

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 22 – 31, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Event-Feeded Dimension Solution

Tho Manh Nguyen1,2, Jaromir Nemec1, and Martin Windisch1

1 T-Mobile Austria, Rennweg 97-99, A-1030 Vienna, Austria
{tho.nguyen, jaromir.nemec, martin.windisch}@t-mobile.at

2 Institute of Software Technology and Interactive Systems, Vienna Uni. of Technology
Favoritenstr. 9-11/188, A-1040 Vienna, Austria

tho@ifs.tuwien.ac.at

Abstract. From the point of view of a data warehouse system its part of collect-
ing and receiving information from other systems is crucial for all subsequent
business intelligence applications. The incoming information can be classified
generally in two types, the state-snapshot data and the state-change or event
data usually called transactional data, which contains information about the
change processes applied on the instances of information objects. On the way
towards active data warehouses it becomes more important to provide complete
data with minimal latency. We focus in this paper on dimensional data provided
by any data-master application. The information transfer is done via messages
containing the change-information of the dimension instances. The receiving
data warehouse system is able to validate the event-messages, reconstruct the
complete history of the dimension and provide a well applicable "comprehen-
sive slowly changing dimension" (cSCD) interface for well-performing queries
on the historical and current state of the dimension. A prototype implementation
of "active integration" of a data warehouse is proposed.

1 Introduction

The upcoming integration technology standards [12,13] based on message exchange
between information systems provide benefits not only to operative systems. Also
non-OLTP systems like data warehouses can gain some profits out of this develop-
ment [4]. In the past a restricted integration of the source systems traditionally led to
batch-oriented data load approaches for data warehouses.

This situation is also in place at T-Mobile Austria, where we have done the analy-
sis and development of the solution, proposed in this paper. The data warehouse at T-
Mobile Austria runs on an Oracle 9.1.3 relational database and has a data volume of
about six terabyte (TB). The complexity and number of operational source systems is
very high. Therefore, the data warehouse provides its information as a single point of
truth for nearly all units of the enterprise.

The data freshness for transactional data is very high, although the data is currently
batch loaded. CDRs (call detail records) are usually loaded every four hours. The
dimensional data loaded from legacies like the billing system (BSCS, Business Sup-
port & Control System), SAP or the CRM Systems is received via daily snapshots.

 Event-Feeded Dimension Solution 23

Because of the limitations of the snapshot based approach1, a more efficient ap-
proach being more near-real time is considered. Data changes in the operational
sources are captured and provided near real time as event messages via the event-
based infrastructure TIBCO [12]. This approach implies also the discussion of the
message content and its validation. Mainly three quality aspects are under inspection:
the completeness, uniqueness and order of the event-messages.

For the further processing of the event-messages we developed one comprehensive
and general applicable SCD representation inspired by Kimball’s three SCD-types [7]
and propose a valid alternative to snapshot based information transfer. This solution is
applicable especially in cases, where the information requirements of the receiving
system focus on complete and detailed historical information for all instances com-
bined with a minimal latency demand. For a given latency time-interval the advan-
tages of this method are obvious for a dimension with a small number of changes
compared to its cardinality.

The proposed method provides much more than a data replication. The primary
target is not a physical mirror of the dimension object. Moreover all necessary views
including the change history of this object are implemented in a standardized way
with quite realistic efforts. The event feeded cSCD approach has been designed ac-
cording to the main goals of T-Mobile Austria’s data warehouse, which are simple:
“to provide a single point of truth easy to access”.

The remainder of this paper is structured as follows. Section 2 reviews related
work. Section 3 introduces the Event Model concerning the event and event process-
ing descriptions. The Event-feeded cSCD prototype implementation is described in
Section 4. Finally, in Section 5, we present our conclusion and the future work.

2 Related Works

Active data warehouses [4,13] prefer to provide complete data within minimal la-
tency. The well known limitations of processing dimensional snapshot-data [11] can
be overcome by the proposed method, which is preferred for a dimension with a small
number of changes compared to its cardinality because of less resource consumption.
The complete history of the dimensional change events is also an advantage compared
with historical (periodic) snapshots.

In some cases daily snapshots [1] have been used to provide change information
out of the differences of two consecutive snapshots. To hold an appropriate history of
such dimensions the only way was, to store the received snapshots chronologically,
which means, that the storage request for the historical data does primarily not depend
on the change fluctuation and volatility of the instances. One can apply in a second
step some compression algorithms to overcome these disadvantages.

R. Kimball [7] has introduced the slowly changing dimension (SCD) types 1, 2 and
3 to track changes in dimension attributes. In SCD type 1, the changed attribute is

1 Multiple change events between snapshots miss completely. For each snapshot comparison

the number of records to process is high, requiring also high computing-resources and -time
and the history is kept by tremendous daily snapshot versions consuming a lot of storage.

24 T.M. Nguyen, J. Nemec, and M. Windisch

simply overwritten to reflect the most current value thus does not keep the historical
changes. SCD type 2 creates another (dimension) record to keep trace the changed
attributes, but could not keep the old value both before and after the change. For this
purpose, the SCD type 3 uses the “current value” and “previous value” but it isn't
appropriate for the unpredictable changes.

R. Bliujute et al. [2] suggested the temporal star schema to overcome the SCD is-
sues with event and state-oriented data. They tackled the SCD type 2 in fixed attrib-
utes with timestamp. We instead propose a more general event model where the target
dimensional object can be fine tailored depending on business requirements.

The flexibility in choosing the event timestamp (e.g. between transaction time-
stamp and processing timestamp) enables in the proposed cSCD representation the
handling of time-consistency issues as discussed by R. Bruckner et al. [3].

J. Eder et al. [8] propose a temporal multi-dimensional data model to cope with the
changes of dimension via multi versions and valid time. Our purpose is keeping track
not only the versions of instances but also their relationships in dimensional data.

W. Inmon recommends the usage of normalized dimensions [6]. This is a very im-
portant aspect as the event based maintenance of denormalized dimensions although
possible is not very practical [10].

3 Event Model

For a formal description of an event and event processing a UML based model is
created. The core part of this model is an UML profile describing the event meta-
model. Additionally, the semantic of event is defined and shown by a simple example.
Possible strategies of event interpretation are discussed.

Based on the defined model and the interpretation of the event a broader discussion
is performed, demonstrating that the traditional distinction between fact and dimen-
sion in event based DWH environment represents only a different specialization of
our event based model.

3.1 Profile

To describe a general event it is necessary to raise the model to the meta level M2 [9]
as the structure of each event type is very proprietary based on the transferred busi-
ness information. The simplified profile definition is depicted in Fig. 1.

The key concepts of the event profile are as follows:

- Stereotype «Event» describes the object containing the event data.
- Stereotype «Efd» (abbreviation for event feeded dimension) depicts the target

object that is maintained via the event stream.
- Stereotypes «Trans» and «Snap» as subtypes of «Efd» are discussed below

Those stereotypes are applicable on the class level, the rest of stereotypes are con-
nected with an attribute:

- Stereotype «Key» is used to mark the (natural or surrogate) primary key of the
dimension

 Event-Feeded Dimension Solution 25

- Stereotype «Order» is intended to define the order in which the events were
created and should be processed.

- Stereotype «Timestamp» identifies an attribute containing the timestamp in-
formation of an event. The transaction time, event creation time, event proc-
essing time are various examples of this stereotype.

- Stereotype «Action» describes the nature of the change represented in the
event (insert / update / delete)

- Stereotype «Status» enables the depiction of a logical deletion of a dimension
instance.

Fig. 1. Simplified Profile Event Definition

Not all of the listed stereotypes are mandatory, the usage is constrained by seman-
tic rules (see below) such as: The «Event» and «Efd» classes must contain at least one
Key attribute (i.e. an attribute with stereotype «Key»). Order and Timestamp attrib-
utes may coincident, e.g. in cases when the time grain is to large to distinct the events
uniquely, the Order attribute is used to define the unique event sequence. The oppo-
site extreme when neither of those attributes is defined is also valid. In that case the
timestamp of event processing can be used as a default Timestamp attribute (of course
the unique order of events must be established in this case as well).

3.2 Example

To illustrate the usage of Event profile lets consider a simplified application that
maintains the customer attributes via an event interface. The customer is identified
with an attribute id, the customer attributes consist of name, address and tariff.

26 T.M. Nguyen, J. Nemec, and M. Windisch

The class with associated stereotype Event describes the customer-value-change
event. This event is generated on each change of at least one attribute of a particular
customer. As marked with stereotype Key the primary key of the customer dimension
is the attribute id. The attribute timestamp is stereotyped as Timestamp i.e. this attrib-
ute defines the point in the time of the change of customer attributes. The rest of at-
tributes have no stereotypes they are regular event attributes containing additional
information.

The second class in Fig. 2 describes the target object maintained via the event feed
(stereotype Trans defines that a full versioned history of the target object will be
build; see the detailed discussion in 3.3). The meaning of the additional attribute is
discussed below.

Fig. 2. Customer Event Profile Example

3.3 Event Processing

The profile based event model must be enriched with semantic rules defining the
interpretation of an event. The most important feature is the sub-typing of the Efd
object. In the profile two main examples are defined Snap and Trans.

The Snap object is maintained with overwrite policy, i.e. new records are inserted;
existing records are updated or deleted. In a Snap object only one record per primary
key is stored. Snap is mnemonic for dimension snapshot.

The Trans object is maintained cumulatively, each event is added to the target ob-
ject, building a complete transactional history of the dimension.

The handling of primary key of the build dimension can be configured. The Pri-
mary key option defines if the target object uses the natural key (as provided within
the event) or if a surrogate key should be generated while the event is processed. In
any case the primary key always uniquely identifies the dimension instance, so if a
complete history of the dimension is maintained an additional attribute stereotyped as
«Version» must extend the primary key of the target table.

Other option is defined on the level of attribute; an attribute noted as Timestamp-
Post is applicable for Trans object only. It is filled with the value of the correspond-
ing Timestamp attribute of the successor version decreased by the smallest grain of

 Event-Feeded Dimension Solution 27

the time dimension (e.g. 1 ms). The default value is an artificially set high date (e.g.
31-12-9999 00:00:00). The usage of two timestamps in a full history table is not a
"pure relational" design but extreme practical solution as for the selection of a version
of a particular dimension occurrence a simple logic can be applied (required time-
stamp between Timestamp and TimestampPost).

If an attribute has a suffix From it contains the value "before the change", i.e. in
Trans object this is the value stored in the preceding version. The association between
the corresponding attribute is established with naming conventions.

A different aspect of semantic is the validation of the event model, i.e. the verifica-
tion if the model is well-formed. Examples of constraints that must be checked are
listed below:

- Event class must have at least one Key attribute
- Each Timestamp attribute must have a type compatible with date/time.

The final role of semantic in event context is the event validation. It is possible to
extend the event data with redundant information that can be checked while the event
is processed. The exceptions can be interpreted as an advice of lost or corrupted
events.

For examples adding an Action attribute to the event (possible values: insert / up-
date / delete) enables additional checks:

- key must exists in the target object on update and delete
- key must not exists in the target object on insert

Other types of validation can be alternatively implemented as services on the event
transport layer, e.g. guaranteed delivery or de-dup filtering [5].

4 Event-Feeded cSCD Implementation

The described implementation represents a particular instantiation of the presented
model in Section 3. The target object is implemented as a Trans table; natural key
option is used; Action and from attributes are supported.

4.1 Development Environment

Because the target DWH is also based on Oracle DBMS, we decided to keep the cur-
rent development environment, i.e. developing the event feed cSCD solution as an
Oracle PL/SQL package and call easily the functionality from ETL (e.g. Informatica
Powercenter) mappings.

4.2 The UTL_EVENT_SCD Package

The package can be used to trace the changing attributes of any (dimensional) table. It
accepts a variant of parameters for the detailed configuration of the event-processing
and -correction such as traced entity (via table name parameter), correct option (op-
tional, mandatory or automatically), refresh option (incremental or from scratch), filer
criteria, etc.

28 T.M. Nguyen, J. Nemec, and M. Windisch

Fig. 3. UTL_EVENT_SCD Package modules and its related tables

The package (Fig. 3) contains 3 main modules: Event Processing (EP), Snapshot
Generation (SG), and Consistency Checking (CC) providing the following options:

• Validating the events before refreshing the historical transactions of the entity
instances (update TRANS table) with full historical tracing and versioning.

• Providing the state information at any point in time for any instance or subset of
instances (generate SNAPSHOT table on demand)

• Checking the consistency between the entity state data of the legacy system and
the data in DWH, and solving the inconsistency issue.

4.2.1 Event Processing (EP)
EP applies event data and refreshes the TRANS table as follows. It first accesses the
event data, filters those which happened since the last refresh (i.e. those records which
do not appear in TRANS or have different states with the current records in TRANS).
The event validation then checks the events with automatic correction options to over-
ride some invalid events. This validation and correction processes are based on some
useful attributes such as change_key, attribute_from or sequence order. The invalid or
overridden events are kept in the PROTOCOL table.

The valid events are used to refresh the TRANS table. For each event data related
to an entity instance, an equivalent transaction record in TRANS table is created. If
there are other events related to the same entity, the extended SCD type 2 [1,5] is
applied to keep trace over all transactions (with versions). The TRANS table thus
contains the complete transaction history of dimension changes.

Examples: We apply the UTL_EVENT_SCD package to trace the Customer’s at-
tribute changes. Suppose that we have currently two customers Robert and Sonja until
7 am,14/02/2005. At 7:10, Robert informs that he changes his address from 20 Renn-
weg to 25 Favoriten. 7:12 am, a new customer Micheal has registered into the system,
and Robert changes his tariff from type 1 to type 2 at 7:13. At 7:14, Sonja changes her
tariff from type 2 to type 1. The UTL_EVENT_SCD package is executed at 7:15 to
refresh the previous TRANS table. (Fig. 4)

SNAPSHOT

Dimension_PK
Snapshot_time
Recordstamp
Attributes
Last_sequence

EVENT

Dimension_PK
Event_sequence
Timestamp
Attributes
Attributes_from
Change_key

PROTOCOL

Reason
Dimension_PK
Change_key
Change_key_org
Attributes_from
Attributes_org
Trans_version

TRANS
Dimension_PK
Valid_From
Valid_To
Version
Attributes
Attributes_from
Status
Change_key
Recordstamp

(PREV) TRANS

Dimension_PK
Valid_From
Valid_To
Version
Attributes
Attributes_from
Status
Change_key

UTL_EVENT_
SCD

SG
EP

CC

On demand

Exception

 Event-Feeded Dimension Solution 29

CUST_TRANS (Before Event applying)
ID Valid_from Valid_to Name Address Tariff Address_from Tariff _from Recordstamp version Last_version Change_key
1 14-02-2005 07:00:00 31-12-9999 00:00:00 Robert 20 Rennweg T1 14-02-2005 07:00:00 1 Y I
2 14-02-2005 07:00:00 31-12-9999 00:00:00 Sonja 15 Kargan T2 14-02-2005 07:00:00 1 Y I

CUST_EVENT

ID Timestamp Seq Name Address Tariff Address_from Tariff_from Change_key
1 14-02-2005 07:10:00 1 Robert 25 Favoriten T1 20 Rennweg U
3 14-02-2005 07:12:00 2 Micheal 10 Rathaus T2 I
1 14-02-2005 07:13:00 3 Robert 25 Favoriten T2 T1 U
2 14-02-2005 07:14:00 4 Sonja 15 Kargan T1 T2 U

CUST_TRANS (After Event applying)
ID Valid_from Valid_to Name Address Tariff Address _from Tariff _from Recordstamp version Last_version Change_key
1 14-02-2005 07:00:00 14-02-2005 07:09:59 Robert 20 Rennweg T1 14-02-2005 07:15:00 1 N I
1 14-02-2005 07:10:00 14-02-2005 07:12:59 Robert 25 Favoriten T1 20 Rennweg 14-02-2005 07:15:00 2 N U
1 14-02-2005 07:13:00 31-12-9999 00:00:00 Robert 25 Favoriten T2 T1 14-02-2005 07:15:00 3 Y U
2 14-02-2005 07:00:00 14-02-2005 07:13:59 Sonja 15 Kargan T2 14-02-2005 07:15:00 1 N I
2 14-02-2005 07:14:00 31-12-9999 00:00:00 Sonja 15 Kargan T1 T2 14-02-2005 07:15:00 2 Y U
3 14-02-2005 07:12:00 31-12-9999 00:00:00 Micheal 10 Rathaus T2 14-02-2005 07:15:00 1 Y I

Fig. 4. TRANS table refresh after UTL_EVENT_SCD package execution

The investigation of the performance behavior based on the prototype implementa-
tion showed a near linear scalability of the processing-time per event with an average
throughput of about 300 TRANS-records per second on a dimension with the cardi-
nality of one million records. The minimum refresh period is about 3-4 seconds
caused by process overheads. However, with the high number of events (e.g. over
20000 events), the more events accumulated, the less efficient of the event-SCD ap-
proach compared to the snapshot based SCD approach.

0

10

20

30

40

50

60

70

80

90

100

1000 2000 3500 5500 8500 12000 17000 23500 30000

Number of events

T
im

e
el

ap
se

d
 (s

ec
o

n
d

s)

Event-SCD
Time Elapsed

Snapshot-SCD
Time Elapsed

0

50

100

150

200

250

300

350

400

450

500

1000 2000 3500 5500 8500 12000 17000 23500 30000

Number of events

T
h

ro
u

g
h

p
u

t

Event-SCD
Throughput

Snapshot-SCD
Throughput

Fig. 5. Elapsed processing time and performance throughput comparison between event-SCD
and snapshot based SCD approach

4.2.2 On Demand Snapshot Generation (SG)
Despite the series of snapshots is not kept as previously, the requirement to have a
snapshot at one point in time for any subset of entity instances remains. From the
TRANS table, we can rebuild these required snapshots. The package provides two
options to generate a snapshot: (1) from scratch (Fig. 6) and (2) based on an existing
snapshot, further referenced as based snapshot (Fig.7). The generated Customer snap-
shots at 7:00 and 7:15 are shown in Fig. 8.

30 T.M. Nguyen, J. Nemec, and M. Windisch

CREATE TABLE CUST_SNAP AS
SELECT ID, i_timepoint as Snaptime, Name,Address, Tariff
FROM CUST_TRANS
WHERE CHANGE_KEY <> 'D' AND
i_timepoint BETWEEN VALIDFROM_T AND VALIDTO_T;

Fig. 6. Create Snapshot from scratch (i_timepoint is the time point of the snapshot data)

CREATE TABLE CUST_SNAP AS
SELECT * FROM
(SELECT ID,i_timepoint as Snaptime, Name, Address, Tariff
 FROM CUST_TRANS WHERE CHANGE_KEY <> 'D' AND
 i_timepoint BETWEEN VALIDFROM_T AND VALIDTO_T
 AND VALIDFROM_T > v_prev_time
UNION ALL
 SELECT ID,i_timepoint as Snaptime, Name, Address, Tariff
 FROM BASED_CUST_SNAP
 WHERE ID NOT IN

(SELECT ID FROM CUST_TRANS WHERE
 i_timepoint BETWEEN VALIDFROM_T AND VALIDTO_T

 AND VALIDFROM_T > v_prev_time)
);

Fig. 7. Create Snapshot from based snapshot (BASED_CUST_SNAP is the based snapshot
table, v_prev_time is the time point of the based snapshot data)

SNAPSHOT at 14-02-2005 7:00 SNAPSHOT at 14-02-2005 7:15
ID Snaptime Name Address Tariff ID Snaptime Name Address Tariff

1 14-02-2005 07:00:00 Robert 20 Rennweg T1 1 14-02-2005 07:15:00 Robert 25 Favoriten T2
2 14-02-2005 07:00:00 Sonja 15 Kargan T2 2 14-02-2005 07:15:00 Sonja 15 Kargan T1

 3 14-02-2005 07:15:00 Micheal 10 Rathaus T2

Fig. 8. SNAPSHOT tables generated at 7:00 and 7:15

4.2.3 Consistency Checking and Recovery (CC)
In the event based cSCD approach, an inconsistent state could be detected when we
are able to access on a truthful snapshot source (usually provided from the legacy
systems). The input requirements of this process are the mandatory truthful snapshot
(Si, tj) table and the metadata parameters describing the record-structure. The consis-
tency checking process compares a truthful snapshot(-part) taken on any subset of
instances Si, at any point of time tj with the corresponding on demand snapshot (Si, tj)
(see Section 4.2.2) which is temporary stored in a TEMP_SNAP (Si, tj) table. The
found inconsistencies between the snapshots are applied again as new change events
to correct the TRANS records.

5 Conclusion and Future Work

The event feeded cSCD approach presented in this paper significantly reduces the
number of records to be processed compared to the snapshot based approach. Besides,
compared with the Kimball's classification of SCD [7] we see that the SDC types 1,2

 Event-Feeded Dimension Solution 31

and 3 are only examples of possible instantiations of the proposed cSCD approach
(SDC 1 and 2 respectively use the Snap object without and with from attributes;
SDC 3 is based on Trans object without from attributes).

Although the target object was up to now considered as a dimension, this is not a
limitation of the proposed model. A typical fact table can be described also as a ver-
sioned dimension (fast changing dimension), using the add-version update policy
(each event creates a new record in the fact table) with appropriate validation e.g. to
maintain a balance attribute.

Further more extending our model with summarizing stereotypes (e.g. add the actual
value of the attribute to the previous value) the way is opened for describing running
aggregates. On the other hand the correlation of system-dependent event-messages as
an alternative to the join of dimensional snapshots needs further inspection.

Acknowledgement

This research was funded by T-Mobile Austria and supported by the IT department
providing the needed infrastructure and environment.

References

1. Arun Sen, Atish P. Sinha, A Comparison of Data Warehousing Methodologies. Communi-
cations of the ACM, Vol. 48, No. 3, March 2005.

2. Bliujute, R., Saltenis, S., Slivinskas, G., and Jensen, C.S. (1998). Systematic Change
Management in Dimensional Data Warehousing. In Proc. of the 3rd Intl. Baltic Work-
shop on Databases and Information Systems , Riga, Latvia, (pp. 27-41).

3. Bruckner R., Tjoa A., Managing Time Consistency for Active Data Warehouse Environ-
ments. DaWaK 2001, Springer-Verlag LNCS 2114, pp. 254–263, 2001.

4. Brobst, S., Enterprise Application Integration and Active Data Warehousing, In Proc.
Data Warehousing 2002, pp. 15-22, Physica-Verlag 2002.

5. Hohpe G., Woolf B., Enterprise Integration Patterns, Designing, Building, and Deploying
Messaging Solutions, Addison-Wesley, 2004

6. Inmon, W., Building the Data Warehouse; Jon Wiley & Sons, Second Edition, 1996
7. Kimball R. et al., The Data Warehouse Toolkit: The Complete Guide to Dimensional

Modeling, 2nd Edition, John Wiley & Sons, 2002.
8. Koncilia, C., Eder, J., Changes of Dimension Data in Temporal Data Warehouses, DaWaK

2001, Springer-Verlag LNCS 2114, pp. 284–293, 2001.
9. Meta Object Facility (MOF) Specification http://www.omg.org/docs/formal/00-04-03.pdf

10. Rieger B., Brodmann K., Mastering Time Variances of Dimension Tables in the Data
Warehouse, Osnabrueck University, 1999

11. Rocha R., Cardoso F., Souza, M., Performance Tests in Data Warehousing ETLM Process
for Detection of Changes in Data Origin. DaWaK 2003, LNCS 2737, pp. 129-139, 2003.

12. TIBCO Software Inc.: http://www.tibco.com
13. Vandermay J., Considerations for Building a Real-time Oracle Data Warehouse, DataMir-

ror Corporation White Paper,2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

