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Abstract 
A Grid-based Zero-Latency Data Stream Warehouse 
(GZLDSWH), built upon a set of OGSI-based grid 
services and GT3 Toolkit, overcomes the resource 
limitation issue for data stream processing without using 
traditional approximate approaches. However, due to its 
“automated event-based reaction” characteristic, the 
GZLDSWH requires a mechanism which allows the grid 
services to be able to work together to fulfil the common 
tasks. This paper describes the Collaboration Model for 
the Grid Services which enables the automation of the 
GZLDSWH in capturing and storing continuous data 
streams, making analytical processing, and reacting 
autonomously in near real time with some kinds of 
events based on well-established Knowledge Base. 
Keywords: Grids based Zero-Latency DWH, Data 
Streams processing, dynamic workflow execution 
 
 

1. Introduction 
 

We are entering a new area of computing in today’s 
incredibly complex world of computational power, very 
high speed machine processing capabilities, complex data 
storage methods, next generation telecommunications, 
new generation operating systems and services, and 
extremely advanced network services capabilities. At the 
same time, the number of emerging applications which 
handle various continuous data streams [1,10,12,17], such 
as sensor networks, networking flow analysis, 
telecommunication fraud detection, e-business and stock 
market online analysis, is growing. It is demanding to 
conduct advanced analysis over fast and huge data 
streams to capture the trends, patterns, and exceptions. 
Data streams arrive in high-volume, in un-predictable 
rapid bursts and need to be processed continuously. 
Processing data streams, due to the lack of resource, is 
challenging in the following two aspects. On the one 
hand, random access to fast and large data streams may 
be impossible. On the other hand, the exact answers from 

data streams are often too expensive. Therefore, the 
approximate answers [1,9,12,15] are acceptable because 
there is no existing computing capacity which is strong 
enough to produce exact analytical results on continuous 
data streams. 

In the last few years we have witnessed the emergence 
of Grid Computing [6,8] as an important new technology 
accepted by a remarkable number of scientific and 
engineering fields and by many commercial and 
industrial enterprises. Grid Computing provides highly 
scalable, secure, and extremely high performance 
mechanisms for discovering and negotiating access to 
remote computing resources in a seamless manner. Our 
research effort is trying to build a Grid based Zero-
Latency Data Stream Warehouse (GZLDSWH) that can 
capture continuous data stream to perform analytical 
processing and react automatically with some kinds of 
events based on well-established Knowledge. Instead of 
applying the approximate approach based on statistical 
estimations, we try to capture and store all data streams 
continuously while making the analytical processes 
within the Grids. The GZLDSWH is composed of several 
Grid services built on top of OGSI and GT3 toolkit. 
However, due to its “automated event-based reaction” 
characteristic, the GZLDSWH requires a mechanism 
which allows the grid services to be able to work together 
to fulfil the common tasks. During its runtime, a Grid 
service instance must be able to discover, create, bind, 
and invoke other relevant service instances within the 
Grids environment. 

This paper describes the Automated Collaboration 
Model for Grid Services enabling the automation of a 
GZLDSWH in capturing and storing continuous data 
streams, making analytical processing, and reacting 
autonomously in near real time with some kind of events 
based on well-established Knowledge. An overview of 
the GZLDSWH will be described in Section 2. Section 3 
introduces the operations of the GZLDSWH services to 
react against continuous data streams in the near real 
time. The Collaboration Model of the Grid services will 



be discussed in Section 4. In Section 5, we introduce our 
XML-based language namely DSCL. The Workflow 
management service will be described in Section 6. 
Section 7 concerns some Related Work. Finally, we give 
a conclusion and future work in Section 8. 
 
2. GZLDSWH overview 
 

A Zero-Latency Data Warehouse (ZDLWH) [3,11] 
aims to significantly decrease the time to react to business 
events. This allows the organizations to deliver relevant 
information as fast as possible to applications which need 
a near real-time action to new information captured by an 
organization’s information system. In Data Stream 
applications, events take the form of continuous data 
streams. The exact analysis results on these data stream 
events are very expensive because they require a very 
high computing capacity which is capable of huge storage 
and computing resources. A Grid-based approach thus is 
applied in ZLDWH to tackle the issue of lacking resource 
for continuous data stream processing. Figure 1 depicts 
significant phases throughout the overall process of such 
GZLDSWH.  

 
Figure 1. Overview of GZLDSWH 

 
The continuous data streams will be captured, cleaned 

and stored within the Grids. The analytical processes can 
be executed immediately after the new data arrival or 
based upon some predefined schedule. Consequently, the 
virtual Data Warehouse will be built on the fly [7] from 
data sources stored within the Grid nodes. Obviously, this 
approach is not concerned with traditional incremental 
updating issues in Data Warehouse because the virtual 
DWH is built from scratch using the most current data. 
Analytical processes will then be executed on such virtual 
DWH and the results will be evaluated by the Knowledge 
Base. Finally, depends on specification of the Knowledge 
Base, the system sends notifications, alerts or 
recommendations to the users. 

All of these activities will be executed automatically 
without user intervention. The activities at each phase 

compose of several tasks and the specific tasks will be 
accomplished by invoking relevant services within the 
Grid environment. Sharing the same approach with 
GridMiner [2,13,14], the structure of GZLDSWH is built 
on top of OGSI and GT3 Toolkit, including the following 
specific Grid services as described in figure 2. 
• Data Capturing Service (DCS) captures data streams 

in the limited time without loosing the data. 
• Data Cleaning Service (DES) is the optional service 

that cleans the data before storing into the Grids. 
• Data Storing Service (DSS) resides in each Grid node 

and ready for storing the data streams without loss. 
• Data Mediation Service (DMS) provides a single 

virtual data source having the same client interfaces as 
classical grid data sources but integrating data from 
multiple heterogeneous federated data sources. 

• Data Integration Service (DIS) is responsible for 
secure, reliable, efficient operation and management of 
the necessary data transfer within the grid 
environment. 

• OLAP Cube Management Service (CMS) is one of 
the major components of GZLDSWH. This service 
creates distributed OLAP cubes 1 from several data 
sources stored at specified Grids nodes. After the 
initial cube creation, the service can be used for cube 
interaction and life cycle management. 

• System Information Service (SIS) The SIS is a 
specialized implementation enabling the system for 
specific decision making and monitoring. 

• Resource Broker Service (RBS) is used to find best-
fitting resources for resource allocation as a reference 
for the Workflow Engine in discovering, creating, 
binding and invoking other services instances. 

• Data Preprocessing Service (DPS) performs several 
pre-processing activities such as data cleaning, 
normalization, selection, reduction, transformation etc. 

• Data Analysis Service (DAS) is another major core 
component of the system. It works very close with the 
OLAP Engine and performs analytical process by 
sending commands such as “drill up”, “drill down”, 
“slide and dice”, etc. which allows analyzing datasets 
at different abstraction levels. The outputs of the Data 
Analysis Service are the analysis results which will 
then be evaluated by the Knowledge Base for further 
actions.  

• Data Mining Service (MIS) is created as an 
extensible framework providing necessary data mining 
algorithms making it convenient for the related 
application developers to easily plugin their algorithms 
and tools. 

• Knowledge Base Rule Design Service (RDS) allows  
                                                 
1 Online Analytical Processing (OLAP) is based on multi-dimensional 
data structures called cubes 



 
Figure 2. The Service Components of GZLDSWH 

 
the users to specify the Knowledge Base for the 
system. The Knowledge Base embeds the ECA rules 
which consists of the event, condition and action part, 
but carries out complex OLAP analyzes on warehouse 
data instead of  evaluating simple conditions as 
compared with ECA rules in OLTP system. 

• Notification/Action Service(NAS) takes the analytical 
results from DAS, evaluates these results against the 
Knowledge Base rules, and finally takes suitable 
actions such as issuing notifications, alarms or 
recommendations to the users. It can also invoke the 
DAS to perform analytical process when receiving the 
data update events from Grids node data sources. 

• Workflow Management Service (WMS) is used for 
services collaboration and cooperation. This service 
provides the execution of the complex, highly dynamic 
workflows for several heterogeneous grid services. 
The workflow supports service execution, service 
termination, service communications, etc. 

 
3. The operation of GZLDSWH 

 
In this section, we describe how the GZLDSWH 

system operates for processing and reacting to the 
continuous data streams, in the near real time. The system 
operations are based on the collaborative interaction 
between the services to fulfill the pre-defined reactive 
plans which are specified by the advanced knowledge 
user. Within the Grids environment as described in Fig. 3, 
there are one Master node and several child nodes (Node 
1, 2…, Node N). The Master node controls other child 
nodes to fulfill system activities. These child nodes keep 
the role of storing data within the Grid environment. The 
Master node therefore includes most of the essential 
services while the child nodes only contain some data 
input services and local data update detection services. 
The Master node also keeps the Grid metadata for Grids 
management and the Knowledge Base for controlling 
event reaction behavior. 

The operation of the GZLDSWH is as follows. The 
Data Capturing Service (DCS) receives continuous data 
streams from stream sources such as sensor systems, 
satellites, etc. Due to the huge amount of data arriving, 
the DCS must capture the data timely and invokes 
available Data Storing Services (DSS) resident at several 
child nodes for storing data. The DCS could invoke Data 
Cleaning Service (DES) to clean the data before storing.  

After storing data at child nodes, the Analysis Service 
(DAS) at the Master node will be invoked immediately or 
after predefined timely schedule depending on 
application requirements and performance trade off. DAS 
execution will create the virtual Data Warehouse from 
scratch. For this purpose firstly, the DASs available at 
several local child nodes are invoked. Due to this, the 
Cube Management Service (CMS) gains the essential raw 
data at the child nodes to build the global cube. Each 
child node contains part of the cube namely “cube 
chunk”. Data will then be integrated into the common 
format by the Data Integration Service (DIS). Before 
being stored into the virtual Data Warehouse, data can be 
passed to preprocessing phase via the Data Preprocessing 
Service (DPS). The DPS can perform several tasks such 
as data cleaning, data transformation, data normalization 
or data reduction. After the global cube is formed, the 
DAS will perform analysis queries or data mining 
algorithms (via the equivalent Mining Service - MIS) 
based on the data inside the virtual DWH.  

The analysis results then will be sent to the 
Notification-Action Service (NAS) for evaluation. The 
NAS accesses the Knowledge Base and evaluates the 
rules. The Knowledge Base rules are provided by the user 
through the Rule Design Service (RDS). The NAS then 
will issue relevant notifications or alerts to the users. It 
can also send back the action commands to several grid 
child nodes for executing some actions at the local data 
sources such as insert, delete, update, etc. Besides, the 
analysis process can be executed to answer the analysis 
queries issued by other applications. Especially, the 



analysis process can also be executed in case the local 
update data happens at the grid child nodes. Whenever 
the local data update happens, the NAS at local child 
node sends the “local data updates” message events to the 
NAS of the Master node. The NAS then invokes the DAS 
and the Analysis process will execute. 

The Grid services invocation process described above 
is strictly monitored by the Resource Broker Service 
(RRS) and the System Information Service (SIS). These 
services manage the resource available and finding the 
best-fitting resources for resource allocation and dispatch. 
The role of Workflow Management service (WMS) is to 
execute the complex, highly dynamic workflows 
involving different grid service instances. The workflows 
are constructed flexibly through the adaptive, 
architectural interaction framework. 

 
Figure 3. The operations of GZLDSWH  

 
4. Automatic Grid service Collaboration  

 
As previously mentioned, GZLDSWH is composed of 

many specific OGSI-based services. Each service is able 
to perform an individual task within the whole process. 
Obviously, these services must have the ability of 
collaborating with other services to fulfill the whole 
common purpose. In GridMiner [13,14], the services do 
not communicate with each other. The output of the first 
service serves as the input of the second service, the 
output of the second one serves as the input of the third 
one and so on. No service thus is aware of other existing 
services and each of the service is able to run completely 
independently. 

However, in our system, due to the requirement of 
automated event-based reaction, a service must be able to 
discover, create, bind, and invoke relevant service 
instances within the Grids environment. The execution 
flows are specified by pre-defined workflow in which the 
services are arranged in the specified logical execution 
order to fulfill the common task. However, during the 
execution time, the services have their autonomy to 
invoke other relevant physical service instances 
depending on the context at that time. We therefore need 
the model that enables the automatic adaptive 
collaboration between the Grid services followed by the 
pre-defined plan which describes the logical service 
execution flows (as described in figure 4). 

To the best of our knowledge, there are 2 possible 
approaches for the service flow execution i.e. centralized 
control and distributed control. In the former approach, 
there is a central service control engine which controls all 
service executions from the start node to the end node of 
the workflow. The engine itself is responsible in 
discovering, creating, binding, invoking, and destroying 
service instances to follow the logical workflow. The 
engine thus must keep the information of the whole 
workflow and should trace the information of the Grid 
environment such as grid nodes status, resource 
availability, etc. to coordinate the services execution. In 
the later approach, there is no such central engine but 
each service instance has its own “knowledge” to invoke 
the next service instances throughout the workflow. It is 
not necessary for each service to keep information of the 
whole workflow, instead, each service need to keep only 
part of the workflow metadata related to itself such as its 
immediate successor and predecessor services, the Grids 
environment context at its time of execution. That 
information is passed to the service as parameter at the 
time of its invocation. The service will use such 
information to invoke the next relevant service instances.  

Both of the two approaches have advantages and 
disadvantages. In the centralized control approach, the 
central service control engine, which could also be 
realized as a service, copes with the coordination between 
other services. The other services thus only focus on their 
specific functionality without taking into account the 
workflow execution. However, it could be the heavy 
work-load for the engine service if it processes the high 
complexity workflow or if the number of service 
instances increases. The distributed control approach, on 
the other hand, does not have to deal with the bottle-neck 
issue. However, it is more complicated to develop the 
services because each service besides its specific 
functionality must be realized as an agent to adapt with 
flexible service instance invocation. Moreover, the 
service invocation would also become more complex due 
to the parameters 



 
Figure 4. Predefine Workflow of Service Invocation 

transferred between the service instances. Further 
investigation on distributed control approach is out of the 
scope of this paper. However, it will be one of our 
considerations in the future work. 

In GZLDSWH, we use the central service control 
engine to coordinate the service execution via XML 
based workflow description language namely DSCL 
(Dynamic Service Control Language). The engine will 
extend the DSCE engine specified in GridMiner [14] to 
support the condition branches, loops as well as allow the 
references of the service instance handles (GSH) could be 
transferred as parameters in DSCL. The logical workflow 
could be specified with the service instance handles are 
not known in advanced (their handle references will be 
declared as variables). During the execution time, the 
Engine queries the Resource Broker Service to get the 
relevant dynamic service instance handle references. The 
Engine then will invoke these service instances via the 
reference variables. That operation will be repeated at 
each step of the workflow until the whole process is 
finished. We will describe in more detail about the DSCL 
in Section 5 and our Workflow Management service in 
Section 6. 
 
5. Dynamic Service Control Language  

 
DSCL is a XML based language allowing the users to 

specify the workflow of services activities. It contains 
exactly two sections: 
• The <variables> section: all variables must be defined 

here. The variables could be either the parameters of 
service calls, or the results of service calls. XML 
Schema Simple Type, Complex Type and SOAP 
Arrays Type are supported as variable type. 
<variables> 

 <variable name="iAge"> 
  <value type="int" 25  </value> 
 </variable> 

</variables> 
• The <composition> section contains the description of 

the workflow to be executed. A workflow composes of 
a set of activities which could be classified as “control 
flow” or “operational”. The control flow activities 
controls the execution of the workflow and thus must 
contain other activities while the operational activities 
are the atomic activities which perform operations. 
<composition> 

 control flow activities 
  other control flow activities or operational activities 
 operational activities 
</compostion> 
 
5.1 Workflow Structure 
 
Our DSCL supports 4 basic execution styles (Sequential 
execution, Parallel execution, Condition Branch and 
Loop) by providing several tags namely <Sequence>, 
<Parallel>, <Condition>, and <Loop> respectively. 
These tags could be nested to realize the complex 
workflow composition. Figure 5 states an example of a 
workflow including all control activities and the 
respective DSCL document 

 
Figure 5. Composite Workflow Example 

 
<composition> 
 <sequence> 
  activity1 
  <condition> 
   cond_var1 = TRUE 
    <loop while cond_var2 = TRUE> 
        activity2  
    </loop>    
   cond_var1 = FALSE 
   <sequence> 
    <parallel> 
     activity3 
     activity4  
    </parallel> 
    activity5    
   </sequence>  
  </condition> 
 </sequence> 
</compostion> 
 
5.2 Workflow operations 

 
Beside the control flow activities, DSCL supports 

other activities namely operational activities. Operational 



activities perform operations of interacting with the 
underlying Grid services such as creating new service 
instances, destroying instances, invoking operation of 
services, querying service data element. DSCL provides 
respective tags to specify these operational activities: 
<createService>, <destroyService>, <invoke>, and 
<querySDE>. The operational activity could not contain 
other activities and must have the mandatory attribute 
namely activityID which is of type DTD. This attribute is 
necessary for the workflow engine to identify the activity. 

The great difference between Grid and common Web 
services is the fact that the Grid service could be either 
persistent or transient. The persistent service is created 
and available if its container is running. In contrast, the 
transient one is created and invoked when required and 
soon destroyed afterwards. The transient service is 
always created by its Factory service. The following 
information is necessary to create a new service instance 

1. The location of the factory service 
2. Additional service parameters 
3. A virtual instance name of the newly created instance 

… 
<createService activityID ="Act1" 
factory-gsh="http://url/serviceFactory" 
instance _ name="newInstance1"/> 
… 

In GZLDSWH, there is the situation when we have 
more than equivalent factory services at different grid 
nodes at the same time e.g. the Data Storing services 
located at several child nodes when we need to store data 
stream. In such situation and in other cases when the Grid 
environment changes rapidly, the Resource Broker 
Service decide which Service Factory should be executed 
to create a new instance according to the availability and 
resource capacity of the different Grid nodes. DSCL 
provides the dynamic service creation by allowing Grid 
service handle references transferred via variables. It is 
also possible to create the service instance with user 
defined parameters via <parameter> tag. 
… 
<variables> 

 <variable name="factgsh"> 

  <! Default value of the factory service handle> 
  <value type="string" http:url/serviceFactory </value> 
 </variable> 
… 
</variables> 
… 
<!other services set the value of factgsh, e.g. Resource Broker > 
… 
<! Create the service instance via reference to factory handle > 
<createService activityID ="Act1" 
factory-ref="factgsh" 
instance _ name="newInstance1"/> 

After a service instance is created, it is possible to 
destroy the instance, invoke its operations or query its 

data elements. These activities require the service 
instance reference to identify the relevant instance. We 
provide 3 optional attributes namely instance-name, 
instance-gsh, and instance-ref enabling to reference a 
service instance (1) via instance name (2) via Grid service 
handle and (3) via a variable reference to the instance. 
The usage of each attribute is optional, however exactly 
one of the three attributes must be used together with the 
activity. 
… 
<destroyService activityID ="Act1" 

instance-gsh="http://url/SerInst01" (or instance-name = 
“Instant1” or instance-ref = “varInstGSH”) 
… 

Invoking an operation of a Grid service is similar to 
invoking a method in common programming language, to 
invoke an operation of a Grid service, the following 
information is necessary: 

1. The required Grid service instance – referenced by 
one of the attributes: instance-name, instance-gsh, 
instance-ref  

2. Name of the operation – mandatory defined within 
attribute operation and optional attribute portType 

3. The required parameters – specified in <parameter> 
tags, the parameter is simply a reference to a variable. 

4. Result – storing the result of a Grid invocation via 
<result> tag 
… 
<Invoke activityID ="CleanData01" 
instance-gsh="http://url/DES01" (or instance-name = “DES01” 
or instance-ref = “varInstGSH”) 
operation = “Clean_Data” 
<parameter variable= “Data_Strore”> 
<result variable= “Data_Result”> 
</Invoke> 
… 

Some of operations do not return the results; instead 
store them into so called service data elements. To allow 
querying the content of these element, DSCL provides the 
tag <querySDE>, this operation requires the reference to 
Grid service instance and the name of the required service 
data element (stored in attribute sdName). 
… 
<querySDE activityID="act1" 
 instance _ name="instance01" 
 sdName="value" 
 <result variable="var02"/> 
</querySDE> 
… 
6. The Workflow Management Service 

 
In GridMiner project [13,14], we have developed an 

engine  service so called the Dynamic Service Control 
Engine (DSCE) which processes DSCL documents and 
controls the service execution in both interactive and 



batch modes. It provides some interesting features such as 
(a) independent processing (without any interaction of the 
user) of a workflow described in DSCL, (b) the provision 
of all intermediate results from the services involved, (c) 
the possibility for a user to stop, cancel or resume a 
workflow and (d) the possibility to change workflow at 
run time (by stopping the engine, changing the DSCL 
document, and restarting engine again).  

 
Figure 6. Conceptual Architecture of DSCE 
 
Figure 6 describes the Conceptual Architecture of 

DSCE [14]. The engine is implemented as a stateful, 
transient OGSI Grid service and has several structured 
layers. The “top” layer is the Interface layer which 
provides essential operations to control the engine. The 
Factory interface allows users to create a new DSCE 
instance for a specific DSCL document via operation 
CreateService (DSCLDocument dscl). The DSCE engine 
instance now will be created and its state will change 
within its life cycle according to user interactions and the 
activities execution results. The possible states could be 
empty, initialised, running, stopping, waiting, finishing, 
or failure. The Service interface provides interactive 
control operations such as changeWorkflow(), start(), 
stop(), resume() as well as several service data elements 
containing information about the DSCL document, 
Workflow state and activity state. 

The “middle” DSC Engine layer covers the main 
functionality of DSCE. It controls the whole workflow 
execution by controlling the execution of activities 
specified by the DSCL document. First, the DSCL 
workflow description is parsed, then the “network of 
activities”, an internal model of the workflow, is 
constructed before processing the activities. Such 
activities network describes the dependency between the 
activities. Each activity could have succeeding and 
preceding activities. Succeeding activities are executed 
right after the execution of actual activity is finished. If 
an activity has more than one successor, all of them will 
be executed in parallel after that actual activity is 
finished. Similarly, the activity could not be started until 
all of its proceeding ones are finished. This could happen 

in some situations like loop or parallel execution. Several 
internal operations are provided in this layer for 
managing the workflow such as start(), stop(), resume(), 
reset(), setDSCLWorkflow() etc. as well as some 
operations for controlling the activities such as 
startActivity(), EndActivity(), CreateInstanceActivity(), 
DestroyInstance Activity(), InvokeActivity(), QuerySDE-
Actvity(), startNext Activites(), wat-ForPrevious-
Activities() ,etc.  The necess- ary parameters of all 
underlying services are also prepared at this layer. 

Normally, when a Grid service is developed and 
implemented, additional stub and proxy classes are 
generated to hide the complexity of communication 
between the client and the service. This approach is very 
common and practically used in all distributed object 
systems like CORBA, Java RMI, and Web Service. To 
benefit from this approach, the required services or 
remote objects must be known at the compilation time. 
However, this requirement is not satisfied in DSCE 
because DSCE receives a DSCL workflow description 
document and shall be able to communicate with all 
services specified within that DSCL. The “lowest” layer 
namely Dynamic Grid Service Invocation (DGSI), is 
composed of the DGS Invocation and Dynamic Invoker. 
It provides classes which allow accessing Grid services 
and their operations without using common stubs/proxy 
approach. The Dynamic Invoker, the lowest layer, 
provides the possibility to invoke any operation on any 
underlying Grid service. It uses much of ApacheAxis 
[23], and SOAP engine which are based of GT3 toolkit. 
Dynamic Invoker translates an operation invocation into a 
SOAP1.1 message and sends it to the corresponding 
service to invoke specified operations. It provides all 
necessary marshalling and un-marshalling of arguments 
by firstly fetching the WSDL of the corresponding Grid 
service (via its handle GSH), then setting service port 
type via setPortType(String port-TypeName), setting 
operation via setOperation (String operation Name) , 
setting parameters of the operation via setParameters 
(Object[] params). All of information is used to construct 
essential SOAP operation call. Finally invoke() executes 
the operation by sending that SOAP message to 
correspond services. At higher layer, the DGS Invocation 
provides the classes to use stub-less operation invocation 
and to access the functionality of the GT3. It provides 
three classes namely DGSIService, DGSIFactory, DGSI- 
Listener allowing the workflow engine to handle its 
underlying services such as creation and destruction of 
Grid service instance, invocation of operations, querying 
of service data element and synchronization of 
asynchronous service calls. 

DSCE suits well in GridMiner where the interaction 
role of user is important. The engine operates based on 
the “physical” DSCL document specified by the user, i.e. 



it only works with the DSCL that specifies exactly the 
service handles. It does not accept the “logical” workflow 
which only specifies the logical name of the required 
service. In GZLDSWH, we sometimes do not know in 
advance which service factory should be executed to 
create a new instance. Instead, the decision should 
depend on the runtime environment. Besides, because of 
the “automated event-based reaction” feature of 
GZLDSWH, a higher level of automation in service 
invocation engine is required. Therefore, the Dynamic 
Workflow Management Service in GZLDSWH extends 
the DSCE with the automatic Workflow Re-writer ability. 
Now, the WMS Service will accept the logical DSCL, 
parse it and find out logical services i.e. services which 
do not have the exact physical factory handle. It then 
queries the Resource Broker Service to have the relevant 
physical service factory handle and then re-write the 
DSCL with the new factory handle value. It finally passes 
the re-write DSCL to the DSCE engine to invoke the 
services. The architecture of Dynamic Workflow 
Management service is described in figure 7. 

 
Figure 7.Dynamic Workflow Management service 
 
7. Related Work 
 

There has been a surge of interest recently in the area 
of query processing over continuous data streams 
[10,12,15], and other related problems such as resource 
management, approximately computation, architectures 
[9,10,16,17]. Furthermore, conventional OLAP and data 
mining models have been extended to tackle data streams, 
such as multi-dimensional analysis [5], clustering [18] 
and classification [19]. However, most of previous 
approaches on data stream processing focus on 
approximate methods based on statistical estimations due 
to the limitations of storage and computing resources. 
Our effort, instead, tries to store all data streams and 
processes them within the Grids as if they are stored in 
the super large databases. 

So far, only a little attention was devoted to 
knowledge discovery on the Grid. An attempt to design 
an architecture for performing data mining on the Grid 
was presented in [4]. The authors present the design of a 
Knowledge Grid architecture based on the non-OGSI-
based version of the Globus Toolkit, and do not consider 
any concrete application domain. R. Moore presents the 

concepts of Knowledge-based Grids in [20]. A lot of 
valuable data integration concepts have been developed 
in the project “Federated Database for Neuroscience” 
[27]. The WP4 of the OGSA-DAI project is concerned 
with the design of a distributed query processing service 
for the Grid. However, the above projects did not take 
into account the automatic collaboration between the 
Grids services. 

Workflow, “the coordinated execution of multiple 
tasks or activities” [28], can be extended and applied 
virtually to other areas, from science and engineering to 
entertainment. Web services already provide mechanisms 
to handle complex workflows.  Since every Grid service 
is a Web service with improved characteristics and 
services [29] (the converse of this statement is not true), it 
is possible to adapt the ideas for workflow compositions 
from Web services and apply them to Grid services. 
BPEL4WS 1.1 [24] is the actual standard, which can 
describe compositions of Web Services. The Grid 
Services Flow Language [26] intends to do the same for 
Grid Services. GSFL is based on the so called Web 
Services Flow Language [25], a predecessor of 
BPEL4WS, published by IBM. All of those flow 
language specifications have all the same target: 
describing a business process built up of various web 
services. This description then serves as input for a 
workflow engine like BPWS4J [24] (an engine for 
BPEL4WS developed by IBM). Such an engine works 
with the persistent Web services (not transient Grid 
services as in GridMiner or ZLGDSWH), and of course, 
it requires the specification documents of “physical” Web 
service URIs. 
 
8. Conclusions and Future Work 

 
The concept of Grid-based Zero-Latency Data Stream 

Warehousing system applied Grid technology for 
continuous data streams processing to tackle the resource 
limitation issues. In this paper, we have introduced a Grid 
service collaboration model which allows the Grid 
service in GZLDSWH to collaborate with each other 
automatically following the pre-defined logical 
workflow. We have extended the DSCL language and 
DSCE engine developed in GridMiner to allow the 
dynamic re-writing of the logical workflow to the 
physical one according to the Grid environment at 
runtime.  Detailed technical references and some results 
of DSCL and DSCE could be found in our Technical 
Report [14].  

Both Grid and Data Stream processing technologies 
are young and still evolving. The Semantic Grid [21] and 
Grids services have the role similar to Semantic Web and 
Web services. Recently, WS-Resource Framework & 



WS-Notification [22] proposals have just been announced 
as an evolution of OGSI with the purpose of effective 
integration Grids and Web services standards. The work 
presented here is closely related to OGSA/OGSI so it has 
to adopt with the WS-Resource Framework with suitable 
modifications. The distributed control of service 
discovery, creation, invocation and destroying will be 
considered as an alternative of collaboration model. The 
orchestration of Grids or Web services, another approach 
for solving the workflow problem should also be further 
investigated. 
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