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Abstract. A method for process control is considered. Abnormal states

of the process have been identi�ed with dynamic control limits separately

for each measured signal. A self-organizing map (SOM) has been used

to combine the information.

In this research, the methods were applied to the physical system of

humans, which cannot be regulated like industrial processes, except in

clinical conditions. The data were collected during the spring 1996 and

consist of over eight weeks of physical measurements and diaries recorded

in a home environment by four test subjects.

The research shows that this method can be used to monitor the system

of a human being. Physical activities seem to dominate the results. This is

understandable, because some of the chosen variables re
ect immediately

the e�ects of physical stress.
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1 Introduction

The purpose of this research was to develop a simple and descriptive device
for people interested in their own well-being. It helps to recognize the changes
in physical parameters occurring during normal life. There is no ambition to
substitute the doctor in diagnosing, but to help people to maintain good health.

The �rst step in process modelling was to de�ne the normal and abnormal
states of the system. The measured signals of the system can be analyzed with
dynamic control limits in order to monitor their variability. When abnormalities
are detected, a new binary variable can be composed to identify hazardous ob-
servations. In this application, dynamic control limits were used as indicators of
fast changes in independent signals.

The calculation of dynamic control limits can be done on-line. For data re-
duction, old data are deleted when new data are entered in the system. A history
of three days seems to be adequate for setting up the limits.

The monitoring of a process usually requires an analytical system model. In
industrial applications this is often diÆcult to accomplish, and for a human being
it is impossible, because the environment cannot be controlled and the person's
routines frequently change in every-day life. Neural networks provide a nonlinear



solution where no analytical process model is needed. The self-organizing map
is an unsupervised method, needs no target values and provides a visualization
tool for temporal process control. The areas of the map can be identi�ed based
on the content of each area.

For eight selected variables, dynamic control limits were computed and (0,1)
indicators for normal and abnormal observations were obtained. The most de-
scriptive indicators were chosen among a total of 16, and they were entered into
the self-organizing map with the original signals.

The research shows that this method can be used to monitor the system of
a human being. Since, however, everyday activities are not repetitive, it is too
ambiguous to try to predict the future states. Physical activities seem to dom-
inate the results. This is understandable, because some of the chosen variables
re
ect immediately the e�ects of physical stress. No general implication for men-
tal stress was found, however. This was due to the fact that all the test subjects
lived quite a steady life during the measurement period.

2 Data Description

The data for this research were obtained during the spring of 1996. Fourteen
healthy middle-aged male volunteers collected their physiological data daily for
eight to ten weeks. Four of them were selected for this �rst phase of the research.
Their R-R interval and activity were measured continuously with an R-R interval
recorder and an activity monitor during the daytime. A R-R series consists of
the time spans measured between two R peaks in an ECG signal. Diastolic and
systolic blood pressure along with body temperature were recorded three times
a day by the subjects. The �rst measurements were made in the morning after
waking up. The second measurements were made between 2:00 and 8:00 PM and
the third in the evening before going to bed. The quality of sleep was evaluated
at night. During the measurement period, all the subjects were living normal life.
The variation in measurement times was due to unsupervised self-measurements.

Furthermore, the subjects �lled in a diary, indicating their daily emotional
states, such as fatigue, happiness, pain etc. The amounts of co�ee, tea, cigarettes
and alcohol consumed were also reported. The notes on the emotions during the
daytime were made at 2:00-8:00 PM and those on the rest of the day before
going to bed. The physical exercise and meal times were also recorded.

The measurement time of over eight weeks produced a very large data set.
To make the signals compatible, the continuously measured variables were dis-
cretized by taking averages for one-hour spans simultaneous to the discretely
measured variables. Thus, three values for each day resulted in data vectors of
170 observations or longer.

The data were analyzed with di�erent statistical methods. This analysis and
discussions with experts led to the selection of eight variables with high qual-
ity, stability and descriptivity. The others were discarded because of the long
missing periods (several days or even weeks) and noisy or clearly erroneous mea-
surements. The variables were diastolic and systolic blood pressure, the mean



and the standard deviation of R-R intervals, activity, body temperature, weight
and quality of sleep.

3 Dynamic Control Limits

The idea of using con�dence limits of the expected mean in process control is not
new. Control charts are an essential part of statistical process control, as they
distinguish the normal variability of the process from abnormal, presuming the
distribution of the signal to be normal [1]. Control charts have a middle line and
two straight control lines de�ned on the basis of the con�dence limits computed
from at least four samples of the process, or else the result is not reliable. The
process is under control if all measurements remain between the control lines.

If the process is measured continuously, a sliding technique can be used. If
there are l variables, let xij , where i = 1; 2; : : : and j = 1; 2; : : : ; l, stand for the
measured value at time i for the j:th variable. The limits for the value entering
the system at time k (k > 4) are calculated from x1j ; x2j ; : : : ; x(k�1)j . The second
limits for the value at time k+1 are calculated from x2j ; x3j ; : : : ; xkj and so on.
In this way, the limits are computed every time a new value enters the system
and they evolve along with the signal, in other words they are dynamic.

In cases that are not predictable and smooth, e.g. certain industrial processes,
the present value of the signal might be strongly dependent on previous values.
Furthermore, if certain values of the process show better correlation than the
others, a weighting procedure for the signal history is a way to approach the
problem.

If wij stand for the weights, the expected mean (�xw)j for the weighted signal
is

(�xw)j =
kX

i=1

wijxij=

kX
i=1

wij (1)

and the standard deviation �(xw)j

�(xw)j =

vuut kX
i=1

wij(xij � (�xw)j)2=

kX
i=1

wij : (2)

The con�dence limits can be formed as follows

UL(xw)j
= (�xw)j + T�(xw)j=

qP
k

i=1
wij

LL(xw)j
= (�xw)j � T�(xw)j=

qP
k

i=1
wij ; (3)

where T is a constant de�ning the width of the limits, UL(xw)j
is the upper

limit, and LL(xw)j
is the lower limit.

If the signals contain a lot of irregularities, a suitable �ltering structure is
needed. The dynamic control limits are not de�ned based on the original signal,
but on a particular 
attened signal. The present value of the 
attened signal



is obtained from the history of the dynamic control limits by de�ning the per-
centage between the original signal and the previous upper or lower limit. If the
original signal exceeds these limits by this percentage, the signal is 
attened. In
this way the erroneous and irregular values of signals do not a�ect the adap-
tation of the dynamic limits too much. On the other hand, if there are known
limits the signal has to conform to, this a priori information can be noted in
de�ning the dynamic limits.

When the dynamic control limits are ready, we have an upper and a lower
boundary value for each signal. Every time a signal is beyond these values, there
might be something wrong with the system. From now on, this overdrafting will
be referred to as an alarm.

With this approach, two (0,1) indicators are established; one for a lower alarm
and one for an upper alarm of the signal. There are thus two more variables for
each signal.

4 Self-Organizing Maps

The self-organizing map (SOM) provides a data-driven approach to process mon-
itoring and modeling. The method has the advantage that little or no a priori

information is needed about the system domain and it is not necessary to de�ne
the process model analytically [2].

The monitored process should be static or else the map is not able to visualize
the data correctly. A problem will arise especially if the future measurements
have some kind of trend or gradual development.

The theory of SOM is utilized here only brie
y. According to Kohonen [3], a
SOM converts nonlinear statistical dependencies between high-dimensional data
into simple geometric relationships, usually on a two-dimensional grid. It can
therefore serve as a clustering tool for problems where traditional methods are
not eÆcient enough.

Each neuron of the SOM is represented by an l-dimensional weight vector.
The neurons of the map are connected to adjacent neurons by neighborhood rela-
tions, which assign the topology of the map. Hexagonal or rectangular topology
is usually used. In the basic SOM algorithm, the topology and the number of
neurons are �xed at the beginning.

The weight vectors of the map can be initialized randomly by setting the
vector components to random values that are evenly distributed in the area of
corresponding data vector components. Linear initialization can also be used.
In that case the weight vectors are initialized in an orderly fashion along the
two-dimensional subspace spanned by the eigenvectors of the input data.

As with other neural networks, the SOM will also yield poor results if erro-
neous data are used. Therefore, the input data must be pre-processed carefully.
The data variables must be quantitative, e.g. symbolic data should be trans-
formed into a suitable form. If the scales of the input variables are very di�er-
ent, the variables should be normalized, which gives all the variables an equal
in
uence in the training phase of the SOM. The SOM is able to handle missing



values, but if a large number of components is missing, it will a�ect the reliability
of the map.

The SOM is iteratively trained, and it tends to approximate the probability
density of the data. Let Xn�l, where n is the number of measured values and l

is the number of variables, denote the whole data set. One sample vector is the
i:th row of the matrix X . At each training step, one sample vector is randomly
drawn from the input data set and the similarities between this vector and all
the weight vectors are computed. The best-matching unit (BMU) is the map unit
whose weight vector is closest to the sample vector. When the BMU is found,
the values of BMU and its topological neighbors are updated.

The quality of mapping can be measured using the average quantization
error, which is the average distance between the input vectors and the corre-
sponding BMUs. The accuracy of the results can be visualized with independent
quantization errors for each observation. For better understanding of the results,
the map can be characterized by labeling the data units. If no labels are avail-
able, inspection of the weight vectors and the clusters of the map may help in
characterization [4].

The uni�ed distance matrix can be used for structure visualization of the
SOM. The matrix consists of the distances between the map units on a two-
dimensional map, and the matrix can be represented by a grey-level image. The
lighter the color between any two map units is, the smaller is the relative distance
between them. Component plane representation visualizes relative values of the
weight vectors separately for each input variable.

For more information about self-organizing maps, the comprehensive book
of Kohonen is recommended [3].

5 Application Results

5.1 Health Indicators

There are many events that in
uence the behavior of the selected signals of the
test subjects. The calculation of dynamic control limits is simple, and the limits
give us guidelines for research on the system. In this alarm system, the critical
points of the data are not as important as the drastic change. But if the signal
remains longer in a hazardous area identi�ed based on a priori knowledge, a
continuous alarm will be given. For some variables these hazardous areas are
easy to de�ne (e.g. temperature), but for most of the variables the de�nition is
highly dependent on the subject.

As mentioned above, eight variables were chosen for the study of the dynamic
behavior of human physical structure. After �ltering the artifacts, the idea of
dynamic control limits was applied to the data. The limits were calculated using
the Matlab version 5.3. and a Sun Ultra 10 workstation.

The variables modeled were diastolic (DBP) and systolic (SBP) blood pres-
sure, the mean and the standard deviation of R-R intervals (RR and RRSTD
respectively), activity (ACT), weight (WEIGHT), body temperature (TEMP)



and quality of sleep (QS%). They were assumed to describe the person's physical
condition in the best possible way. Both SBP and DBP were chosen, because
they are a�ected by di�erent physical states [5]. Figure 1 shows the dynamic
control limits for the diastolic blood pressure of one person. It can be seen that
both the extreme values of DBP and the rapid changes are recognized. Later on
the alarms are marked as ah if lower and yh if upper alarm is considered.
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Fig. 1. The dynamic control limits for diastolic blood pressure and the original signal.

Time is shown on the x-axis and mmHg on the y-axis.

The sliding history (earlier referred to k) was chosen to be nine for all vari-
ables. This means that three days of measurements were taken into account
in building the present value of the dynamic control limit and all the previous
values were ignored.

The weighting procedure for DBP was de�ned to follow the person's diurnal
blood pressure rhythm [6]. The weights were chosen to strengthen the previous
value and the measurement made at the same time on the previous day. The
value between these two was also weighted. A similar weighting procedure was
used for the other variables, too.

Because of the long measurement period, the subjects were not able to carry
out the measurements continuously. The data therefore contain a great deal of
missing values. This is also due to problems with the measurement devices. The
missing values were replaced by the average of the earlier values of the signals
within the sliding history.



5.2 Combining Alarms

The combination of alarms is important, because it helps to attribute the inter-
actions between the variables to the subjective records and to control the whole
system simultaneously.

Self-organizing maps have been used to monitor many di�erent industrial
processes [2]. As far as the human being is concerned some substantial di�er-
ences can be found compared to industrial processes, however. First of all, the
conditions in normal life are not homogeneous and not always predictable. The
physical system of a human being is not stable, and many normal every day activ-
ities may a�ect the measured signals considerably. SOM visualizes this complex
system into a simple and descriptive picture. A Sun Ultra 10 workstation and
SOM TOOLBOX [7] with Matlab 5.1 was used for the training and visualization
of the self-organizing map.

For the four subjects, the data were divided into a training period and a test
period. The test period covered the last four weeks from the data set, and it was
used to con�rm that the contents of the areas remain similar when new data is
fed into the map.

The size of the map was 30x21 units and linear initialization was used. After
the training, the map was compared with the diary and other records in order to
�nd a correlation between the results and daily activities or subjective feelings.

Fig. 2. Self-organizing map for an alarm combination.

Figure 2 contains one large light-colored area as well as some smaller areas.
The large area stands for the observations with no alarms and the small areas
for di�erent alarm combinations. The content of the areas can be seen in Figure
3, where the component planes of each variable are shown.

A small R-R average and low heart rate variability overlapped for several
measurements, most of which had been recorded during or right after physical
exercise.
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Fig. 3. Component planes of SOM.

Body temperature may have biased the results, because it can be easily
measured wrongly, and actual temperatures can therefore be higher than in the
data. This would explain some of the odd results.

Figure 4 visualizes the quantization errors for the training set. The bigger
the circle, the poorer is the mapping result. Poor results in the alarm areas are
due to the high variability between the other measurements in that area. The
normal area has a large amount of training data points and therefore distinct
separation of the data points.

Fig. 4. Quantization errors for the map.



The SOM TOOLBOX provided a tool for tracking the system's state in time
with the trajectory. If abnormal states do not occur too often, the tool is very
useful, but for human beings it only jumps around the map. It is impossible to
predict where the system is going to shift next.

The other test subjects showed some results similar to those described above.
There were some areas where the measurement time dominated the map, and
exercise also had an impact on the results.

6 Discussion

A sliding history of three days seems to be a good choice for the calculation of
dynamic control limits. If the history is longer, the borders are smoother but the
con�dence limits wider. If the history is shorter, the con�dence limits are too
narrow. The weights chosen re
ect the local variability of the signals. If there
were no weights, the control limits would be far too wide.

Speci�cation of the suitable percentage of smoothing the signal in order to
identify the erroneous and extreme measurements has to be done individually for
each person and variable, because the ranges are dissimilar for distinct persons
and di�erent variables.

The dynamic limits are fairly adaptive, and they therefore provide no alarms
for trends. In this way, important aspects of the person's general health may go
unnoticed. For the subjects at hand, this is not a problem, because the measuring
periods were quite stable, which was investigated carefully.

The method has only been applied to four subjects so far, and the results
cannot be generalized to larger populations. But the idea can be utilized straight-
forwardly for new subjects. If a totally di�erent application is concerned, some
e�ort is required for variable selection and parameter adjustment.

The role of physical exercise is remarkable in the self-organizing map. It is
diÆcult to extract other abnormalities from the data when everyday activities
dominate the measurements.

It was an interesting �nding that, for the investigated subjects, physical ex-
ercise a�ected the measured signals quite similarly. Furthermore, the in
uence
remained for a while after the exercise.

Based on the �ndings on these four subjects, it is clear that no map can
adequately apply to all the subjects, because the reactions caused by di�erent
stress states occur individually.

There are some di�erences between morning and evening measurements. Af-
ternoon and evening measurements tend to appear in the same areas, however.
The reasons why the measurement times vary are di�erent for the subjects. One
subject has a map that di�erentiates the mornings from the other measure-
ments by DBP and SBP. The subject had no high values for blood pressure in
the mornings. The maps of the other subjects did not show similar incidents,
partly because their overall variability in blood pressure was larger. The other
subject had a map which was di�ered because of activity: he walked almost ev-
ery morning during the calculation of heart rate and activity. His heart rate was



also high. Another explanation might be that his alcohol consumption was really
high.

One subject had a low percentage of quiet sleep during the test period. The
cause for this was not found, but it a�ected the daytime co�ee consumption.
The others did not have similar incidents, but the whole measurement periods
were more or less stable.

An analysis of the quantization error in the map for di�erent measurements
showed that the biggest errors were in the alarm areas. This was due to the
fact that the measurements with alarms were not so homogeneous as the normal
measurements, and small alarm areas showed quite large variability. The same
tendency was also found during the test periods. When visualizing the response
surfaces of the map, notable quantization errors also occurred whenever the
winning neuron of the map was not clear.

The high number of missing values was a problem for most of the subjects,
and extrapolation of the signals was performed. This procedure does not give
right values for the data and may bias the results, but at this point of research
it helped to develop the tools for analysing the results.
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