized evalu-
ation is common practice in the context of deep learning. Furthermore,
it can be argued that it is a fair way of comparing to the results in
[14], which is used as a baseline. This is because in [14] also sound
samples of the test set are used for basis vector priming. A similar
evaluation strategy is included in [93] to compare results with [14],
which is reasonable.

[93] Richard Vogl, Matthias Dorfer, and Peter Knees. “Drum Tran-
scription from Polyphonic Music with Recurrent Neural Networks”.
In: Proceedings of the 42nd IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). New Orleans, LA, USA, 2017.

This work already improves on most of the minor shortcomings of
the previous work. One could claim that the transformations used
for data-augmentation are overfitted to the dataset, since specifically
the different pitched bass drums are a major challenge of the ENST-
drums dataset. However, the experiments in [105] show that the model
generalizes well across different datasets, which validates the chosen
data-augmentation transformations.

[94] Richard Vogl, Matthias Dorfer, Gerhard Widmer, and Peter
Knees. “Drum Transcription via Joint Beat and Drum Modeling using
Convolutional Recurrent Neural Networks”. In: Proceedings of the 18th
International Society for Music Information Retrieval Conference (ISMIR).
Suzhou, China, 2017.

From a current standpoint, the training sequence lengths chosen in
this work might be suboptimal in the context of beat tracking. Note
that beat tracking was not the main focus. The 100 and 400 frame se-
quences represent one and four seconds of audio, where four seconds
fit approximately two bars of music at an average tempo of 120 beats
per minute (BPM). Originally, this choice was made to keep batch size
equal for all models, while using the larger CRNN model. Especially
in the context of beat tracking, four seconds is relatively short, while
one second generally does not provide enough context to detect beats.
This explains the comparably low performance in the beat tracking
evaluation, which might ultimately be a reason why no further per-
formance improvement can be achieved for multi-task training in the
case of the large CRNN. However, the findings in the context of beat
tracking in this work are still relevant since they provide a lower
bound for training sequence length. Furthermore, later, unpublished
experiments show that batch size does not have much impact in the
context of beat tracking. By using training sequences of up to 3200

samples (32 seconds of audio) while decreasing batch size accordingly,
beat tracking performance further improves. The limiting factor is
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graphical processing unit (GPU) memory—to be able to increase the
sequence length, either batch size, spectral context, or model size must
be decreased.

[101] Richard Vogl, Gerhard Widmer, and Peter Knees. “Towards
Multi-Instrument Drum Transcription”. In: Proceedings of the 21st In-
ternational Conference on Digital Audio Effects (DAFx). Aveiro, Portugal,
2018.

This work provides a comprehensive evaluation of different ap-
proaches for increasing the number of instruments under observation,
while also including a new dataset for this task. When put into context
with the work by Cartwright and Bello [12], one could argue that
using the instrument weighting introduced in [93] and also reused
in [12] could have been evaluated alongside. This approach is dis-
missed in the beginning of the work, since we knew that for very
imbalanced classes there is no improvement to be expected. The ques-
tion remains if using weighting for loss functions of the individual
instruments could improve the performance in the case of the large-
scale dataset. While some instrument classes in this dataset are still
relatively sparsely populated there might be sufficiently many onsets
for the class weighting to be effective.

[97] Richard Vogl and Peter Knees. “An Intelligent Musical Rhythm
Variation Interface”. In: Companion Publication 21st International Confer-
ence on Intelligent User Interfaces. Sonoma, CA, USA, 2016.

This work briefly introduces the pattern variation method and UI

also used in follow-up works. Due to the format of the submission,
many details are omitted. Details were, however, discussed in person
with interested people at the poster presentation and later published
in the follow-up article:

[100] Richard Vogl, Matthias Leimeister, Cárthach Ó Nuanáin, Sergi
Jordà, Michael Hlatky, and Peter Knees. “An Intelligent Interface for
Drum Pattern Variation and Comparative Evaluation of Algorithms”.
In: Journal of the Audio Engineering Society 64.7/8 (2016).

This work builds on a comprehensive qualitative and quantitative
evaluation. Conducting qualitative interviews in a way to not bias
the participants constitutes a challenge. While most participants were
quite open and blunt when verbalizing their opinion of the prototype,
it can not be ruled out that to some degree interviewees tried to meet
expectations of the interviewer. However, results of the qualitative
evaluation correlate with the findings from the interviews.
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[98] Richard Vogl and Peter Knees. “An Intelligent Drum Machine
for Electronic Dance Music Production and Performance”. In: Proceed-
ings of the 17th International Conference on New Interfaces for Musical
Expression (NIME). Copenhagen, Denmark, 2017.

In this work, it was not possible to make the A/B comparison for
the UI completely blind, since it was quite obvious which was the
old and which one the new iteration of the UI. This is, however, true
for most A/B UI testing. Furthermore, the fact that participants were
able to identify the old interface is an indicator that the redesign was
successful, by itself.

[20] Hamid Eghbal-Zadeh, Richard Vogl, Gerhard Widmer, and Pe-
ter Knees. “A GAN based Drum Pattern Generation UI Prototype”.
In: Late Breaking/Demos, 19th International Society for Music Information
Retrieval Conference (ISMIR). Paris, France, 2018.

This work is a preliminary publication of work-in-progress as a
demonstration paper. Due to the format of the publication, there is
not much room for methodical details. This is, however, compensated
with extra sections providing more details in this thesis. A general
problem with GANs is that many hyperparameters are chosen and
often tuned arbitrarily to achieve successful training results. In this
work, an attempt was made to choose an architecture that reflects
domain knowledge on properties of rhythmic patterns, which was
also inspired by findings from ADT research.

15.2 future directions

Since humans still outperform ADT methods, further improvement
of transcription performance would be desirable. Building on the
proposed deep-learning-based methods and utilizing new findings
from the deep learning community, the introduced system has the
potential to achieve this.

As discussed in Section 2.1.4, there are still properties of drum
instrument onsets which are not considered in current state-of-the-art
methods. These comprise, for example, dynamics/onset velocities
and classification of playing techniques. The main challenge with
these details is to collect appropriate training data. It is practically
impossible to create sufficient data for these tasks for methods used in
this work by means of manual annotations, due to the large amount
of parameters and required accuracy. Therefore, it will be necessary to
either use synthetic data, automate data annotation, or employ other
learning paradigms, for example: un-/semi-supervised techniques,
zero/one-shot learning, et cetera.

Similar approaches could help to better model large numbers of dif-
ferent drum instruments and improve performance for multi-instrument
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transcription. An issue that needs further investigation is the tendency
of humans to label drum instruments according to their function
within a song, rather than strictly using their timbre and sound as
indicator. For example, humans tend to label instruments playing the
backbeat (notes on beats 2 and 4) as snare drum, even if they sound dif-
ferent than a typical snare drum. This is due to the fact that, especially
in rock and pop music, the snare drum usually accentuates the back-
beat. This might be a cause for quite diverse sounding instruments
within certain instrument classes in ADT datasets. To investigate this
issue further, it could help to create embeddings and/or cluster drum
instrument sounds and compare them to the used labels within songs.

Another direction in the context of data generation is the use of
data augmentation and on-the-fly data creation. With the availability
of large sets of symbolic data for drum transcription, it could make
sense to generate the audio on-the-fly during training. This would
allow to easily employ data augmentation while immensely reducing
physical size of the training data. While such an approach would be
computationally more expensive, it would help generate sufficient
training data when working on detailed transcripts incorporating
dynamics and playing techniques.

Finally, regarding evaluation practices, while f-measure, precision,
and recall have been successfully used as evaluation metrics for a long
time, it might be worth investigating better suited evaluation strategies
for drum patterns.

In the context of drum pattern generation, the main goal for future
iterations should be to further improve pattern generation capabilities.
Using GANs seems to be a promising approach, and there is a plethora
of deep learning techniques that could help improve the quality of
generated patterns.

To be able to better evaluate implemented pattern generation meth-
ods, further improvements of the UI prototype will be necessary. A
reasonable approach would be to build a plugin which can be used
within a DAW, to allow easier integration into the usual workflow of
survey participants. With such tools at hand, presenting a working
prototype to a wider audience and conduct further user studies would
be feasible.

Another direction to explore in the context of GAN training is to
try to evaluate the quality of the generated patterns without user
feedback. This could be achieved by comparing statistical metrics
calculated for both, the training dataset and a set of samples created
by the generator.

15.3 discussion

In this thesis deep-learning-based methods for ADT and drum pattern
generation are introduced. In the works on ADT covered by this thesis,



164 conclusion

first RNN-based systems are introduced. Later it is found that CNNs
can perform similarly well, and further improvements are achieved
by combining convolutional with recurrent layers. The results indicate
that CRNN systems have the ability to learn and leverage knowledge
about the structure of typical drum patterns, given that sufficiently
long training sequences are used. This seems also to be confirmed
when evaluating on real data while training on the class-balanced
datasets in Chapter 7. In this experiment, no performance improve-
ments can be observed although it would have been expected. Under
the assumption that CRNNs are able to learn typical drum pattern
structures, a possible explanation for this behavior is that the artifi-
cial drum patterns (created by balancing the classes of the synthetic
dataset) used for training, do not provide any useful knowledge about
the structure of real drum patterns.

This finding further motivates the use of CRNNs for pattern gen-
eration in the experiments in Chapter 13. While the method based
on RBMs introduced in Chapter 10 is promising and could still be
improved by using more complex network architectures alongside
other modifications, the use of GANs allows to leverage findings from
the work on ADT more easily.

The experiments and user studies on drum pattern generation indi-
cate that users are willing to incorporate artificial intelligence into their
workflow, as long as they feel in control. They also hint that the UI has
a large impact on the experience. Discussing possible applications for
drum pattern generation methods, and talking about expectations on
how these should work with participants of the user studies was very
interesting. The interviews indicate that evaluating pattern generation
quality is not only subjective, but also depends on the musical context.
While some generative approaches might appear to be too unpre-
dictable for electronic dance music live performances, artists in the
area of experimental music might appreciate unpredictable behavior.

A core problem of music transcription and music generation is that
humans usually are not aware or cannot exactly express how they
tackle these tasks themselves. This makes it difficult (maybe even
impossible) for humans to manually craft algorithms to solve these
problems. Deep learning and more generally machine learning, on the
other hand, provide methods to circumvent the explicit programming
of these algorithms. However, this comes at the price of requiring large
amounts of training data, which can be costly to create—depending
on the task.

While a certain amount of diverse training data is indispensable,
the mantra that more data will always improve performance should
be taken with a grain of salt (see Chapter 7). Regularization and
techniques to deal with imbalanced data have improved training
for small sized datasets, and it can be expected that this trend will
continue with the emergence of better regularization techniques.
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Another downside of deep learning methods often mentioned is the
fact that it is hard to interpret what the models actually learned. This
is often a problem, because it has been shown that machine learning
methods tend to be lazy and abuse imperfections in the training
data to solve the task at hand [69, 72]1. This is generally problematic
since it usually leads to the model not generalizing well on other,
unseen data. To approach this issue, efforts have been made to analyze
trained neural networks (see e.g. saliency maps [74]) beyond looking
at filter maps and activations. An interesting and promising direction
of research in this context are so-called adversarial attacks [51].

While for some applications understanding and formally validating
the inner workings of a neural network would be desirable, it is
not a strict requirement in the context of MIR, as long as it can be
shown that the methods reliably generalize sufficiently well. Due to
the artistic context of many MIR tasks, which makes it hard to define
them precisely, one cannot expect that machines will be able to solve
these tasks perfectly. However, the ability to understand the inner
workings of a trained neural network would provide insight how
these tasks can be solved. The question remains if these insights could
be used to understand how humans solve these tasks.

1 An example of such a lazy behavior is demonstrated for singing voice detection on
this accompanying website for [69]: https://jobim.ofai.at/singinghorse/

https://jobim.ofai.at/singinghorse/
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