
Probabilistic Time Management of

Choreographies

Johann Eder1, Horst Pichler1, and Amirreza Tahamtan2

1 Alpen-Adria University of Klagenfurt, Dept. of Informatic-Systems, Austria
{johann.eder,horst.pichler}@uni-klu.ac.at

2 University of Vienna, Dept. of Knowledge and Business Engineering, Austria
amirreza.tahamtan@univie.ac.at

Abstract. Temporal conformance of web service compositions guaran-
tees the timely execution of service calls, decreases follow-up costs and
increases QoS by avoiding deadline violations. Since it is impossible to
make certain statements about the execution intervals of upcoming web
service executions - mainly due to varying activity durations and hard-
to-predict branching behavior - we propose a probabilistic approach to
model flow structures and temporal information, and show how to vali-
date the temporal conformance of web service compositions.

Keywords: Web Services, Probabilistic Time Management, Choreog-
raphy, Orchestration, Temporal Conformance.

1 Introduction

An essential aspect of web service composition is the conformance of web service
choreographies and the orchestrations which realize a choreography[8]. In inter-
organizational environments the degree of influence on when partners execute
their activities can be rather limited. Therefore, it is quite important to verify
temporal conformance, as it ensures that information is delivered to the right
activity at the right time such that the overall temporal restrictions are satisfied.
This reduces the overall process cost by avoiding deadline violations that trigger
expensive exception handling routines, and increases the quality of service.

Temporal aspects of web services have been studied in [2,3,4]. [2] uses tem-
poral abstractions of business protocols for their compatibility and replaceabil-
ity analysis based on a finite state machine formalism. [3,4] exploit an exten-
sion of timed automata formalism called Web Service Time Transition System
(WSTTS) for modeling time properties of web services. All these approaches
apply deterministic timing concepts, but in real life it is almost impossible to
make certain statements about the future of a process. Two factors contribute
to this uncertainty, varying durations of activities and multiple execution-paths
after conditional nodes. Therefore, we propose a probabilistic temporal concept.

This paper addresses the conformance and verification problem of choreogra-
phies integrating the approaches for temporal conformance checking [9] and prob-
abilistic time management for workflows [10]. We check whether the temporal

D. Ardagna et al. (Eds.): BPM 2008 Workshops, LNBIP 17, pp. 443–454, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

444 J. Eder, H. Pichler, and A. Tahamtan

constraints can be satisfied and provide an a priori execution plan at build-time,
consisting of probabilistic execution intervals for all activities of participating
choreographies and orchestrations, considering structural and temporal restric-
tions.

2 Choreographies and Orchestrations

Web services can be composed by orchestrations and choreographies [7,8,1]. A
choreography is an abstract process that defines the interaction between the par-
ticipants. Partners of a choreography can take part in a choreography through
their (internal) workflow or a view on that workflow, resp. [9]. A choreography
is equally visible to all of its partners and there is no central role in charge of
control. On the other hand, an orchestration is an executable process, owned and
run by one partner. An orchestration is a partner’s private process and solely vis-
ible to its owner. The process logic, communication actions and internal tasks are
defined and executed in an orchestration. A partner can take part in a choreog-
raphy and the parts of the choreography that belong to this partner are realized
in his orchestration. If a partner takes part in more than one choreography, its
orchestration realizes all of its parts in different choreographies.

We model both choreographies and orchestrations as workflows. A workflow
can be represented by a directed acyclic graph G = (N, E) which consists of a set
of nodes n ∈ N and a set of edges n1⇒n2 ∈ E (see also Fig. 1). Each node has
a unique name and a type n.type, which may either be an activity or a control
node (XOR-split, XOR-join, AND-split, AND-join). Edges connect these nodes.

In this work we model the relationship between two nodes in different chore-
ographies or orchestrations by event correspondence. During process execution
each node can be associated with two events: its start event, denoted as ns

and its end event, denoted as ne. e1 ≡ e2 denotes that event e1 corresponds to
event e2. Note that e1 and e2 may belong to nodes of different choreographies
or orchestrations.

a

b

S

c

J d
start end

0.25

0.75
xor-split xor-join

0.25

0.75

a.d={(0.5,1),(0.5,5)}
b.d={(1.0,4)}
c.d={(1.0,8)}
d.d={(1.0,7)}
start.d=s.d=j.d=end.d={(1.0,0)}
deadline={(1.0,20)}

Fig. 1. A simple workflow graph

3 Probabilistic Timed Graph

The probabilistic timed graph (PTG) extends the regular process graph with
explicitly defined and implicitly derived stochastic and temporal information, in
particular a temporal interval for each activity that describes the time frame

Probabilistic Time Management of Choreographies 445

within which an activity can execute, such that no deadline violations occurs.
We provide a brief description of concepts and operations; for further details we
refer to [6,10].

3.1 Time Histograms and Histogram Operations

Temporal information in the PTG, i.e. time points, durations, intervals, and
deadlines, is represented as a multiset of (probability,time)-tuples, called time
histograms [6]. For instance a.d = {(0.15, 10), (0.75, 12), (0.10, 20)} describes the
probability distribution of time values for the duration of an activity a. Time
is given in form of (user defined) chronons which are the smallest indivisible
units of time. Tuples with equal time values are always merged by summing up
their probabilities. For the sake of simplicity we assume that all temporal infor-
mation within these tuples is given in some basic time unit (like seconds). The
histogram addition h1 + h2 generates the cartesian product of the tuples of two
histograms, where probabilities are multiplied and time values are added. The
histogram subtraction h1 − h2 is a variation of the addition, with the difference
that time values of the tuples are subtracted. The histogram (max-)conjunction
also generates the cartesian product. Again probabilities are multiplied, but the
maximum time value of each tuple-combination determines the time value of
the result. A variation of this operation is the min-conjunction which deter-
mines the time value of the resulting tuple by applying a minimum-operation.
The weight-operation, which multiplies all probabilities in a histogram with a
given probability, appears always in combination with the histogram disjunction,
which merges two weighted histograms (followed by an aggregation). Conjunc-
tion and disjunction are commutative and associative and can be extended to k
histograms. The histogram comparison compares two histograms. Unlike discrete
values, two histograms h1 and h2 may partially “overlap”. Thus an expression
like h1 < h2 can be true and false at the same time, each at a certain degree.
The comparison of two histograms h1 ��deg h2 with the comparison-operator
�� ∈ {≤, <, =, >,≥} for a given degree 0 ≤ deg ≤ 1 is evaluated as follows:

h1 ��deg h2 =
{

true : Σp1 ∗ p2 ≥ deg ∧ t1 �� t2, ∀(p1, t1) ∈ h1, ∀(p2, t2) ∈ h2

false : otherwise

3.2 Explicit and Implicit Information

Explicit information is given by the process designer: (i) the process struc-
ture represented as graph G = (N, E), (ii) a duration for each graph-node
n.d represented as time histogram (a control node has always a 0-duration his-
togram {(1.0, 0)}), (iii) a (relative) deadline G.δ for the whole process, and (iv)
a “branching” probability pxs⇒a for each edge between an XOR-split xs and
an activity a; and a probability pb⇐xj for each edge between an activity b and
an XOR-join xj. All stochastic information can be extracted from logs or must
be estimated by an expert. Fig. 1 shows a small sample PTG with the deadline
δ = {(1.0, 20)}.

446 J. Eder, H. Pichler, and A. Tahamtan

Table 1. Forward calculation rules for e-histograms per node type

type of v v.eps = v.epe =

start {(1.0, 0)} v.eps + v.d

end,activity,and-split,or-split pred.epe v.eps + v.d

and-join
∧

max(pred.epe),∀pred ∈ v.Pred v.eps + v.d

or-join
∨

(pred.epe ∗ ppred⇒v),∀pred ∈ v.Pred v.eps + v.d

Implicit Information is based on explicit information: four implicit time con-
straints can be calculated for each node. (i) The earliest possible start (eps)
of an activity, denotes the earliest point in time it may possibly start. In the
simplest case this will be the sum of durations of all nodes between this node
and the start node (transitive predecessors). (ii) The earliest possible end (epe)
identifies the earliest point in time a node may end (= eps + duration). (iii)
The latest allowed end of a node (lae), is the latest point in time a node may
end, such that finishing the whole process within its deadline is still possible!
Basically it is equal to the difference between the (relative) process deadline and
the sum of durations of all nodes between this node and the last node (transitive
successors). (iv) Finally, the latest allowed start (las) is lae minus duration. We
assume that there is no delay between finishing a node and starting its succes-
sor, therefore the eps (lae) of a node will always be equal to the epe (las) of its
predecessor. Furthermore, due to their 0-duration, the eps (lae) and epe (las) of
control nodes will always be equal.

3.3 Calculating the Probabilistic Timed Graph

To determine eps and epe-histograms of every node v the forward calculation
rules specified in table 1 have to be applied to each node in a topological order,
where v.pred denotes the set of predecessor of a node of v. During the calculation
usually the duration-histograms are summed up to determine the according eps
and epe-values, except for join-nodes: here multiple paths converge. Therefore
the histograms must be merged. For AND-joins we use the max-conjunction
as the longest path (or histogram-tuple) determines the resulting tuple. For
XOR-splits we must weight the histograms of predecessors with the according
branching probability before we merge them with the conjunction. Analogously,
to determine las and lae-histograms, backward calculations have to be applied
in a backward topological order. As we reversed the direction, now we apply the
histogram subtraction, starting from the last node (whose lae has been initialized
with the deadline), except for split-nodes. Here we apply the min-conjunction
at AND-splits and weight&disjunction at XOR-joins. Applying these rules on
the process sample in Fig. 1, we get the following results (equal histograms are
caused by 0-durations and the fact that we assume no delay between end of one
and start of the next activity or node):

Probabilistic Time Management of Choreographies 447

Forward Calculation : starting with time point 0

a.eps = start.epe = start.eps = {(1.0, 0)}
b.eps = c.eps = s.epe == a.epe = a.d + a.eps = {(0.5, 1), (0.5, 5)}
b.epe = b.d + b.eps = {(0.5, 5), (0.5, 9)}
c.epe = c.d + b.eps = {(0.5, 9), (0.5, 13)}
j.eps = (b.epe ∗ 0.25) ∨ (c.epe ∗ 0.75) = {(0.125, 5), (0.5, 9), (0.375, 13)}
d.eps = j.epe = j.eps

end.epe = end.eps = d.epe = d.d + d.eps = {(0.125, 12), (0.5, 16), (0.375, 20)}
Backward Calculation : starting with deadline δ = 20

d.lae = end.las = end.lae = {(1.0, δ)}
b.lae = c.lae = j.las = j.lae = d.las = d.lae − d.d = {(1.0, 13)}
b.las = b.lae − b.d = {(1.0, 9)}
c.las = c.lae − c.d = {(1.0, 5)}
s.lae = (b.las ∗ 0.25) ∨ (c.las ∗ 0.75) = {(0.25, 9), (0.75, 5)}
a.lae = s.las = s.lae

start.las = start.lae = a.las = a.lae − a.d = {(0.125, 8), (0.75, 4), (0.125, 0)}

4 Temporal Conformance

Conformance of web service compositions includes different aspects like struc-
tural, dataflow, messaging and temporal conformance. Temporal conformance
ensures that the flow of information and tasks is done in a timely manner, con-
sidering the dependencies between activities, which may reside in different chore-
ographies and orchestrations. In addition it must be checked that no explicitly
assigned deadline is violated.

4.1 The Proposed Approach

Calculation of PTG of choreographies and orchestrations is based on iteratively
delimiting the initial intervals of activities because of implicit and explicit con-
straints. In addition, orchestrations with a link may impose a restriction on the
timed graph because of private (hidden) activities present in them. The imposed
restriction further tightens the interval. Note that a link indicates a choreogra-
phy is (partially) realized by this orchestration. A valid execution interval can
be calculated by taking all affecting factors into account: implicit and explicit
constraints and links with orchestrations. During calculation the conformance
conditions must be always satisfied: eps-histogram of an activity must be less or
equal to its las-histogram and eps+ d must be less or equal to epe (by means of
histogram-comparison).

One important issue to be addressed is the case when one choreography has
multiple realizing orchestrations as depicted in fig. 2. The numbers beside the
arrows show their order of execution. eps or lae-histograms are propagated from
C to O1 (1), after recalculations at O1, they are propagated back to C (2). Note
that propagation may change the the histograms of the target node. This cycle is

448 J. Eder, H. Pichler, and A. Tahamtan

orchestration O1

choreography C

orchestration O2

realizesrea
liz

es

propagate propagate

propagate propagate

affects

(1)

(2)

(3)

(4)

Fig. 2. Realized choreography with multiple incoming links

again repeated for O2 (3,4). If O2 again modifies the histograms of C, the most
recently modified histogram may again impose a restriction on intervals of O1.
In other words, two or more orchestrations with the same realized choreography
may affect each other indirectly. This downward, upward cycle of propagation-
recalculation must be iterated for all realizing orchestrations of a choreography as
long as a “stable” state is reached i.e. no histogram is changed after propagation.
If the histograms of a choreography or orchestration are changed, this change
can be propagated in both directions i.e. to the choreography that it realizes and
to the orchestrations by which it is realized. After such a change all incoming
and outgoing links to other choreographies or orchestrations are marked and the
recalculated histograms are propagated for all links in both directions.

4.2 Methods

Method initialize. This method initializes all e and l-histograms in a given
graph to {(1.0, 0)} and {(1.0,∞)} respectively. The properties a.eps′ and a.lae′,
both initialized with ∅, are used for the propagation of interval restrictions.

Method propagate. This method propagates temporal values from one chore-
ography or orchestration G to another one H , but only if G constrains the
interval [eps,lae] of H . This means that propagation will only occur if eps will
be increased or lae decreased. As we deal with histograms we need a parameter
certainty. It defines the probability (degree) to be applied on histogram com-
parison operations (see also section 3). A 100%-certainty ensures that the com-
pared histograms have no overlapping regions at all, but a very high certainty is
more vulnerable to non-conformance conflicts than lower ones (see method check-
Conformance for further details). The propagated histograms will be stored in
x.eps′ and x.lae′ of an activity x for further usage in subsequent calculations.
The method uses event correspondence for assignment of eps and lae-histograms
from a source to a target activity. The correspondence of the start events are
used for assignment of eps-histograms and the correspondence of end events for
lae-histograms.

Probabilistic Time Management of Choreographies 449

propagate(G, H, certainty)
change := false
for all activities {x ∈ H | ∃a ∈ G : xs ≡ as} in a
topological order {

if x.eps <certainty a.eps
x.eps′ := a.eps
change := true

endif
if x.lae >certainty a.lae

x.lae′ := a.lae
change := true

endif
endfor }

Method calculate. Input-parameters are a choreography or orchestration. This
method is used for pre-calculation of timed graphs as well as for repeated recal-
culations after interval-propagations. Therefore it is a slightly modified version of
the PTG-calculation described in 3 with forward and backward-calculation of eps
and lae-histograms. We had to consider that the execution interval of an activity
a (eps and lae-histogram) may already be constricted due to a prior propagation
from another orchestration/choreography (stored in a.eps′ and a.lae′). If this is
the case we simply merge the calculated histogram with the propagated one.
As this merge has the exactly same semantics as an ordinary AND-structure we
can use the histogram conjunction operation (max for eps, min for lae), which
ensures that the eps-histogram will increase and the lae-histogram will decrease,
hence further restricting the valid interval.

calculate(G)
for all nodes n ∈ N, G = (N, E) in forward topological order {

calculate n.eps according to table 1
if n.type = activity ∧ n.eps′ �= ∅

n.eps := n.eps ∧max n.eps′

n.eps′ = ∅
endif
calculate n.epe according to table 1

endfor }
for all nodes n ∈ N, G = (N, E) in backward topological order {

calculate n.lae according to table 1 (in reverse order)
if n.type = activity ∧ n.lae′ �= ∅

n.lae := n.eps ∧min n.eps′

n.eps′ = ∅
endif
calculate n.las according to table 1 (in reverse order)

endfor }

Method checkConformance. This method checks if the basic conformance
conditions is satisfied: (1) the earliest possible start time of an activity must
always be less or equal than its latest allowed start time eps ≤ las, and (2) the
sum of earliest possible start time and durations must not exceed its earliest

450 J. Eder, H. Pichler, and A. Tahamtan

possible end time eps + d ≤ epe. Otherwise the boolean variable conf is set
to false, which stops the algorithm. This condition must always be met for all
activities of all choreographies and orchestrations. For the same reason as be-
fore, the variable certainty is used for histogram comparison operations (see also
Chapter 3). A 100%-certainty ensures that the compared histograms will have
no overlapping regions at all, but a very high certainty will be more vulnerable to
non-conformance conflicts than lower ones. A relaxed certainty, will allow over-
lapping regions, which might prove useful as it deals with outliers. Furthermore
it is possible to use the certainty as adjusting bolt, to select a strategy, from
very conservative (strict) to risky (which allows more possible violations during
run-time).

checkConformance(G,certainty)
for all activities a ∈ G in a reverse topological order {

if a.eps >certainty a.las
conf := false

elsif a.eps + a.d >certainty a.epe
conf := false

endif
endfor }
return conf

4.3 The Temporal Conformance Checking Algorithm

The algorithm consists of two parts: (1) the initialization and precalculation
phase, and (2) the recalculation and conformance checking phase. Note that the
algorithm needs a certainty-value as input-parameter (the higher this value, the
stricter the conformance check).

In the first phase each choreography in C and each of its realizing orches-
trations are initialized, followed by the calculation of their timed graphs (e and
l-histograms). Note that the value max depicts the explicitly defined maximum
duration for each graph (orchestration or choreography), which is needed to
initialize the according deadline δ (necessary for the backward calculation of
a timed graph). In this phase propagation will only occur between the chore-
ography and its realizing orchestrations (and vice versa). The resulting e and
l-histograms serve as initial values for further calculations.

Each calculation is followed by an initial basic conformance check. The value
of the flag conf signals if temporal conformance can be guaranteed (at least
up to the given certainty-value). The only reason why the check may fail at
this stage is a too tight deadline (caused by a too low maximum duration). A
boolean variable change serves as an indicator if temporal values of a node are
changed. If this variable becomes true all incoming and outgoing links of the
corresponding choreography or orchestration are marked. Start and target node
of each marked link are to be revisited and eventually recalculated in the next
phase. Multiple marks on one edge have no additional effect.

Probabilistic Time Management of Choreographies 451

temporalConformanceFederation(certainty)
- - (1) initialization and precalculation- -
for all ci ∈ C {

conf := true
initialize(ci)
ci.δ := ci.max
calculate(ci)
conf := checkConformance (ci, certainty)
for all realizing orchestrations o of ci in a topological
order {

initialize(o)
change := propagate(ci,o,certainty)
if change = true

o.δ := o.first.eps + o.max
calculate (o,certainty)

endif
change: = propagate(o, ci,certainty)
if change = true

calculate(ci,certainty)
conf := checkConformance(ci,certainty)
mark all incoming and outgoing edges of ci

endif
endfor }

endfor }
if conf = false return false

If basic temporal conformance can be guaranteed, the second phase of the pro-
cedure starts: recalculation and conformance checking. For all marked edges, the
cycle of propagation, recalculation, and conformance-check is repeated until a
stable state is reached or the conformance condition is violated. A stable state
is reached if no edge has a mark on it.

- - (2) recalculation and conformance checking
repeat {

select randomly a marked edge e such that c is the
choreography and o the orchestration

change: = propagate(c, o, certainty)
if change = true

calculate(o,certainty)
conf := checkConformance (o, certainty)
mark all incoming and outgoing edges ∈ o

endif
change: = propagate(o, c, certainty)
if change = true

calculate c
conf := checkConformance (c, certainty)
mark all incoming and outgoing edges ∈ c

endif
unmark e }

until (all edges are unmarked
∨

conf = false)
return conf

452 J. Eder, H. Pichler, and A. Tahamtan

y
start

x.d={(1.0,1)}
b.d={(1.0,4)}
y.d={(1.0,1)}
start.d=end.d={(1.0,0)}
deadline={(1.0,20)}

x

d z
start end

u

d.d={(1.0,7)}
z.d={(1.0,6)}
u.d={(1.0,8)}
start.d=end.d={(1.0,0)}
deadline={(1.0,50)}

b

end

O1:

O2:

Fig. 3. Orchstrations O1 and O2 of figure 2

The following example shows numerically how the conformance checking algo-
rithm works. Because of space limitations we chose a very simple scenario: it
consists of one choreography, realized by two orchestrations (see also fig. 2).
The graph of the choreography C is represented by the graph displayed in fig-
ure 1. The graphs of orchestrations O1 and O2 are illustrated in figure 3. The
choreography is linked to the realizing orchestrations as follows:

– by the corresponding node b, which is one of the conditional nodes in C and
the middle nodes in O1. Both nodes refer to the same activity, and therefore
they have the same duration.

– by the corresponding node d, which is the last activity in C and the first
activity in O2.

– activities a and c in C correspond to further orchestrations which we, for
reasons of simplicity, do not consider here.

For the algorithm we define a very strict certainty = 99%. The first phase
starts with the initialization and calculation of C. The resulting timed graph
has already been calculated in subsection 3.3. Now we initialize the eps and lae-
histograms in O1 (with 0 and ∞ values), followed by the propagation between
corresponding nodes of C and O1 (activity b). Propagation, will only occur, if it
further constrains (narrows) the interval [eps,lae] of O1.b. The method propagate
first checks if O1.b.eps <0.99 C.b.eps; this is the case, therefore we set O1.b.eps′ =
{(0.5, 1), (0.5, 5)}. Analogously we check the lae-histograms: as O1.b.lae >0.99

C.b.lae the method propagate sets the intermediate O1.b.lae′ = {(1.0, 13)}. Now
the calculation of O1 starts as described in method calculate(G) (calculation-
details only for max-conjunction at b.eps and min-conjunction at b.lae):

x.eps = start.epe = start.eps = {(1.0, 0)}
b.eps = x.epe = {(1.0, 1)}
b.eps = b.eps ∧max b.eps′ = {(0.5, 1), (0.5, 5)}
y.eps = b.epe = {(0.5, 1), (0.5, 5)}

end.epe = end.eps = y.epe = {(0.5, 2), (0.5, 6)}
y.lae = end.las = end.lae = {1.0, 20)}
b.lae = y.las = {(1.0, 19)}
b.lae = b.lae ∧min b.lae′ = {(1.0, 13)}
x.lae = b.las = {(1.0, 9)}

start.las = start.lae = x.las = {(0.5, 8), (0.5, 4)}

Probabilistic Time Management of Choreographies 453

In the next step the calculated values must be propagated from O1 to C,
if the according propagation-conditions apply for b.eps and b.lae. None apply,
therefore the timed graph of C does not change! Now the initialization and
precalculation starts for O2. After the initialization, the method propagate sets
O2.d.eps = {(0.125, 5), (0.5, 9), (0.375, 13)} and O2.d.lae = {(1.0, 20)}, and the
subsequent calculation of the probabilistic timed graph yields:

d.eps = start.epe = start.eps = {(1.0, 0)}
d.eps = d.eps ∧max d.eps′ = {(0.125, 5), (0.5, 9), (0.375, 13)}
z.eps = d.epe = {(0.125, 12), (0.5, 16), (0.375, 20)}
u.eps = z.epe = {(0.125, 18), (0.5, 22), (0.375, 26)}

end.epe = end.eps = u.epe = {(0.125, 26), (0.5, 30), (0.375, 34)}

u.lae = end.las = end.lae = {(1.0, 50)}
z.lae = u.las = {(1.0, 42)}
d.lae = z.las = {(1.0, 36)}
d.lae = d.lae ∧min d.lae′ = {(1.0, 20)}

start.las = start.lae = d.las = d.las = {(1.0, 13)}

The reverse propagation – of d from O1 to C – does not change any value
in the timed graph of C. As no further choreographies exist, and no marked
edges are left, the algorithm finishes and returns true. This specific composition
temporally conforms, and no deadline will be violated if the real durations of
activities adhere to the estimated/mined durations. The build-time calculation
is now finished.

4.4 Proof of Termination

We informally prove that the proposed algorithm terminates. The algorithm
terminates in two cases: (1) as the number of edges is finite, a stable state will
be reached in a finite number of steps. Or (2), if such a stable state does not
exist, after a finite number of steps the conformance condition will be violated,
because with each iteration the lae becomes smaller and the eps value greater
until eps >certainty lae, since there is only a finite number of chronons between
time points.

5 Conclusions

Temporal quality criteria play an important role in service compositions and
distributed business processes. In inter-organizational environments the degree
of influence on how and when partners execute their activities is rather reduced.
Therefore it is important to verify temporal conformance at build-time, process
instantiation and during run-time, in order to increase the overall quality of the
whole process. We proposed a stochastic technique to model nested choreogra-
phies and orchestrations, temporal information and temporal constraints. The

454 J. Eder, H. Pichler, and A. Tahamtan

probabilistic time plan delivers valid execution intervals for all activities which
can then be used to verify their temporal conformance. Furthermore, these execu-
tion plans can additionally be monitored at run-time, which allows for predictive
and pro-active time management [5], i.e. to diagnose potential violations of tem-
poral constraints early enough such that counter-measures can still be taken to
guarantee correct executions of the flow.

Acknowledgments. This work is partly supported by the Commission of the
European Union within the project WS-Diamond in FP6. STREP.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2004)

2. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of
web service protocols. In: Proc. of CAiSE Forum (2005)

3. Kazhamiakin, R., Pandya, P., Pistore, M.: Timed modelling and analysis in web
service compositions. In: Proc. of ARES 2006 (2006)

4. Kazhamiakin, R., Pandya, P., Pistore, M.: Representation, verification, and com-
putation of timed properties in web service compositions. In: Proc. of ICWS 2006
(2006)

5. Eder, J., Panagos, E., Rabinovich, M.I.: Time Constraints in Workflow Systems.
In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, p. 286. Springer,
Heidelberg (1999)

6. Eder, J., Pichler, H.: Duration Histograms for Workflow Systems. In: Pro. of IFIP
TC8/WG8.1 Working Conference on Engineering Information Systems in the In-
ternet Context. Kluwer Publishers, Dordrecht (2002)

7. Barros, A., Dumas, M., Oaks, P.: Standards for web service choreography and
orchestration: Status and perspectives. In: Bussler, C.J., Haller, A. (eds.) BPM
2005. LNCS, vol. 3812, pp. 61–74. Springer, Heidelberg (2006)

8. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10),
46–52 (2003)

9. Eder, J., Tahamtan, A.: Temporal Consistency of View Based Interorganizational
Workflows. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) UNISCON
2008. LNBIP, vol. 5, pp. 96–107. Springer, Heidelberg (2008)

10. Eder, J., Pichler, H.: Probabilistic Workflow Management. Technical report, Uni-
versitä Klagenfurt, Institut für Informatik Systeme (2005)

	Probabilistic Time Management of Choreographies
	Introduction
	Choreographies and Orchestrations
	Probabilistic Timed Graph
	Time Histograms and Histogram Operations
	Explicit and Implicit Information
	Calculating the Probabilistic Timed Graph

	Temporal Conformance
	The Proposed Approach
	Methods
	The Temporal Conformance Checking Algorithm
	Proof of Termination

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

