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Abstract

Web Services technology is constantly gaining importance for automation
of business processes. A major contribution of this technology is its integration
capability, i.e. compositions allowing several autonomous but cooperating web
services to implement a business process going beyond the boundaries of a sin-
gle organization. Federated choreographies provide a framework for modular
modeling complex collections of choreographies and orchestrations. In this pa-
per we present a conformance test to check the structural conformance of the
choreographies and orchestration of the proposed model in order to hold the
model structurally consistent. We can formally check whether an orchestra-
tion realizing (one part of) a choreography, resp. two related choreographies
fit together.

1 Introduction

Web services are seen as a key enabling technology for integrating applications
in interorganizational business processes. Web services enable application de-
velopment and integration over the web by supporting interactions within and
across the boundaries of cooperating partner organizations. Web services tech-
nology offers composition through choreographies and orchestrations. A web
service choreography specifies a communication protocol among involved part-
ners. The outcome of the choreography is a virtual process definition viewed
from the global perspective where all partners are treated equally [1]. On the
other hand, web service orchestration refers to an executable process run by
a single partner [2]. Each of the partners involved in a choreography realizes
its own parts of this choreography by its internal orchestration.
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Several partially overlapping and competing standards for Web Service
composition like BPEL4AWS [3], WS-CDL [4], WSCI [5] have been proposed.
They address some aspects of both choreography and orchestration. There is
still a big gap between choreography and orchestration models, i.e. it may be
very difficult to answer whether a given orchestration really realizes a given
choreography. Moreover, a single partner may be involved in several different
choreographies and may have to implement all of its parts in one orchestra-
tion. Therefore, it is important to check whether these choreographies and
orchestrations that implement them conform to each other.

In [6] we have proposed a consistent and integrated view on both chore-
ographies and orchestrations and their mutual relationships. Several chore-
ographies may be combined into a more complex federated choreography.
Our federated choreographies and orchestrations are more flexible than typi-
cal compositional approaches used in proposals like WS-CDL. In this work we
present a procedure to check the structural conformance of federated chore-
ographies and orchestrations. The main contribution of this paper is introduc-
tion of an algorithm for checking the inter- and intra-layer conformance of the
proposed model which ensures the structural conformance of choreographies
and orchestrations.

This paper is structured as follows. We start by presenting the metamodel
we have proposed to model choreographies and orchestrations ( Section 2). We
then discuss and explain the need for structural conformance of the model. Af-
ter formal representation of the concepts, we propose an algorithm for checking
the conformance (Section 3). Finally, we draw some conclusions.

2 Federated Choreographies

A typical scenario for web service composition assumes one choreography
shared among several partners and a set of private orchestrations (one for
each partner) [1, 2, 7]. Each partner sees the same global choreography and
no partner has control over the choreography which defines only the message
exchange protocol. On the other hand, private orchestration of each partner
realizes only those parts of the protocol which belong to this partner in the
choreography.

This picture misses an important facet that a partner involved in one
choreography may also take part in other choreographies which is not visible
to the other participants of the first choreography, however essential for the
overall process. For example, when shopping online we take part in a choreog-
raphy where we know the following partners and steps: we order something at
a seller, pay by a credit card and expect to receive the items from a shipper.
At the same time the seller takes part in several other choreographies which
are not visible to us, e.g. the seller and the credit card company are involved
in a process of handling payment. Furthermore, the seller and the shipper
realize another protocol they agreed upon containing other tasks like money
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Fig. 1. Federated choreographies

transfer from seller’s bank to the shipper for balancing shipment charges. All
these choreographies overlap in some parts but cannot be composed into a
single global choreography. Moreover, such choreographies must be realized
by orchestrations of partners that take part in them. In the above example
the seller implements an orchestration enacting different interaction protocols
with the buyer, shipper and the credit card company.

We have proposed a new approach where existing choreographies can be
combined into a federated choreography and extended according to the need.
The idea of federated choreographies is presented in Fig. 1. It has two layers.
The first layer consists of federated choreographies shared between differ-
ent partners, e.g. a Purchase processing choreography shared between Buyer,
Seller, and Shipper. A choreography may support another choreography. This
means the former contributes to the latter and partially elaborates it. The
second layer consists of orchestrations that realize the choreographies. Each
partner provides its own internal realization of relevant parts of the according
choreographies, e.g. the Seller has an orchestration which realizes its part in
all three choreographies.

We treat both choreographies and orchestrations as workflows. This is re-
flected in our metamodel in Fig. 2. Here we describe only the most important
parts of the model. For the complete metamodel and a detailed discussion
the reader is referred to [6, 8, 9]. The metamodel provides a coherent view on
both choreographies and orchestrations and their mutual relationships, bridg-
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Fig. 2. Metamodel for Federated Choreographies

ing the gap between abstract and executable processes. The activities of one
choreography are solely visible to the participatig partners of this choregra-
phy. Choreographies orchestrations can share the same activities. An activity
visible in one choreography can be extended by its relationships with other
activities in a federated choreography and have a complex implementation
described in an orchestration. Thus, choreographies and orchestrations can
be viewed on different levels of detail and in context of different relationships.

Choreographies and orchestrations can be composed out of activities by
means of typical workflow control structures like parallel or conditional com-
plex activities. A complex activity is used to abstract and hide process str-
cutures. A choreography is realized by several , at least two, orchestrations
owned by involved partners and a single orchestration realizes parts of one
or more choreographies. Choreographies can be federated into more complex
ones. An activity is represented in a given workflow definition by an activ-
ity step. Control steps represent control structures like parallel or conditional
split/join.

A control flow of a workflow model can graphically be represented as a
directed graph with two kinds of nodes corresponding to activity steps and
control steps. Edges represent the transitions between steps. In the rest of
this work Workflow-Nets (WF-nets) [10] as the modeling language for both
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choreographies and orchestrations are used. For a discussion on how a graph
representation can be mapped to WF-net refer to [6].

The WF-Net of the Purchase processing choreography in Fig. 1 is depicted
in Fig. 3. The Seller upon receiving a request quote from the Buyer answers
if the requested item is deliverable. If the Buyer’s request is approved by the
Seller, the Buyer places an order, the Seller processes the order and forwards
the shipment details to the Shipper. The Shipper ships the products to the
Buyer and informs the seller about the details. The Seller upon receipt of
information sends the bill to the Buyer. When the Buyer has received both
the bill and the ordered goods, makes the payment to the Seller. The process
terminates upon receipt of the payment by the Seller.

This choreography involves interactions between the Buyer and the Seller,
the Seller and the Shipper and the Buyer and the Shipper. Each of them can
be described by a separate choreography. Existing proposals allow to combine
several choreographies only by means of composition [4, 11] where existing
choreography definitions can be reused and recursively combined into more
complex choreographies. But we claim that a relationship between choreogra-
phies can be more complex than that. In our example the interaction between
the Seller and the Shipper includes not only the passing of shipment details
from the Seller to the Shipper but also payment of shipment charges through
the Seller’s bank. This is described by a separate choreography between Seller,
Shipper and Bank. This choreography, illustrated in Fig. 4, has additional ac-
tivities and partners which are not visible to the Buyer. This choreography
supports the Purchase processing choreography and partially elaborates the
interaction between the Seller and Shipper. The advantage of our approach
is that each partner only knows those parts of the interaction which address
this partner, hence avoiding unnecessary information. Besides partners can
keep their interaction with other organizations private, invisible to other non-
involved partners, which improves protection of business secrecy.

3 Conformance Test

The key requirement of the model is the inter- and intra-layer conformance
and consistency. This requires conformance of realizing orchestrations with
the choreographies (inter-layer), as well as conformance of supporting and
supported choreographies with each other in the choreography layer (intra-
layer). Intuitively, the notion of conformance indicates that supporting chore-
ographies and realizing orchestrations must violate none of the requirements
of the choreographies they support or realize. Such choreographies and orches-
trations are an extended subset of the supported choreography. This means
they can not change the order of execution of the activities defined in the
supported choreography nor define any alternative for activities as at run
time the alternative activity and not the originally defined activity can be



J. Eder, M. Lehmann, A. Tahamtan

tsd

passasoid
j8p diyg

19p diys
$5a0044

panlesal
18p diyg

J8p diys
anj@nay

1alles
wiopU|

pauLojul
FLIIEE

spoob diys

1
oy paijagal

puz ()

! BABIaY swled

-

apew juswfey  juawded ayey b

d

awied
anlanay

panisday

Lal®

paAiasa) i

speob g

|lgq 8aleday

ird

peniadal g

paddiys oju| VC V
Spoon i pusg wssii
juas -
ep diys ep diys pueg

passasoad sapiQ

paAladsal Spoog
spoob anladay

paoejd
18pIg

seddiyg

O

paaosddy pejoefey

J8pJo sS830.d ispio
aseld
ynsas panl@oal ynsay
puag
O =0 »{] unses oniovan
juas jnsay
pajaalal ysenboey pancudde ysanbay
1sanbad Joaley jsenbals eacaddy
oN CEYN
pajsanbas ajonb
sjonp 1sanbay
passasoid 3sanbay
Helg
jsenbai sseso0id
19]188 1afng

Fig. 3. The WF-Net of Purchase processing choreography in Fig. 1
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Fig. 4. The Shipment processing choreography between Seller, Bank and the Shipper

executed which is an obvious violation of the requirements of the supported
choreography.

For example as depicted in Fig. 1 the Shipment processing choreography
supports the choreography responsible for Purchase processing. As illustrated
in Fig. 3, the Seller orders the shipment after the Buyer has placed an or-
der. The choreography between Buyer and Seller in the Shipment processing
choreography (Fig. 4) and their orchestrations must be designed in such a way
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that their executions do not lead to skip of the tasks defined in the Purchase
processing choreography e.g. no shipment order or shipment details are sent to
the Shipper after receipt of the order by the Seller. In the following subsection
we formalize the notion of conformance using projection inheritance [12, 13]
based on branching bisimulation [14, 15] as equivalence relation.

3.1 Basic Definitions

Petri nets [10, 16, 17] and their subclasses are a convenient modeling language
for workflows and workflow based applications and are widely used and vastly
studied in the literature. It is supported by many tools and applications as a
highly expressive language with a well-defined structure.

Definition 1. A WF-Net is a Petri Net N with the following additional prop-
erties:

e N has a special place i whose preset is empty. We call this place input
place.

e N has a special place o whose postset is empty. We call this place output
place.

o Any node x € (PJT) is on a path from input place to output place, i.e.
there is no dangling node. Where P is the set of places and T the set of
transitions.

For comparison of behavior of two WF-Nets, we need an equivalence re-
lation stating if two WF-Nets possess behavioral equivalence i.e. they exhibit
the same observable behavior. For this aim we use branching bisimulation. The
notion of branching bisimulation has been introduced in [14, 15]. Other equiv-
alence relations, e.g. observational equivalence, are also defined. For a detailed
discussion on other notions of equivalence please refer to [18, 19, 20, 21, 22].
Branching bisimulation as a generalization of the theory of bisimulation has
gained popularity in the computer science community. In process algebra the
notion of abstraction [23] provides a mean for making actions unobservable
or hiding them. The abstraction operator renames the label of actions to the
label 7. A 7-labeled action is called a silent action or synonymously hidden
action or internal action in the literature. A silent action is invisible from
outside and cannot be recognized since it is hidden from the external observer
and has no external effect. All other actions are external actions and visible.
Assume A is the set of actions, we define A, = A J{7}

Before formalizing the branching bisimulation we need one auxiliary def-
inition. The notation p ——q means that state p evolves to the state q by
performing the action a.

Definition 2. A binary relation R C II x Ilis a branching bisimulation:
Vp,pl,q,q' € I, € A &

PR\ p——pt = (=7 ApRq) Vg, g1 € 11 = q — qi1——qt \ pRa1t \ prRar),
PRIN ¢ @t = ((a =7 ApRa1) \ (3pt, prr € IT = p v pir —pt \ piiRg \ p/Rar),
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Two processes p and q are branching bisimilar, denoted p = q, iff there
exists a branching bisimulation relationship between p and q.

In [24] has been shown that branching bisimulation is an equivalence re-
lation. We use this equivalence relation to test if the different layers of our
federated choreographies comply and fit together.

Essentially the participating partners are autonomous organizations that
may have existing workflows for their orchestrations as well as for their inter-
actions with other organizations and they favor to use the existing workflows
instead of designing new ones from scratch and integrate them in the orga-
nization. It is pivotal to ensure that utilization of these orchestrations and
choreographies lead to no conflict with other choreographies and orchestra-
tions. In order to check if two workflows, choreographies or orchestrations,
are conformant we use the notion of projection inheritance. This concept and
other notions of inheritance and the relationship among them and to branch-
ing bisimulation have been defined in [12, 13].

Definition 3. Projection inheritance states that ”If it is not possible to dis-
tinguish the behaviors of © and y when arbitrary tasks of x are executed, but
when only the effects of tasks that are also present in y are considered, then x
s a subclass of y.”

Assume W, and W, are two choreographies, modeled as WF-Nets, and
W4 has a link to W, i.e. W}, supports or realizes W,. Wj, comprises a set of
methods some of which are internal and not included in W, and W, includes
actions that are not interesting for W;. These actions can be made invisible
using the abstraction operator. In order to decide which actions of W, shall
be made invisible we need to define the Greatest Common Divisor of W, and
Ws.

Definition 4. The Greatest Common Divisor of two WF-Nets are parts of
the nets that two nets have in common, denoted GC Dy, w, .

We define W1, = W, — GCDw, w,, this is the methods of W, that are
not included in GCDw, w,. Let 71 (W1,) be the corresponding net after ap-
plication of abstraction operator on methods of W/,. W} is conformant with
W,, if and only if its visible behavior has a branching bisimulation relation to
the 7, (W1,) . Groote and Vaandrager in [25] have introduced an algorithm by
which in polynomial time is decidable if two processes are branching bisimi-
lar. This algorithm has time complexity O(n.(n +m)) and space complexity
O(n + m), where n is the number of states and m the number of transitions.

Conformance Algorithm

Let W,, W), be two WF-Nets such that there is a link between W,, W} and
Wy, supports or realizes W, . In order to decide if federated choreographies are
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conformant it must be checked that all choreographies and orchestrations that
are linked to another choreography are conformant.
1: For all links in the model s.t. W}, supports or realizes W, {
2: compute GC'Dw, w, and subsequently W7,
3: compute 71 (W1,), i.e. apply abstraction operator to all methods of
Wi, of W,
4: compute if W is a subclass of 71 (W/,) under projection inheritance.
If such a relationship does not exist the federated choreographies are
not conformant and the algorithm terminates otherwise it is
conformant.
5: endfor }

The algorithm iteratively takes two supporting and supported choreogra-
phies (Intra-layer conformance) or realizing orchestration and realized chore-
ography (inter-layer conformance) and computes their GCD by comparing
the name keys of the activities. It then computes the relevant parts of the
supported or realized choreography by computing which of its activities are
not contained in the GC'D and applying the abstraction operator on them.
Finally the algorithm decides the subclass relationship between the relevant
parts of the supported or realized choreography with the supporting chore-
ography or realizing orchestration. There are some tools that based on the
algorithm in [25] by an enumerative approach can decide if a WF-Net is a
subclass of another WF-net under projection inheritance among other in-
heritance definitions. For example Woflan [26] can be used for deciding the
subclass relationship between two WF-Nets. Fig. 3 depicts the Purchase pro-
cessing choreography and Fig. 4 the Shipment processing choreography. As
illustrated in Fig. 1 the Shipment processing choreography supports the Pur-
chase processing choreography. In order to check if Shipment processing chore-
ography is conformant with the Purchase processing choreography the relevant
parts of the Purchase processing choreography (the supported choreography)
as described in the algorithm shall be extracted and be checked if the Ship-
ment processing choreography (the supporting choreography) is its subclass
under projection inheritance. Fig. 5 illustrates the relevant parts of the Pur-
chase processing choreography for the Shipment processing choreography. The
inter-layer conformance of the model, e.g. between the Purchase processing
Choreography and the Seller’s orchestration can be done in the same manner.
For this the relevant parts of the Purchase processing choreography this time
for the Seller’s orchestration must be computed and checked if the subclass re-
lationship under projection inheritance exists. Note that this algorithm checks
the structural conformance of the model and other consistency issues e.g. data
flow consistency and messaging consistency are out of scope of this work.
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Fig. 5. Relevant parts of the Purchase processing choreography for the Shipment
processing choreography

4 Conclusions

Federated choreographies aim at modularizing web service choreographies.
Federations can be built top-down - applying the famous ”divide and con-
quer” paradigm - or they can be built bottom-up, re-using existing chore-
ographies for the construction or negotiation of larger choreographies. The
metamodel we propose supports all these usages. The automated checking
of conformance between choreographies and also orchestrations can be used
for federations built top-down as well as for those built bottom-up. Design
principles and processes for both ways of constructing choreographies which
guarantee conformance are subject of ongoing research. The modular view
is expected to care for the subtle visibility and information and process hid-
ing vs. exposing needs characteristic for interoperability between enterprizes.
The modeling concepts introduced are intended for an improved considera-
tion of these complex distribution of information. The distributed (maybe
even scattered) choreography models are difficult to comprehend. Therefore,
the automatic control of conformance between the modules should be a major
enabler for practically using the proposed federated architecture.
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