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C H A P T E R  1 
F o u n d a t i o n  f o r  a  S c i e n c e  
o f  D a t a  V i s u a l i z a t i o n  

In his book The End of Science, science writer John Horgan (1997) argues that science is 
finished except for the mopping up of details. He makes a good case where physics is con- 
cerned. In that discipline, the remaining deep problems may involve generating so much energy 
as to require the harnessing of entire stars. Similarly, biology has its foundations in DNA and 
genetics and is now faced with the infinite but often tedious complexity of mapping genes into 
proteins through intricate pathways. 

What Horgan fails to recognize is that cognitive science has fundamental problems that are 
still to be solved. In particular, the mechanisms of the construction and storage of knowledge 
remain open questions. He implicitly adopts the physics-centric view of science, which holds that 
physics is the queen of sciences, and in descending order come chemistry, then biology, with 
psychology barely acknowledged as a science at all. In this pantheon, sociology is regarded as 
somewhere on a par with astrology. This attitude is short-sighted. Chemistry builds on physics, 
enabling our understanding of materials; biology builds on chemistry, enabling us to understand 
the much greater complexity of living organisms; and psychology builds on neurophysiology, 
enabling us to understand the processes of cognition. At each level is a separate discipline greater 
in complexity and level of difficulty than those beneath. It is difficult to conceive of a value scale 
for which the mechanisms of thought are not of fundamentally greater interest and importance 
than the interaction of subatomic particles. 

Those who dismiss psychology as a pseudo-science have not being paying attention. Over 
the past few decades, enormous strides have been made in identifying the brain structures and 
cognitive mechanisms that have enabled humans to create the huge body of knowledge that now 
exists. But we need to go one step further and recognize that people with machines, and in groups, 
are much more cognitively powerful than a single person alone with his or her thoughts. This 
has been true for a long time. Artifacts such as paper, writing, and geometry instruments have 
been cognitive tools for centuries. It is not necessary to take the cultural relativists' view to see 
that sciences are built using socially constructed symbol systems. The review process employed 
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by scientific journals is an obvious example of a social process critical to the construction of 
knowledge. 

As Hutchins (1995) so effectively pointed out, thinking is not something that goes on entirely, 
or even mostly, inside people's heads. Little intellectual work is accomplished with our eyes 
and ears closed. Most cognition is done as a kind of interaction with cognitive tools, pencils 
and paper, calculators, and increasingly, computer-based intellectual supports and information 
systems. Neither is cognition mostly accomplished alone with a computer. It occurs as a process 
in systems containing many people and many cognitive tools. Since the beginning of science, dia- 
grams, mathematical notations, and writing have been essential tools of the scientist. Now we 
have powerful interactive analytic tools, such as MATLAB, Maple, Mathematica, and S-PLUS, 
together with databases. The entire fields of genomics and proteomics are built on computer 
storage and analytic tools. The social apparatus of the scl~ool system, the university, the acade- 
mic journal, and the conference are obviously designed to support cognitive activity. 

But we should not consider classical science only. Cognition in engineering, banking, busi- 
ness, and the arts is similarly carried out through distributed cognitive systems. In each case, 
"thinking" occurs through interaction between individuals, using cognitive tools, and operating 
within social networks. Hence, cognitive systems theory is a much broader discipline than psy- 
chology. This is emerging as the most interesting, difficult, complex, yet fundamentally the most 
important, of sciences. 

Visualizations have a small but crucial and expanding role in cognitive systems. Visual dis- 
plays provide the highest bandwidth channel from the computer to the human. We acquire more 
information through vision than through all of the other senses combined. The 20 billion or so 
neurons of the brain devoted to analyzing visual information provide a pattern-finding mecha- 
nism that is a fundamental component in much of our cognitive activity. Improving cognitive 
systems often means tightening the loop between a person, computer-based tools, and other indi- 
viduals. On the one hand, we have the human visual system, a flexible pattern finder, coupled 
with an adaptive decision-making mechanism. On the other hand are the computational power 
and vast information resources of the computer and the World Wide Web. Interactive visualiza- 
tions are increasingly the interface between the two. Improving these interfaces can substantially 
improve the performance of the entire system. 

Until recently, the term visualization meant constructing a visual image in the mind (Shorter 
Oxford English Dictionary, 1972) It has now come to mean something more like a graphical 
representation of data or concepts. Thus, from being an internal construct of the mind, a visu- 
alization has become an external artifact supporting decision making. The way visualization func- 
tions as cognitive tools is the subject of this book. 

One of the greatest benefits of data visualization is the sheer quantity of information that 
can be rapidly interpreted if it is presented well. Figure 1.1 shows a visualization derived from 
a multibeam echo sounder scanning part of Passamoquoddy Bay, between Maine, in the United 
States, and New Brunswick, Canada, where the tides are the highest in the world. Approximately 
one million measurements were made. Traditionally, this kind of data is presented in the form 
of a nautical chart with contours and spot soundings. However, when the data is converted to a 
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Figure 1.1 Passamoquoddy Bay visualization. Data courtesy o f  the Canadian Hydrographic Service. 

height field and displayed using standard computer graphics techniques, many things become 
visible that were previously invisible on the chart. A pattern of features called pockmarks can 
immediately be seen, and it is easy to see how they form lines. Also visible are various problems 
with the data. The linear ripples (not aligned with the pockmarks) are errors in the data because 
the roll of the ship that took the measurements was not properly taken into account. 

The Passamoquoddy Bay image highlights a number of the advantages of visualization: 

Visualization provides an ability to comprehend huge amounts of data. The important 
information from more than a million measurements is immediately available. 

Visualization allows the perception of emergent properties that were not anticipated. In 
this visualization, the fact that the pockmarks appear in lines is immediately evident. The 
perception of a pattern can often be the basis of a new insight. In this case, the 
pockmarks align with the direction of geological faults, suggesting a cause. They may be 
due to the release of gas. 

Visualization often enables problems with the data itself to become immediately apparent. 
A visualization commonly reveals things not only about the data itself, but about the way 
it is collected. With an appropriate visualization, errors and artifacts in the data often 
jump out at you. For this reason, visualizations can be invaluable in quality control. 

Visualization facilitates understanding of both large-scale and small-scale features of the 
data. It can be especially valuable in allowing the perception of patterns linking local 
features. 
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Visualization facilitates hypothesis formation. For example, the visualization in Figure 1.1 
was directly responsible for a research paper concerning the geological significance of the 
pockmark features (Gray et al., 1997). 

This first chapter has the general goal of defining the scope of a science of visualization based 
on perceptual principles. Much of it is devoted to outlining the intellectual basis of the endeavor 
and providing an overview of the kinds of experimental techniques appropriate to visualization 
research. In the latter half of the chapter, a brief overview of human visual processing is intro- 
duced to provide a kind of road map to the more detailed analysis of later chapters. The chapter 
concludes with a categorization of data. It is important to have a conception of the kinds of data 
we may wish to visualize so that we can talk in general terms about the ways in which whole 
classes of data should be represented. 

V i s u a l i z a t i o n  S t a g e s  
The process of data visualization includes four basic stages, combined in a number of feedback 
loops. These are illustrated in Figure 1.2. 
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Figure 1.2 A schematic diagram of the visualization process. 
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The four stages consist of: 

The collection and storage of data itself 

The preprocessing designed to transform the data into something we can understand 

The display hardware and the graphics algorithms that produce an image on the screen 

The human perceptual and cognitive system (the perceiver) 

The longest feedback loop involves gathering data. A data seeker, such as a scientist or a 
stock-market analyst, may choose to gather more data to follow up on an interesting lead. 
Another loop controls the computational preprocessing that takes place prior to visualization. 
The analyst may feel that if the data is subjected to a certain transformation prior to visualiza- 
tion, it can be persuaded to give up its meaning. Finally, the visualization process itself may be 
highly interactive. For example, in 3D data visualization, the scientist may fly to a different 
vantage point to better understand the emerging structures. Alternatively, a computer mouse may 
be used interactively, to select the parameter ranges that are most interesting. Both the physical 
environment and the social environment are involved in the data-gathering loop. The physical 
environment is a source of data, while the social environment determines in subtle and complex 
ways what is collected and how it is interpreted. 

In this book, the emphasis is on data, perception, and the various tasks to which visualiza- 
tion may be applied. In general, algorithms are discussed only insofar as they are related to 
perception. The computer is treated, with some reservations, as a universal tool for producing 
interactive graphics. This means that once we figure out the best way to visualize data for a 
particular task, we assume that we can construct algorithms to create the appropriate images. 
The critical question is how best to transform the data into something that people can 
understand for optimal decision making. Before plunging into a detailed analysis of human per- 
ception and how it applies in practice, however, we must establish the conceptual basis for the 
endeavor. 

The purpose of this discussion is to stake out a theoretical framework wherein claims about 
visualizations being "visually efficient" or "natural" can be pinned down in the form of testable 
predictions. 

E x p e r i m e n t a l  S e m i o t i c s  B a s e d  o n  P e r c e p t i o n  
This book is about the science of visualization, as opposed to the craft or art of visualization. 
But the claim that visualization can be treated as a science may be disputed. Let's look at the 
alternative view. Some scholars argue that visualization is best understood as a kind of learned 
language and not as a science at all. In essence, their argument is that visualization is about dia- 
grams and how they can convey meaning. Generally, diagrams are held to be made up of symbols, 
and symbols are based on social interaction. The meaning of a symbol is normally understood 
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to be created by convention, which is established in the course of person-to-person communica- 
tion. Diagrams are arbitrary and are effective in much the same way as the written words on 
this page are effective-we must learn the conventions of the language, and the better we learn 
them, the clearer that language will be. Thus, one diagram may ultimately be as good as another; 
it is just a matter of learning the code, and the laws of perception are largely irrelevant. This 
view has strong pl~ilosophical proponents from the field of semiotics. Although it is not the posi- 
tion adopted here, the debate can help us define where vision research can assist us in designing 
better visualizations, and where we would be wise to consult a graphic designer trained in an art 
college. 

Semiotics of Graphics 
The study of symbols 'and how they convey meaning is called semiotics. This discipline was orig- 
inated in the United States by C.S. Peirce and later developed in Europe by the French philoso- 
pher and linguist Ferdinand de Saussure (1959). Semiotics has been dominated mostly by 
philosophers and by those who construct arguments based on example rather than on formal 
experiment. In his great masterwork, Semiology of Graphics, Jacques Bertin (1983) attempted 
to classify all graphic marks in terms of how they could express data. For the most part, this 
work is based on his own judgment, although it is a highly trained and sensitive judgment. There 
are few, if any, references to theories of perception or scientific studies. 

It is often claimed that visual languages are easy to learn and use. But what do we mean by 
the term visual language-clearly not the writing on this page. Reading and writing take years 
of education to master, and it can take almost as long to master some diagrams. Figure 1.3 shows 
three examples of languages that have some claim to being visual. The first example of visual 
language is based on a cave painting. We can readily interpret human figures and infer that the 
people are using bows and arrows to hunt deer. The second example is a schematic diagram 
showing the interaction between a person and a computer in a virtual environment system; the 
brain in the diagram is a simplified picture, but it is a part of the anatomy that few have directly 
perceived. The arrows show data flows and are arbitrary conventions, as are the printed words. 
The third example is the expression of a matllematical equation that is utterly obscure to all but 
the initiated. These examples clearly show that some visual languages are easier to "read" than 
others. But why? Perhaps it is simply that we have more experience with the kind of pictorial 
image shown in the cave painting and less with the mathematical notation. Perhaps the concepts 
expressed in the cave painting are more familiar than those in the equation. 

The most profound threat to the idea that there can be a science of visualization originates 
with Saussure. He defined a principle of arbitrariness as applying to the relationship between the 
symbol and the thing that is signified. Saussure was also a founding member of a group of struc- 
turalist philosophers and anthropologists who, although they disagreed on many f~~ndamental 
issues, were unified in their general insistence that truth is relative to its social context. Meaning 
in one culture may be nonsense in another. A trash can as a visual symbol for deletion is mean- 
ingful only to those who Itnow how trash cans are used. Thinkers such as LCvi-Strauss, Barthes, 
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Figure 1.3 Three graphics. Each could be said t o  be a visualization. 
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and Lacan have condemned the cultural imperialism and intellectual arrogance implicit in apply- 
ing our intellects to characterizing other cultures as "primitive." As a result, they have developed 
the theory that all meaning is relative to the culture. Indeed, meaning is created by society. They 
claim that we can interpret another culture only in the context of our own culture and using 
the tools of our own language. Languages are conventional means of communication in which 
the meanings of symbols are established through custom. Their point is that no one representa- 
tion is "better" than another. All representations have value. All are meaningful to those who 
understand them and agree to their meanings. Because it seems entirely reasonable to consider 
visualizations as communications, their argument strikes at the root of the idea that there can 
be a natural science of visualization with the goal of establishing specific guidelines for better 
representations. 

Pictures as Sensory Languages 
The question of whether pictures and diagrams are purely conventional, or are perceptual 
symbols with special properties, has been the subject of considerable scientific investigation. A 
good place to begin reviewing the evidence is the perception of pictures. There has been a debate 
over the last century between those who claim that pictures are every bit as arbitrary as words 
and those who believe that there may be a measure of similarity between pictures and the things 
that they represent. This debate is crucial to the theory presented here; if even "realistic" pic- 
tures do not embody a sensory language, it will be impossible to make claims that certain dia- 
grams and other visualizations are better designed perceptually. 

The nominalist philosopher Nelson Goodman has delivered some of the more forceful attacks 
on the notion of similarity in pictures (1968): 

Realistic representation, in brief, depends not upon imitation or illusion or information 
but upon inculcation. Almost any picture may represent almost anything; that is, given 
picture and object there is usually a system o f  representation-a plan of correlation- 
under which the picture represents the object. 

For Goodman, realistic representation is a matter of convention; it "depends on how stereotyped 
the model of representation is, how commonplace the labels and their uses have become." 
Bieusheuvel (1947) expresses the same opinion: "The picture, particularly one printed on paper, 
is a highly conventional symbol, which the child reared in Western culture has learned to inter- 
pret." These statements, taken at face value, invalidate any meaningful basis for saying that a 
certain visualization is fundamentally better or more natural than another. This would mean that 
all languages are equally valid and that all are learned. If we accept this position, the best 
approach to designing visual languages would be to establish graphical conventions early and 
stick to them. It would not matter what the conventions were, only that we adhered to them in 
order to reduce the labor of learning new conventions. 

In support of the nominalist argument, a number of anthropologists have reported expres- 
sions of puzzlement from people who encounter pictures for the first time. "A Bush Negro woman 
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turned a photograph this way and that, in attempting to make sense out of the shadings of 
gray on the piece of paper she held" (Herskovits, 1948). The evidence related to whether or 
not we must learn to see pictures has been carefully reviewed and analyzed by Kennedy 
(1974). He rejects the strong position that pictures and other visual representations are entirely 
arbitrary. In the case of the reported puzzlement of people who are seeing pictures for the 
first time, Kennedy argues that these people are amazed by the technology rather than unable 
to interpret the picture. After all, a photograph is a remarkable artifact. What curious person 
would not turn it over to see if, perhaps, the reverse side contains some additional interesting 
information? 

Here are two of the many studies that contradict the nominalist position and suggest that 
people can interpret pictures without training. Deregowski (1968) reported studies of adults and 
children, in a remote area of Zambia, who had very little graphic art. Despite this, these people 
could easily match photographs of toy animals with the actual toys. In an extraordinary but very 
different kind of experiment, Hochberg and Brooks (1962) raised their daughter nearly to the 
age of two in a house with no pictures. She was never read to from a picture book and there 
were no pictures on the walls in the house. Although her parents could not completely block the 
child's exposure to pictures on trips outside the house, they were careful never to indicate a 
picture and tell the child that it was a representation of something. Thus, she had no social input 
telling her that pictures had any kind of meaning. When the child was finally tested, she had a 
reasonably large vocabulary, and she was asked to identify objects in line drawings and in black- 
and-white photographs. Despite her lack of instruction in the interpretation of pictures, she was 
almost always correct in her answers. 

However, the issue of how pictures, and especially line drawings, are able to unambiguously 
represent things is still not fully understood. Clearly, a portrait is a pattern of marks on a page; 
in a physical sense, it is utterly unlike the flesh-and-blood person it depicts. The most probable 
explanation is that at some stage in visual processing, the pictorial outline of an object and the 
object itself excite similar neural processes (Pearson et al., 1990). This view is made plausible by 
the ample evidence that one of the most important products of early visual processing is the 
extraction of linear features in the visual array. These may be either the visual boundaries of 
objects or the lines in a line drawing. The nature of these mechanisms is discussed further in 
Chapter 6. 

Although we may be able to understand certain pictures without learning, it would be a 
mistake to underestimate the role of convention in representation. Even with the most realistic 
picture or sculpture, it is very rare for the artifact to be mistaken for the thing that is represented. 
Trompe l'oeil art is designed to Lcfool the eye" into the illusion that a painting is real. Artists are 
paid to paint pictures of niches containing statues that look real, and sometimes, for an instant, 
the viewer will be fooled. On a more mundane level, a plastic laminate on furniture may contain 
a photograph of wood grain that is very difficult to tell from the real thing. But in general, a 
picture is intended to represent an object or a scene; it is not intended to be mistaken for it. Many 
pictures are highly stylized-they violate the laws of perspective and develop particular methods 
of representation that no one would call realistic. 
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Figure 1.4 Two different graphical methods for showing relationships between entities. 

When we turn to diagrams and nonpictorial visualizations, it is clear that convention must 
play a greater role. Figure 1.3(b) is not remotely "like" any scene in the real world under any 
system of measurement. Nevertheless, we can argue that many elements in it are constructed in 
ways that for perceptual reasons make the diagram easy to interpret. The lines that connect the 
various components, for example, are a notation that is easy to read, because the visual cortex 
of the brain contains mechanisms specifically designed to seek out continuous contours. Other 
possible graphical notations for showing connectivity would be far less effective. Figure 1.4 shows 
two different conventions for demonstrating relationships between entities. The connecting lines 
on the left are much more effective than the symbols on the right. 

Sensory versus Arbitrary Symbols 
In this book, the word sensory is used to refer to symbols and aspects of visualizations that derive 
their expressive power from their ability to use the perceptual processing power of the brain 
without learning. The word arbitrary is used to define aspects of representation that must be 
learned, because the representations have no perceptual basis. For example, the written word 
dog bears no perceptual relationship to any actual animal. Probably very few graphical languages 
consist of entirely arbitrary conventions, and probably none is entirely sensory. However, the 
sensory-versus-arbitrary distinction is important. Sensory representations are effective (or mis- 
leading) because they are well matched to the early stages of neural processing. They tend to be 
stable across individuals, cultures, and time. A cave drawing of a hunt still conveys much of its 
meaning across several millennia. Conversely, arbitrary conventions derive their power from 
culture and are therefore dependent on the particular cultural milieu of an individual. 

The theory of sensory languages is based on the idea that the human visual system has 
evolved as an instrument to perceive the physical world. It rejects the idea that the visual system 
is a truly universal machine. It was once widely held that the brain at birth was an undifferen- 
tiated neural net, capable of configuring itself to perceive in any world, no matter how strange. 
According to this theory, if a newborn human infant were to be born into a world with entirely 
different rules for the propagation of light, that infant would nevertheless learn to see. Partly, 
this view came from the fact that all cortical brain tissue looks more or less the same, a uniform 
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pinkish gray, so it was thought to be functionally undifferentiated. This tabula rasa view has 
been overthrown as neurologists have come to understand that the brain has a great many spe- 
cialized regions. Figure 1.5 shows the major neural pathways between different parts of the brain 
involved in visual processing (Distler et al., 1993). Although much of the functionality remains 
unclear, this diagram represents an amazing achievement and summarizes the work of dozens 
of researchers. These structures are present both in higher primates and in humans. The brain 
is clearly not an undifferentiated mass; it is more like a collection of highly specialized parallel- 
processing machines with high-bandwidth interconnections. The entire system is designed to 

DORSAL PATHWAYS VENTRAL PATHWAYS 
----------  ,---------- Faces, 
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I { attention, 

Object perception, 
Visually guided 

transient system 

Filtering for  orientation, 

Figure 1.5 The major visual pathways of the Macaque monkey. This diagram is included to illustrate the structural 
complexity of the visual system and because a number of these areas are referenced in different 
sections of this book. Adapted from Distler et a/. (1993); notes added. Vl-V4, visual areas 1-4; PO, 
parieto-occipital area; M r  middle temporal area (also called V5); De dorsal prestiate area; Pe  posterior 
parietal complex; STS, superiotemporal sulcus complex; 17; inferotemporal cortex. 
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extract information from the world in which we live, not from some other environment with 
entirely different physical properties. 

Certain basic elements are necessary for the visual system to develop normally. For example, 
cats reared in a world consisting only of vertical stripes develop distorted visual cortices, with 
an unusual preponderance of vertical-edge detectors. Nevertheless, the basic elements for the 
development of normal vision are present in all but the most abnormal circumstances. The inter- 
action of the growing nervous system with everyday reality leads to a more or less standard visual 
system. This should not surprise us; the everyday world has ubiquitous properties that are 
common to all environments. All earthly environments consist of objects with well-defined sur- 
faces, surface textures, surface colors, and a variety of shapes. Objects exhibit temporal persis- 
tence-they do not randomly appear and vanish, except when there are specific causes. At a more 
fundamental level, light travels in straight lines and reflects off surfaces in certain ways. The law 
of gravity continues to operate. Given these ubiquitous properties of the everyday world, the evi- 
dence suggests that we all develop essentially the same visual systems, irrespective of cultural 
milieu. Monkeys and even cats have visual structures very similar to those of humans. 

For example, although Figure 1.5 is based on the visual pathways of the Macaque monkey, 
a number of lines of evidence show that the same structures exist in humans. First, the same 
areas can be identified anatomically in humans and animals. Second, specific patterns of blind- 
ness occur that point to the same areas having the same functions in humans and animals. For 
example, if the brain is injured in area V4, patients suffer from achromatopsia (Zeki, 1992; 
Milner and Goodale, 1995). These patients perceive only shades of gray. Also, they cannot recall 
colors from times before the lesion was formed. Color processing occurs in the same region of 
the monltey cortex. Third, new research imaging technologies, such as positron emission tomog- 
raphy (PET) and functional magnetic resonance imaging (fMRI), show that in response to colored 
or moving patterns, the same areas are active in people as in the Macaque monkey (Zeki, 1992; 
Beardsley, 1997). The key implication of this is that because we all have the same visual system, 
it is likely that we all see in the same way, at least as a first approximation. Hence, the same 
visual designs will be effective for all of us. 

Sensory aspects of visualizations derive their expressive power from being well designed to 
stimulate the visual sensory system. In contrast, arbitrary, conventional aspects of visualizations 
derive their power from how well they are learned. Sensory and arbitrary representations 
differ radically in the ways they should be studied. In the former case, we can apply the full 
rigor of the experimental techniques developed by sensory neuroscience, while in the latter case 
visualizations and visual symbols can best be studied with the very different interpretive method- 
ology, derived from the structuralist social sciences. With sensory representations, we can 
also make claims that transcend cultural and racial boundaries. Claims based on a generalized 
perceptual processing system will apply to all humans, with obvious exceptions such as color 
blindness. 

This distinction between the sensory and social aspects of the symbols used in visualization 
also has practical consequences for research methodology. It is not worth expending a huge effort 
carrying out intricate and highly focused experiments to study something that is only this year's 
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fashion. However, if we can develop generalizations that apply to large classes of visual repre- 
sentations, and for a long time, the effort is worthwhile. 

If we accept the distinction between sensory and arbitrary codes, we nevertheless must rec- 
ognize that most visualizations are hybrids. In the obvious case, they may contain both pictures 
and words. But in many cases, the sensory and arbitrary aspects of a representation are much 
more difficult to tease apart. There is an intricate interweaving of learned conventions and hard- 
wired processing. The distinction is not as clean as we would like, but there are ways of distin- 
guishing the different kinds of codes. 

Properties of Sensory and Arbitrary Representation 
The following paragraphs summarize some of the important properties of sensory representations. 

Understanding without training: A sensory code is one for which the meaning is perceived 
without additional training. Usually, all that is necessary is for the audience to understand 
that some communication is intended. For example, it is immediately clear that the image 
in Figure 1.6 has an unusual spiral structure. Even though this visually represents a 
physical process that cannot actually be seen, the detailed shape can be understood 
because it has been expressed using an artificial shading technique to make it look like a 
3D solid object. Our visual systems are built to perceive the shapes of 3D surfaces. 

Figure 1.6 The expanding wavefront of a chemical reaction is visualized (Cross et al., 1997). Even though this 
process is alien to most of us, the shape of the structure can be readily perceived. 
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Figure 1.7 In the Muller-Lyer illusion, on the left, the horizontal line in the upper figure appears longer than the same 
line in the lower figure. On the right, the rectangle is distorted into a "pincushion" shape. 

Resistance to instructional bias: Many sensory phenomena, such as the illusions shown in 
Figure 1.7, persist despite the knowledge that they are illusory. When such illusions occur 
in diagrams, they are likely to be misleading. But what is important to the present 
argument is that some aspects of perception can be taken as bottom-line facts that we 
ignore at our peril. In general, perceptual phenomena that persist and are highly resistant 
to change are likely to be hard-wired into the brain. 

Sensory immediacy: The processing of certain kinds of sensory information is hard-wired and 
fast. We can represent information in certain ways that are neurally processed in parallel. 
This point is illustrated in Figure 1.8, which shows five different textured regions. The 
two regions on the left are almost impossible to separate. The upright Ts and inverted Ts 
appear to be a single patch. The region of oblique Ts is easy to differentiate from the 
neighboring region of inverted Ts. The circles are the easiest to distinguish (Beck, 1966). 
The way in which the visual system divides the visual world into regions is called 
segmentation. The evidence suggests that this is a function of early rapid-processing 
systems. (Chapter 5 presents a theory of texture discrimination.) 

Cross-cultural validity: A sensory code will, in general, be understood across cultural 
boundaries. These may be national boundaries or the boundaries between different user 
groups. Instances in which a sensory code is misunderstood occur when some group has 
dictated that a sensory code be used arbitrarily in contradiction to the natural 
interpretation. In this case, the natural response to a particular pattern will, in fact, be 
wrong. 
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Figure 1.8 Five regions of texture. Some are easier to distinguish visually than others. Adapted from Beck (1966). 

Testing Claims about Sensory Representations 
Entirely different methodologies are appropriate to the study of representations of the sensory 
and arbitrary types. In general, the study of sensory representations can employ the scientific 
methods of vision researchers and biologists. The study of arbitrary conventional representations 
is best done using the techniques of the social sciences, such as sociology and anthropology; 
philosophers and cultural critics have much to contribute. Appendix C provides a brief summary 
of the research methodologies that apply to the study of sensory representations. All are based 
on the concept of the controlled experiment. For more detailed information on techniques used 
in vision research and human-factors engineering, see Sekuler and Blake (1990) and Wickens 
(1992). 

Arbitrary Conventional Representations 
Arbitrary codes are by definition socially constructed. The word dog is meaningful because we 
all agree on its meaning and we teach our children the meaning. The word carrot would do 
just as well, except we have already agreed on a different meaning for that word. In this sense, 
words are arbitrary; they could be swapped and it would make no difference, so long as they 
are used consistently from the first time we encounter them. Arbitrary visual codes are 
often adopted when groups of scientists and engineers construct diagramming conventions for 
new problems that arise. Examples include circuit diagrams used in electronics, diagrams used 
to represent molecules in chemistry, and the unified modeling language used in software engi- 
neering. Of course, many designers will intuitively use perceptually valid forms in the codes, but 
many aspects of these diagrams are entirely conventional. Arbitrary codes have the following 
characteristics: 

Hard to learn: It takes a child hundreds of hours to learn to read and write, even if the child 
has already acquired spoken language. The graphical codes of the alphabet and their rules 
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of combination must be laboriously learned. The Chinese character set is reputed to be 
even harder to work with than the Roman. 

Easy to forget: Arbitrary conventional information that is not overlearned can easily be 
forgotten. It is also the case that arbitrary codes can interfere with each other. In contrast, 
sensory codes cannot be forgotten. Sensory codes are hard-wired; forgetting them would 
be like learning not to see. Still, some arbitrary codes, such as written numbers, are 
overlearned to the extent that they will never be forgotten. We are stuck with them 
because the social upheaval involved in replacing them is too great. 

Embedded in culture and applications: An Asian student in my laboratory was working on an 
application to visualize changes in computer software. She chose to represent deleted 
entities with the color green and new entities with red. I suggested to her that red is 
normally used for a warning, while green symbolizes renewal, so perhaps the reverse 
coding would be more appropriate. She protested, explaining that green symbolizes death 
in China, while red symbolizes luck and good fortune. The use of color codes to indicate 
meaning is highly culture-specific. 

Many graphical symbols are transient and tied to a local culture or application. Think of the 
graffiti of street culture, or the hundreds of new graphical icons that are being created on 
the Internet. These tend to stand alone, conveying meaning; there is little or no syntax to bind 
the symbols into a formal structure. On the other hand, in some cases, arbitrary representations 
can be almost universal. The Arabic numerals shown in Figure 1.9 are used widely throughout 
the world. Even if a more perceptually valid code could be constructed, the effort would be 
wasted. The designer of a new symbology for Air Force or Navy charts must live within the con- 
fines of existing symbols because of the huge amount of effort invested in the standards. We have 
many standardized visualization techniques that work well and are solidly embedded in work 
practices, and attempts to change them would be foolish. In many applications, good design is 
standardized design. 

Culturally embedded aspects of visualizations persist because they have become embedded 
in ways in which we think about problems. For many geologists, the topographic contour map 
is the ideal way to understand relevant features of the earth's surface. They often resist shaded 
computer graphics representations, even though these appear to be much more intuitively under- 
standable to most people. Contour maps are embedded in cartographic culture and training. 

Figure 1.9 Two methods for representing the first five digits. The code given below is probably easier to learn. 
However, it is not easily extended. 
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Formally powerful: Arbitrary graphical notations can be constructed that embody formally 
defined, powerful languages. Mathematicians have created hundreds of graphical 
languages to express and communicate their concepts. The expressive power of 
mathematics to convey abstract concepts in a formal, rigorous way is unparalleled. 
However, the languages of mathematics are extremely hard to learn (at least for most 
people). Clearly, the fact that something is expressed in a visual code does not mean that 
it is easy to understand. 

Capable of rapid change: One way of looking at the sensorylarbitrary distinction is in terms of 
the time the two modes have taken to develop. Sensory codes are the products of the 
millions of years it has taken for our visual systems to evolve. Although the time frames 
for the evolution of arbitrary conventional representations are much shorter, they can still 
have lasted for thousands of years (e.g., the number system). But many more have had 
only a few decades of development. High-performance interactive computer graphics have 
greatly enhanced our capability to create new codes. We can now control motion and 
color with great flexibility and precision. For this reason, we are currently witnessing an 
explosive growth in the invention of new graphical codes. 

The Study of Arbitrary Conventional Symbols 
The appropriate methodology for studying arbitrary symbols is very different from that used to 
study sensory symbols. The tightly focused, narrow questions addressed by psychophysics are 
wholly inappropriate to investigating visualization in a cultural context. A more appropriate 
methodology for the researcher of arbitrary symbols may derive from the work of anthropolo- 
gists such as Clifford Geertz (1973), who advocated "thick description." This approach is based 
on careful observation, immersion in culture, and an effort to keep "the analysis of social forms 
closely tied . . . to concrete social events and occasions." Also borrowing from the social sciences, 
Carroll and coworkers have developed an approach to understanding complex user interfaces 
that they call artifact analysis (Carroll, 1989). In this approach, user interfaces (and presumably 
visualization techniques) are best viewed as artifacts and studied much as an anthropologist 
studies cultural artifacts of a religious or practical nature. Formal experiments are out of the 
question in such circumstances, and if they were actually carried out, they would undoubtedly 
change the very symbols being studied. 

Unfortunately for researchers, sensory and arbitrary aspects of symbols are closely inter- 
twined in many representations, and although they have been presented here as distinct cate- 
gories, the boundary between them is very fuzzy. There is no doubt that culture influences 
cognition; it is also true that the more we know, the more we may perceive. Pure instances of 
sensory or arbitrary coding may not exist, but this does not mean that the analysis is invalid. It 
simply means that for any given example we must be careful to determine which aspects of the 
visual coding belong in each category. 

In general, the science of visualization is still in its infancy. There is much about visualiza- 
tion and visual communication that is more craft than science. For the visualization designer, 
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training in art and design is at least as useful as training in perceptual psychology. For those who 
wish to do good design, the study of design by example is generally most appropriate. But the 
science of visualization can inform the process by providing a scientific basis for design rules, 
and it can suggest entirely new design ideas and methods for displaying data that have not been 
thought of before. Ultimately, our goal should be to  create a new set of conventions for infor- 
mation visualization, based on sound perceptual principles. 

Gibson's Affordnnce Theory 

The great perception theorist J.J. Gibson brought about radical changes in how we think about 
perception with his theories of ecological optics, affordances, and direct perception. Aspects of 
each of these theoretical concepts are discussed throughout this book. We begin with affordance 
rlieory (Gibson, 1979). 

Gibson assumed that we perceive in order to operate on the environment. Perception is 
designed for action. Gibson called the perceivable possibilities for action affordances; he claimed 
that we perceive these properties of the environment in a direct and immediate way. This theory 
is clearly attractive from the perspective of visualization, because the goal of most visualization 
is decision making. Thinking about perception in terms of action is likely to be much more useful 
than thinking about how two adjacent spots of light influence each other's appearance (which is 
the typical approach of classical psychophysicists). 

Much of Gibson's work was in direct opposition to the approach of theorists who reasoned 
that we must deal with perception from the bottom up, as with geometry. The pre-Gibsonian 
theorists tended to have an atomistic view of the world. They thought we should first understand 
how single points of light were perceived, and then we could work on understanding how pairs 
of lights interacted and gradually build up to understanding the vibrant, dynamic visual world 
in which we live. 

Gibson took a radically different, top-down approach. He claimed that we do not perceive 
points of light; rather, we perceive possibilities for action. We perceive surfaces for walking, 
handles for pulling, space for navigating, tools for manipulating, and so on. In general, our whole 
evolution has been geared toward perceiving useful possibilities for action. In an experiment that 
supports this view, Warren (1984) showed that subjects were capable of accurate judgments of 
the "climbability" of staircases. These judgments depended on their own leg lengths. Gibson's 
affordance theory is tied to a theory of direct perception. He claimed that we perceive affor- 
dances of the environment directly, not indirectly by piecing together evidence from our senses. 

Translating the affordance concept into the interface domain, we might construct the fol- 
lowing principle: to create a good interface, we must create it with the appropriate affordances 
to make the user's task easy. Thus, if we have a task of moving an object in 3D space, it should 
have clear handles to use in rotating and lifting the object. Figure 1.10 shows a design for a 3D 
object-manipulation interface from Houde (1992). When an object is selected, "handles" appear 
that allow the object to be lifted or rotated. The function of these handles is made more explicit 
by illustrations of gripping hands that show the affordances. 
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Figure 1.10 Small drawings of hands pop up to show the user what interactions are possible in the prototype 
interface. Reproduced, with permission, from Houde (1992). 

However, Gibson's theory presents problems if it is taken literally. According to Gibson, affor- 
dances are physical properties of the environment that we directly perceive. Many theorists, unlike 
Gibson, think of perception as a very active process: the brain deduces certain things about the 
environment based on the available sensory evidence. Gibson rejected this view in favor of the idea 
that our visual system is tuned to perceiving the visual world and that we perceive it accurately 
except under extraordinary circumstances. He preferred to concentrate on the visual system as a 
whole and not to break perceptual processing down into components and operations. He used the 
term resonating to describe the way the visual system responds to properties of the environment. 
This view has been remarkably influential and has radically changed the way vision researchers 
think about perception. Nevertheless, few would accept it today in its pure form. 

There are three problems with Gibson's direct perception in developing a theory of visual- 
ization. The first problem is that even if perception of the environment is direct, it is clear that 
visualization of data through computer graphics is very indirect. Typically, there are many layers 
of processing between the data and its representation. In some cases, the source of the data may 
be microscopic or otherwise invisible. The source of the data may be quite abstract, such as 
company statistics in a stock-market database. Direct perception is not a meaningful concept in 
these cases. 

Second, there are no clear physical affordances in any graphical user interface. To say that 
a screen button "affords" pressing in the same way as a flat surface affords walking is to stretch 
the theory beyond reasonable limits. In the first place, it is not even clear that a real-world button 
affords pressing. In another culture, these little bumps might be perceived as rather dull archi- 
tectural decorations. Clearly, the use of buttons is arbitrary; we must learn that buttons, when 
pressed, do interesting things in the real world. Things are even more indirect in the computer 
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world; we must learn that a picture of a button can be "pressed" using a mouse, a cursor, or yet 
another button. This is hardly a direct interaction with the physical world. 

Third, Gibson's rejection of visual mechanisms is a problem. To take but one example, much 
that we know about color is based on years of experimentation, analysis, and modeling of the 
perceptual mechanisms. Color television and many other display technologies are based on an 
understanding of these mechanisms. To reject the importance of understanding visual mecha- 
nisms would be to reject a tremendous proportion of vision research as irrelevant. This entire 
book is based on the premise that an understanding of perceptual mechanisms is basic to a science 
of visualization. 

Despite these reservations, Gibson's theories color much of this book. The concept of affor- 
dances, loosely construed, can be extremely useful from a design perspective. The idea suggests 
that we build interfaces that beg to be operated in appropriate and useful ways. We should make 
virtual handles for turning, virtual buttons for pressing. If components are designed to work 
together, this should be made perceptually evident, perhaps by creating shaped sockets that afford 
the attachment of one object to another. This is the kind of design approach advocated by 
Norman in his famous book, The Psychology of Everyday Things (1988). Nevertheless, on-screen 
widgets present affordances only in an indirect sense. They borrow their power from our ability 
to represent pictorially, or otherwise, the affordances of the everyday world. Therefore, we can 
be inspired by affordance theory to produce good designs, but we cannot expect much help from 
that theory in building a science of visualization. 

A M o d e l  o f  P e r c e p t u a l  P r o c e s s i n g  
In this section, we introduce a simplified information-processing model of human visual percep- 
tion. As Figure 1.5 shows, there are many subsystems in vision and we should always be wary 
of overgeneralization. Still, an overall conceptual framework is often useful in providing a start- 
ing point for more detailed analysis. Figure 1.11 gives a broad schematic overview of a three- 
stage model of perception. In Stage 1, information is processed in parallel to extract basic features 
of the environment. In Stage 2, active processes of pattern perception pull out structures and 
segment the visual scene into regions of different color, texture, and motion patterns. In Stage 3, 
the information is reduced to only a few objects held in visual working memory by active mech- 
anisms of attention to form the basis of visual thinking. 

Stage 1: Parallel Processing to Extract Low-Level Properties 
of the Visual Scene 
Visual information is first processed by large arrays of neurons in the eye and in the primary 
visual cortex at the back of the brain. Individual neurons are selectively tuned to certain kinds 
of information, such as the orientation of edges or the color of a patch of light. In Stage 1 pro- 
cessing, billions of neurons work in parallel, extracting features from every part of the visual 
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Figure 1.11 A three-stage model of human visual information processing. 

field simultaneously. This parallel processing proceeds whether we like it or not, and it is largely 
independent of what we choose to attend to (although not of where we look). It is also rapid. If 
we want people to understand information quickly, we should present it in such a way that it 
could easily be detected by these large, fast computational systems in the brain. 

Important characteristics of Stage 1 processing include: 

Rapid parallel processing 

Extraction of features, orientation, color, texture, and movement patterns 

Transitory nature of information, which is briefly held in an iconic store 

Bottom-up, data-driven model of processing 

Stage 2: Pattern Perception 
At the second stage, rapid active processes divide the visual field into regions and simple pat- 
terns, such as continuous contours, regions of the same color, and regions of the same texture. 
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Patterns of motion are also extremely important, although the use of motion as an information 
code is relatively neglected in visualization. The pattern-finding stage of visual processing is 
extremely flexible, influenced both by the massive amount of information available from Stage 
1 parallel processing and by the top-down action of attention driven by visual queries. Marr 
(1982) called this stage of processing the 2-112D sketch. Triesman (1985) called it a feature map. 
Rensink (2002) called it a proto-object flux to emphasize its dynamic nature. 

There is increasing evidence that tasks involving eye-hand coordination and locomotion may 
be processed in pathways distinct from those involved in object recognition. This is the two-visual 
system hypothesis: one system for locomotion and action, called the "action system," and another 
for symbolic object manipulation, called the "what system." A detailed and convincing account 
of it can be found in Milner and Goodale (1995). 

Important characteristics of Stage 2 processing include: 

Slow serial processing 

Involvement of both working memory and long-term memory 

More emphasis on arbitrary aspects of symbols 

In a state of flux, a combination of bottom-up feature processing and top-down 
attentional mechanisms 

Different pathways for object recognition and visually guided motion 

Stage 3: Sequential Goal-Directed Processing 
At the highest level of perception are the objects held in visual working memory by the demands 
of active attention. In order to use an external visualization, we construct a sequence of visual 
queries that are answered through visual search strategies. At this level, only a few objects can 
be held at a time; they are constructed from the available patterns providing answers to the visual 
queries. For example, if we use a road map to look for a route, the visual query will trigger a 
search for connected red contours (representing major highways) between two visual symbols 
(representing cities). 

Beyond the visual processing stages shown in Figure 1.11 are interfaces to other subsystems. 
The visual object identification process interfaces with the verbal linguistic subsystems of the 
brain so that words can be connected to images. The perception-for-action subsystem interfaces 
with the motor systems that control muscle movements. 

The three-stage model of perceptions is the basis for the structure of this book. Chapters 2, 
3, 4, and some of 5 deal mainly with Stage 1 issues. Chapters 5 ,  6 ,  7, and 8 deal mainly with 
Stage 2 issues. Chapters 9, 10, and 11 deal with Stage 3 issues. The final three chapters also 
discuss the interfaces between perceptual and other cognitive processes, such as those involved 
in language and decision making. 
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T y p e s  o f  D a t a  
If the goal of visualization research is to transform data into a perceptually efficient visual format, 
and if we are to make statements with some generality, we must be able to say something about 
the types of data that can exist for us to visualize. It is useful, but less than satisfying, to be able 
to say that color coding is good for stock-market symbols but texture coding is good for geo- 
logical maps. It is far more useful to be able to define broader categories of information, such 
as continuous-height maps (scalar fields), continuous-flow fields (vector maps), and category data, 
and then to make general statements such as "Color coding is good for category information" 
and "Motion coding is good for highlighting selected data." If we can give perceptual reasons 
for these generalities, we have a true science of visualization. 

Unfortunately, the classification of data is a big issue. It is closely related to the classification 
of knowledge, and it is with great trepidation that we approach the subject. What follows is 
an informal classification of data classes using a number of concepts that we will find helpful 
in later chapters. We make no claims that this classification is especially profound or 
all-encompassing. 

Bertin (1977) has suggested that there are two fundamental forms of data: data values and 
data structures. A similar idea is to divide data into entities and relationships (often called rela- 
tions). Entities are the objects we wish to visualize; relations define the structures and patterns that 
relate entities to one another. Sometimes the relationships are provided explicitly; sometimes dis- 
covering relationships is the very purpose of visualization. We also can talk about the attributes 
of an entity or a relationship. Thus, for example, an apple can have color as one of its attributes. 
The concepts of entity, relationship, and attribute have a long history in database design and have 
been adopted more recently in systems modeling. However, we shall extend these concepts beyond 
the kinds of data that are traditionally stored in a relational database. In visualization, it is neces- 
sary to deal with entities that are more complex and we are also interested in seeing complex struc- 
tured relationships-data structures-not captured by the entity relationship model. 

Entities 
Entities are generally the objects of interest. People can be entities; hurricanes can be entities. 
Both fish and fishponds can be entities. A group of things can be considered a single entity if it 
is convenient-for example, a school of fish. 

Relationships 
Relationships form the structures that relate entities. There can be many kinds of relationships. 
A wheel has a "part-of" relationship to a car. One employee of a firm may have a supervisory 
relationship to another. Relationships can be structural and physical, as in defining the way a 
house is made of its many component parts, or they can be conceptual, as in defining the rela- 
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tionship between a store and its customers. Relationships can be causal, as when one event causes 
another, and they can be purely temporal, defining an interval between two events. 

Attributes of Entities or Relationships 
Both entities and relationships can have attributes. In general, something should be called an 
attribute (as opposed to an entity itself) when it is a property of some entity and cannot be 
thought of independently. Thus, the color of an apple is an attribute of the apple. The tempera- 
ture of water is an attribute of the water. Duration is an attribute of a journey. However, defin- 
ing what should be an entity and what should be an attribute is not always straightforward. For 
example, the salary of an employee could be thought of as an attribute of the employee, but we 
can also think of an amount of money as an entity unto itself, in which case we would have to 
define a relationship between the employee entity and the sum-of-money entity. 

Attribute Quality 

It is often desirable to describe data visualization methods in light of the quality of attributes 
they are capable of conveying. A useful way to consider the quality of data is the taxonomy of 
number scales defined by the statistician S.S. Stevens (1946). According to Stevens, there are four 
levels of measurement: nominal, ordinal, interval, and ratio scales. 

1. Nominal: This is the labeling function. Fruit can be classified into apples, oranges, 
bananas, and so on. There is no sense in which the fruit can be placed in an ordered 
sequence. Sometimes numbers are used in this way. Thus, the number on the front of a 
bus generally has a purely nominal value. It identifies the route on which the bus travels. 

2. Ordinal: The ordinal category encompasses numbers used for ordering things in a 
sequence. It is possible to say that a certain item comes before or after another item. The 
position of an item in a queue or list is an ordinal quality. When we ask people to rank 
some group of things (films, political candidates, computers) in order of preference, we are 
requiring them to create an ordinal scale. 

3. 1nteAal: When we have an interval scale of measurement, it becomes possible to derive 
the gap between data values. The time of departure and the time of arrival of an aircraft 
are defined on an interval scale. 

4. Ratio: With a ratio scale, we have the full expressive power of a real number. We can 
make statements such as "Object A is twice as large as object B." The mass of an object is 
defined on a ratio scale. Money is defined on a ratio scale. The use of a ratio scale implies 
a zero value used as a reference. 

In practice, only three of Stevens's levels of measurement are widely used, and these in somewhat 
different form. The typical basic data classes most often considered in visualization have been 
greatly influenced by the demands of computer programming. They are the following: 
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Catego y data: This is like Stevens's nominal class. 

Integer data: This is like his ordinal class in that it is discrete and ordered. 

Real-number data: This combines the properties of interval and ratio scales. 

These classes of data can be very useful in discussing visualization techniques. For example, here 
are two generalizations: (1) Using graphic size (as in a bar chart) to display category informa- 
tion is likely to be misleading, because we tend to interpret size as representing quantity. ( 2 )  If 
we map measurements to color, we can perceive nominal or, at best, ordinal values, with a few 
discrete steps. Perceiving metric intervals using color is not very effective. Many visualization 
techniques are capable of conveying only nominal or ordinal data qualities. 

Attribute Dimensions: 1 D, 2D, 3 D, . . . 
An attribute of an entity can have multiple dimensions. We can have a single sca la~  quantity, 
such as the weight of a person. We can have a vector quantity, such as the direction in which 
that person is traveling. Tensors are higher-order quantities that describe both direction and shear 
forces, such as occur in materials that are being stressed. 

We can have a field of scalars, vectors, or tensors. The gravitational field of the earth is a 
three-dimensional attribute of the earth. In fact, it is a three-dimensional vector field attribute. 
If we are interested only in the strength of gravity at the earth's surface, it is a two-dimensional 
scalar attribute. Often the term map is used to describe this kind of field. Thus, we talk about a 
gravity map or a temperature map. 

Operations Considered as Data 
An entity relationship model can be used to describe most kinds of data. However, it does not 
capture the operations that may be performed on entities and relationships. We tend to think of 
operations as somehow different from the data itself, neither entities nor relationships nor attrib- 
utes. The following are but a few common operations: 

Mathematical operations on numbers-multiplication, division, and so on 

Merging two lists to create a longer list 

Inverting a value to create its opposite 

Bringing an entity or relationship into existence (such as the mean of a set of numbers) 

Deleting an entity or relationship (a marriage breaks up) 

Transforming an entity in some way (the chrysalis turns into a butterfly) 

Forming a new object out of other objects (a pie is baked from apples and pastry) 

Splitting a single entity into its component parts (a machine is disassembled) 
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In some cases, these operations tan themselves form a kind of data that we may wish to capture. 
Chemistry contains a huge catalog of the compounds that result when certain operations are 
applied to combinations of other compounds. These operations may form part of the data that 
is stored. Certain operations are easy to visualize: For example, the merging of two entities can 
easily be represented by showing two visual objects that combine (visuklly merge) into a single 
entity. Other operations are not at all easy to represent in any visualization. For example, the 
detailed logical structure of a computer program may be better represented using a written code 
that has its basis in natural language than using any kind of diagram. What should and should 
not be visualized is a major topic in Chapter 9. 

Operations and procedures often present a particularly difficult challenge for visualization. 
It is difficult to express operations effectively in a static diagram, and this is especially a problem 
in the creation of visual languages. On the other hand, the use of animation opens up the pos- 
sibility of expressing at least certain operations in an immediately accessible visual manner. We 
shall deal with the issue of animation and visual languages in Chapter 9. 

M e t a d a t a  
When we are striving to understand data, certain products are sure to emerge as we proceed. We 
may discover correlations between variables or clusters of data values. We may postulate certain 
underlying mechanisms that are not immediately visible. The result is that theoretical entities 
come into being. Atoms, photons, black holes, and all the basic constructs of physics are like 
this. As more evidence accumulates, the theoretical entities seem more and more real, but they 
are nonetheless only observable in the most indirect ways. These theoretical constructs that 
emerge from data analysis have sometimes been called metadata (Tweedie, 1997). They are gen- 
erally called derived data in the database modeling community. Metadata can be of any kind. It 
can consist of new entities, such as identified classes of objects, or new relationships, such as pos- 
tulated interactions between different entities, or new rules. We may impose complex structural 
relationships on the data, such as tree structures or directed acyclic graphs, or we may find that 
they already exist in the data. 

The problem with the view that metadata and primary data are somehow essentially differ- 
ent is that all data is interpreted to some extent-there is no such thing as raw data. Every data- 
gathering instrument embodies some particular interpretation in the way it is built. Also, from 
the practical viewpoint of the visualization designer, the problems of representation are the same 
for metadata as for primary data. In both cases, there are entities, relationships, and their attrib- 
utes to be represented, although some are more abstract than others. Thus the metadata concept 
is not discussed further in this book. 
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C o n c l u s i o n  
Visualization applies vision research to practical problems of data analysis in much the same way 
as engineering applies physics to practical problems of building manufacturing plants. Just as 
engineering has influenced physicists to become more concerned with areas such as semicon- 
ductor technology, so we may hope that the development of an applied science of data visual- 
ization can encourage vision researchers to intensify their efforts in addressing such problems as 
3D space and task-oriented perception. There is considerable practical benefit in understanding 
these things. As the importance of visualization grows, so do the benefits of a scientific approach. 
But there is no time left to lose. New symbol systems are being developed constantly to meet the 
needs of a society increasingly dependent on data. Once developed, they may stay with us for a 
very long time, so we should try to get them right. 

We have introduced a key distinction between the ideas of sensory and arbitrary conven- 
tional symbols. This is a difficult and sometimes artificial distinction. Readers can doubtless come 
up with c ~ u n t e r e ~ a m ~ l e s  and reasons why it is impossible to separate the two. Nonetheless, the 
distinction is essential. With no basic model of visual processing on which we can support the 
idea of a good data representation, ultimately the problem of visualization comes down to estab- 
lishing a consistent notation. If the best representation is simply the one we know best because 
it is embedded in our culture, then standardization is everything-there is no good representa- 
tion, only widely shared conventions. 

In opposition to the view that everything is arbitrary, this book takes the view that all humans 
do have more or less the same visual system. This visual system has evolved over tens of millions 
of years to enable creatures to perceive and act within the natural environment. Although very 
flexible, the visual system is tuned to receiving data presented in certain ways, but not in others. 
If we can understand how the mechanism works, we can produce better displays and better think- 
ing tools. 
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