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Abstract. Simple and composed measures of the electrocardiographic

(ECG) waveshape are generally used to detect and classify di�erent kinds
of cardiac arrhythmic beats. In the last years, the development of com-

puter technique allowed an increasing number of electrocardiographic

measurements to be extracted and stored for each cardiac beat. As a
consequence, analysis systems of any kind result to be more complex and

the interpretation of the decision process less transparent. This happens

for traditional \black-box" systems, such as neural networks, as well as
for techniques supposed to be easy to interpret, such as fuzzy systems. A

method is presented that analyzes high-dimensional fuzzy classi�ers \a

posteriori", in order to give insights about the decision process and pos-
sibly to reduce the input space dimension. This method is applied to an

arrhythmia classi�cation task, considering twelve ECG measures for each

beat and three arrhythmic classes on the MIT-BIH database records. A
possibilistic information gain is de�ned for every ECG measure with

respect to the adopted fuzzy model. Such information gain supplies a

measure of the discriminative power of the corresponding ECG feature
and o�ers insights about its impact on the decision process.

1 Introduction

In the last years it has become more and more common to collect and store
large amounts of data from di�erent sources. Also in the automatic analysis of
the electrocardiographic (ECG) signal, the parameters extracted from each ECG
beat waveshape are growing dramatically, including more simple ECG measures
and more of their linear and nonlinear combinations. An automatic classi�cation
system [1] is usually applied, to detect similarities among the ECG beats and/or
to cluster the input space, with performances depending on the adopted method.

The high dimension of the input space, however, can make the task of the
classi�er very complicated, even more if such a high input dimension includes
uninformative or unreliable measures. In addition some input features can be
redundant, because the carried information heavily overlap with that of other
input features. The structure of the resulting classi�er will be then very compli-
cated and the corresponding decision process not easy to interpret.

Some data analysis techniques are complicated \per se ", such as neural net-
works, because they do not implement a transparent decision process to the user.



Other data analysis algorithms are by now famous for their easy interpretability,
such as fuzzy systems [2]. On the other hand, the high dimension of the input
space and the strong fragmentation of the output clusters can still produce a
quite complex set of fuzzy rules. The easy interpretability of the fuzzy models
may fail. Thus automatic tools for the analysis of fuzzy systems become neces-
sary, as a support for the following interpretation performed by human experts.

A possibilistic information gain, introduced in [3], is used to characterize the
discriminability power of the input features in a fuzzy model, that implements
a cardiac arrhythmia classi�cation task. Such information gain indirectly mea-
sures the impact of each ECG feature on the decision process, constructed with
a given automatic algorithm on a particular training set. This analysis of the im-
plemented fuzzy model produces useful insights on the e�ectiveness of the ECG
features in terms of arrhythmia characterization and gives hints for dimension
reduction.

2 The problem of cardiac arrhythmia classi�cation

A very suitable area for fuzzy decision systems is represented by medical data.
Medical reasoning is quite often a qualitative and approximative process, so that
the de�nition of precise diagnostic classes with crisp membership functions can
sometimes lead to inappropriate conclusions. The intra-patient variability as well
as the amount of uncertainty in the symptoms description quite often require
only a qualitative reasoning, where exceptions bene�t of individual decision rules.
One of the most investigated �elds in medical reasoning is the automatic analysis
of the electrocardiogram (ECG), and inside that the arrhythmia classi�cation.

Some cells (the sino-atrial node) of the upper chambers (the atria) in the
cardiac muscle (the myocardium) spontaneously and periodically change their
polarization, which progressively extends to the whole cardiac muscle. This pe-
riodic and progressive electric depolarization of the myocardium is recorded as
small potential di�erences between two di�erent locations of the human body
or with respect to a reference electrode. An almost periodic electrical signal, the
ECG, that describes the electrical activity of the myocardium in time, is the re-

sult. Each time period, varying between 700 and 1000ms ca in healthy subjects,
consists of a basic waveshape, where some time components or waves are easily
recognizable and generally marked with alphabet letters: P, Q, R, S, T (Fig. 1).

The P wave describes the depolarization process of the two upper myocardium
chambers, the atria; the QRS complex all together the depolarization of the two
lower myocardium chambers, the ventricula; and the T wave the repolarization
process at the end of each cycle. The muscle contraction follows the myocardium
depolarization phase. Anomalies in the PQRST waveshape are often connected
to a misfunction of the electrical impulse conduction on the myocardium.

A big family of electrical misfunctions of the myocardium consists of arrhyth-
mia. Arrhythmic heart beats generally refer to anomalous (ectopic) origin of the
depolarization in the myocardium. If the depolarization does not originate in
the sino-atrial node, a di�erent path is followed by the depolarizing wavefront



0 s0.2 0.4 0.6

0.0

P
U

PR
segment segment

ST

PR interval

QRS interval

T

1.0 R

Q
ST interval

S QT interval

- 0.5

0.5

mV

Fig. 1. The ECG waveshape

and a di�erent waveshape appears in the ECG signal. There are several classes
of arrhythmic beats, the most common of which refer to an anomalous origin in
the atria (SupraVentricular Premature Beats, SVPB) or in the ventricula (Ven-
tricular Premature Beats, VPB) and occur randomly in time. Supraventricular
arrhythmia originate in the atria, therefore not far from the sino-atrial node.
The morphology of the resulting ECG waveshape is very close to the one of nor-
mal beats, except for the P wave and a shorter preceding beat-to-beat interval
(the RR interval). Ventricular arrhythmia originate in the ventricula and the
corresponding ECG waveshape presents generally a very altered QRS shape and
sometimes a shorter preceding RR interval.

With the development of automatic systems for the detection of QRS com-
plexes and the extraction of their quantitative measurements, large sets of data
can be generated by extracting beat measures from hours of ECG signal. A
higher number of measures though does not guarantee better performances of
the upcoming beat classi�er, because of the quality of each measure as well as
of its signi�cance. It becomes important then a �rst screening of the collected
measures, in order to keep only the most signi�cant ones for the analysis. This
has the double advantage of making easier the classi�cation task and possibly
of improving the classi�er's performance if poor quality measures are discarded.

The MIT-BIH database [4] represents by now a standard in the evaluation
of methods for the automatic classi�cation of the ECG signal, because of the
wide set of examples of arrhythmic events provided. The MIT-BIH ECG records
are two-channel, 30 minutes long, sampled at 360 samples/s and annotated by
trained cardiologists. A subset of 39 ECG records is selected for this work on the
basis of the presence of only arrhythmic classes. All �les with pace-maker beats
are not considered. QRS complexes are detected and for each beat waveshape a
set of 12 measures [5] is extracted by using the �rst of the two channels in the
ECG record (Tab. 1).



Table 1. Set of measures characterizing each QRS complex

RR RR interval/average of the previous 10 RR intervals

QRSw QRS width (ms)

pAmp Positive amplitude of the QRS (�V)

nAmp Negative amplitude of the QRS (�V)

pQRS Positive area of the QRS (�V * ms)

nQRS Negative area of the QRS (�V * ms)

T area of the T wave (�V * ms)

IVR Inverted ventricular repolarization: IV R = pQRS+nQRS

T

ST ST segment level (�V)

STsl slope of the ST segment (�V/ms)

P P exist (yes 0.5, no -0.5)

PR PR interval (ms)

3 Impact of input features on a fuzzy decision process

3.1 The use of fuzzy logic in medical reasoning

As it was already observed in section 2, fuzzy logic has always been particularly
appealing to physicians and medical experts for two main reasons. The �rst
one is that fuzzy logic allows the de�nition of qualitative rules with a certain
amount of uncertainty, which is very similar to the medical reasoning process.
The second reason of fuzzy logic popularity for clinical applications consists of its
easy interpretability, so that the decision process is extremely easy to understand
by human experts. Moreover, such easy interpretability allows external changes
by experts on the decision process.

In the past, because of this similarity of fuzzy logic with medical reasoning,
several attempts have been made to translate medical knowledge into a set of
fuzzy rules [5]. In general, however, such translation process was not accurate
enough, lacking of the description of many particular cases. Consequently, au-

tomatic fuzzy classi�ers quite frequently outperformed systems with fuzzy rules
derived from medical knowledge. On the other side, to cover all possible par-
ticular cases of the training set, a very high number of fuzzy rules is usually
generated by the automatic classi�ers. This high number of fuzzy rules and the
high dimension of the input space complicate the work of medical experts in
interpreting and comparing di�erent fuzzy systems for the same analysis task.
The de�nition of automatic tools for the description of particular properties of
fuzzy models would supply a support for the interpretation work of experts.

In this paper, we apply a modi�cation of a fuzzy feature merit measure,
introduced in [3], for the analysis of fuzzy systems that implement the three-
class discrimination task described in section 2. The fuzzy feature merit measure
consists of a measure of the information gain that follows the use of a given input
feature xj for the classi�cation process.



3.2 Possibilistic information gain

Given a number m of output classes Ci, i = 1; : : : ;m, and an n-dimensional
input space, numerous algorithms exist, which automatically derive a set of NR

fuzzy rules fRkg, k = 1; : : : ; NR, mapping the n-dimensional input into the m-
dimensional output space. This set of rules models the relationships between the
input data x 2 Rn and the output classes Ci 2 R

m.
Each input pattern x = fx1; : : : ; xng is associated to each output class Ci

with a membership value �Ci
(x) resulting from the set of rules fRkg.

V (Ci) =

Z
D�Rn

�Ci
(x) dx (1)

v(Ci) =
V (Ci)Pm

j=1 V (Cj)
(2)

The volume of the membership function �Ci
(x) over the domain D � Rn

(eq. 1) represents the smallest tile of information to use to span the whole deci-
sion process.

An informationmeasure can then be applied, to distinguish fuzzy models with
only one membership function (no information) from fuzzy models with a very
high number of membership functions (high information). The usual information
measures from information theory could be applied, such as the entropy or the
Gini function. However such information functions require the variable to sum
up to 1, to correctly describe the di�erent contribution of each variable. The
sum of volume V (Ci) across output classes i = 1; : : : ;m is not necessarily one,
but actually grows with the number of output classes.

A solution to this problem was found in [3] by applying the cited information
measures to the relative volume v(Ci) of class Ci (eq. 2), as de�ned in equation
3 and 4. Such information measures are 0 when the set of fuzzy rules is empty
or describes only one output class. The maximum of information is reached with
a number m of output classes with similar relative volumes. If the member-
ship functions range between 0 and 1, similar relative volumes means volumes
extending on similar portions of domain D.

I(C) = H(C) = �

mX
i=1

v(Ci) log2(v(Ci)) (3)

I(C) = G(C) = 1 �

mX
i=1

(v(Ci))
2 (4)

The measures of information de�ned in 3 and 4 do not take into account
how representative a membership function is. For example, membership function
�Ci

(x) of class Ci could represent only a few outliers of the training set. On the
opposite �Cj

(x) of class Cj could represent a relevant portion of data of the
training set. More information is then associated with �Cj

(x) than to �Ci
(x).

This observation is reported into the de�nition of the information measure
by using a di�erent volume from V (Ci) in eq. 1. In eq. 5 the number N (Ci) of
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Fig. 2. Stripes ck generated by cutting along variable x2 (b)and x1 (c)

training data represented by membership functions �Ci
(x) is introduced as a

weight for the volume of �Ci
(x). Membership functions that represent a higher

number of data will have more in
uence in the de�nition of the information
measure. Membership functions covering just a small number of outliers will
in
uence less the information measure value.

V̂ (Ci) =

�Z
D�Rn

�Ci
(x) dx

�
N (Ci) = V (Ci) N (Ci) (5)

I(C), as in eq. 3 and 4, represents the amount of possibilistic information
intrinsically available in the fuzzy model, re
ecting the information contents in
the training set. At this point, we want to characterize the discriminative power
of the input features of the fuzzy model by means of such de�ned information
measure.

Given a fuzzy description of the input space, the use for classi�cation of
input variable xj consists of an appropriate threshold system de�nition along
input dimension j. The optimal classi�cation thresholds on a given dimension
j are located at the intersection points of contiguous membership functions of
di�erent output classes [6]. If the input parameter xj is employed to classify the
input space, a set of thresholds is created to separate the Fj � NR contiguous
trapezoids on the j input dimension representing di�erent output classes. Be-



tween two consecutive thresholds a linguistic value Lk, k = 1; : : : ; Fj, can be
de�ned for variable xj (�gure 2).

Considering xj = Lk corresponds to intersect the original membership func-
tions with the segment xj = Lk, that is to isolate one stripe ck on the input
space. Each stripe ck is characterized by a local information I(Cjxj = Lk) as
de�ned in eq. 3 or 4. The average possibilistic information I(Cjxj) of the fuzzy
model across all linguistic values Lk corresponds to the averaged sum of the
local information of stripes ck (eq. 6) and represents the information left into
the system after variable xj was used for the analysis.

I(Cjxj) =
1

Fj

FjX
k=1

I(Cjxj = Lk) (6)

Finally, the relative information gain derived from the use of variable xj can
be de�ned as:

g(Cjxj) =
I(C) � I(Cjxj)

I(C)
(7)

The xj input features producing the highest information gain are the ones
mainly used by the adopted model to express the possibilistic information in-
trinsic to the input space, and therefore the most e�ective for the proposed
analysis.

The de�ned possibilistic information gain was developed taking as a model
the decision trees approach [7]. Instead of the a priori probability of class Ci,
p(Ci), the relative volume of class Ci is considered. The main advantages of using
a fuzzy instead of a probabilistic model are the low computational expenses and
the interpretability in terms of medical knowledge.

Low computational expenses are due to the simple nature of fuzzy logic.
Because of that, the de�nition of the membership functions and the calculation
of their volumes do not require any complex mathematical operations, even
more if particularly simple membership functions as trapezoids are chosen. The
representation of decision process by means of qualitative rules represents the
second advantage of the use of fuzzy models. In this way, a precise quantization
of the input features and a sure attribution of each pattern to an exclusive output
class are not required.

In the future a comparison between the de�ned fuzzy information gain and
probabilistic feature merit measures should be performed. In this work, we limit
our investigation to the use of fuzzy models.

4 ECG measures impact on cardiac arrhythmia

classi�cation

4.1 Arrhythmia classi�cation

A three-class problem { Normal (N) vs. Ventricular Premature (VPB) vs. SupraVen-
tricular Premature Beats (SVPB) { is considered. Two thirds of the MIT-BIH



Table 2. System performance on the test set

N VPB SVPB average unc.

.92 .78 .71 .80 .04

database records are used as training set and the remaining one third as test set.
Twelve ECG beat measures, as described in table 1, are used as input vector to
characterize the ECG beats.

At this point, an automatic fuzzy rules generator is implemented to clas-
sify the input space. Several algorithms are available to perform this task. We
adopted the algorithmdescribed in [8], because it has already shown good perfor-
mances on other classi�cation tasks [8]. Trapezoidal membership functions are
used, because of their computational properties. The algorithm automatically
constructs a set of fuzzy rules based on a set of training examples, by introduc-
ing new fuzzy points when necessary and adjusting the existing ones to cover new
training examples. For classi�cation purpose, the membership functions of the
fuzzy model were weighted by the number of covered training patterns N (Ci).
This helps in solving con
icts between very representative membership functions
towards membership functions representing outliers of the training set. With this
strategy performance usually improves for all the output classes and particularly
for the correct recognition of SVPBs [6].

As a �rst attempt, all the twelve ECG measures are used for the classi�cation.
The proportions of correctly classi�ed beats (N, VPB and SVPB) of the test set
are reported in table 2. Beats are labeled as uncertain (unc.) if they are not
covered by any trapezoids of the fuzzy model. The proportion of uncertain beats
(unc.) is de�ned with respect to the number of beats in the whole test set, as in
eq. 8 where nuncovered is the number of uncovered ECG beats and npatterns the
total number of ECG beats in the test set.

unc =
nuncovered

npatterns
(8)

We have decided to show the system performance by means of the proportion
of correctly classi�ed beats for each output class separately, in order to have an
idea of the system performance towards each output class. More global indices,
such as the average of correctly classi�ed beats across output classes reported in
the fourth column of table 2, do not depict a su�ciently detailed frame of the
system performance for the purpose of this paper.

The system performance is quite good in comparison with the state of the
art [5]. It remains to ascertain whether all twelve ECG measures are necessary
for such performance and, if not, which are mainly responsible for the correct
classi�cation and which are useless.



4.2 Ranking ECG measures

The information gain, as de�ned in section 3.2, is now calculated for each one
of the input features of the fuzzy model. The obtained values are reported in
the �rst row of table 3 in the �rst twelve columns. The last four columns report
the proportions of correctly classi�ed and uncertain beats, that, at least in the
�rst row, are the same as in table 2. The highest information gains are marked
in bold.

Subsequently, the ECG measures with smallest information gain are progres-
sively removed from the input vector. A new set of fuzzy rules is then obtained
as a projection of the previous system on the remaining input features and with-
out any re-training process. The new information gains and the new system
performance are calculated and reported in the following rows of table 3.

Table 3. Information gains for di�erent ECG measures.

RR QRSw pAmp nAmp pQRS nQRS T IVR ST STsl P PR N VPB SVPB unc.

.09 .16 .35 .02 .44 .09 .01 .05 .00 .04 .00 .36 .92 .78 .71 .04

.09 .15 .36 .02 .44 .05 .01 .04 .00 .03 - .37 .91 .77 .78 .02

.06 .14 .36 .01 .45 .02 .01 .05 - .03 - .36 .94 .77 .76 .00

.07 .15 .31 - .25 .05 .01 .01 - .04 - .15 .97 .76 .80 .00

.04 .16 .30 - .24 .04 - .01 - .04 - .15 .97 .74 .82 .00

.02 .14 .26 - .21 .02 - - - .03 - .18 .96 .76 .84 .00

.03 .14 .25 - .21 - - - - .03 - .19 .89 .81 .68 .00

.01 .13 .14 - .14 - - - - - - .11 .93 .81 .69 .00

- .07 .04 - .04 - - - - - - .15 .72 .81 .44 .00

- .05 - - .06 - - - - - - .14 .68 .80 .64 .00

- - - - .11 - - - - - - .18 .72 .16 .65 .00

- - - - - - - - - - - .05 .73 .00 .67 .00
- - - - .13 - - - - - - - .71 .47 .19 .00

- - .15 - - - - - - - - - .80 .28 .00 .00

- .10 - - - - - - - - - - .78 .75 .04 .00

In the �rst row of table 3, where all twelve ECG input parameters are used,
only three ECG measures present a remarkably high information gain: the pos-
itive amplitude of the QRS, the positive area of the QRS and the PR interval.
The �rst two are related with each other and likely share the task of distin-
guishing VPBs from normal beats. The PR interval on the contrary should be
responsible for the classi�cation of normal vs. SVPB beats. Smaller, but still not
negligible, information lies on the width of the QRS complex, the RR interval
and the negative area of the QRS complex.

Of the original twelve ECG input measures only six appear to be necessary
to solve the arrhythmia classi�cation problem on the adopted subset of the MIT-
BIH database. The remaining six ECG measures produce zero (P wave and ST



amplitude) or close to zero (negative amplitude of the QRS complex, Inverted
Ventricular Repolarization, ST slope and area of the T wave) information gain.

The removal of the input parameters with zero information gain does not
make worse the performance of the fuzzy classi�er, but actually improves the
normal vs. SVPB beats classi�cation of some point, as shown in second and
third row of table 3 after removing the P wave existence and the ST amplitude
respectively.

Even the removal of IVR, T wave area and negative amplitude of the QRS
complex { all with information gain close to zero in the original system { does
not degrade, but improves the system performance up to .96 normal beats, .76
PVBs and .84 SVPBs correctly recognized. Such ECG measures with circa zero
information gain are not only redundant but lower the system performance,
because very likely they focus on the classi�cation of a few exceptions of the
training set.

Until now, only the input features with very low information gain in the �rst
row of table 3 were removed and the system performance was not damaged by
that. At this point only the six input features with not negligible information
gain in the original set of fuzzy rules are left in the input vector. Let's see what
happens if the ones with lowest information gain in the derived fuzzy model
are removed. Removing the ST slope and the negative amplitude of the QRS
complex reduces the system performance of some points, particularly the normal
vs. SVPB classi�cation.

However the system performance is still acceptable (seventh and eighth row
of table 3). It drops down dramatically only when one of the remaining ECG
measures is removed from the input vector. Indeed the four ECG measures left
at this point in the input vector were the ones with highest information gain in
the original model and because of that they are expected to be quite in
uential
on the overall decision process.

As �rst, the RR parameter is removed, because it has the lowest information
gain at this point of the analysis. While this does not a�ect the VPBs classi�-
cation rate (still .81), the discrimination of SVPBs (only .44) vs. normal beats
(.72) becomes less reliable. The information gain, as de�ned in section 3.2, does
not only describe the separability of the output classes, but also the fragmenta-
tion of the membership functions on a given input dimension. A very fragmented
description, that is many small linguistic values, of input dimension xj will pro-
duce many stripes ck each one covering a limited number of training examples.
In each stripe ck all relative volumes will be similar, because of the reduced size
of the stripe and because of the low value of weight N (Ci). I(Cjxj) will be high
and consequently g(Cjxj) will be low. The RR parameter is then penalized by
its very fragmented set of linguistic values.

In the following row, a more fair discrimination between normal beats and
SVPBs is re-established, by the removal of the positive amplitude of the QRS
complex. This shows that the pAmp parameter is informative only if together
with the prematurity degree of the beat. The system performance is still rel-
atively high, but the con�guration of the input vector is quite minimal. The



removal of the next input feature (QRS width) will damage further the system
performance.

In the bottom part of the table, the most important input features are an-
alyzed alone. The PR interval results to be important for the discrimination
between SVPBs and normal beats exclusively. The QRS width and up to some
extent the QRS positive amplitude provide the discrimination between VPBs
and normal beats. Finally the positive area of the QRS complex distinguishes
part of the VPBs and part of the SVPBs from the normal beats.

Alone these ECG input measures can not perform as well as when they are
considered together. This is expressed by the drop in information gain, occurring
when one of the other ECG measures is missing. For example, the RR interval
itself shows quite a low information gain, due to a too fragmented classi�ca-
tion along this dimension. On the other side, when the RR interval is removed
from the input patterns the information gains of QRS width, positive amplitude
and positive area decrease dramatically. Only the PR interval keeps its informa-
tion gain constant, showing its independence on the RR interval in the decision
system.

Such considerations are con�rmed by medical knowledge, where the QRS
complex features are usually employed for ventricular arrhythmia classi�cation
and the prematurity degree, the PR interval and the P wave existence are used
mainly for the SVPBs and partially for the VPBs classi�cation vs. normal beats.
The fact that the prematurity degree parameter (RR) is so fragmented is some-
what surprising, but that could be the key of the di�erent behaviour of fuzzy
systems derived from medical knowledge and automatic fuzzy classi�ers. Indeed
the clusterization of the output classes based on the RR parameter could be
more fragmented than what assumed by medical knowledge, because di�erent
side conditions may give di�erent meaning to the prematurity degree of a beat.
On the other side, it could also be that the prematurity degree as de�ned in
table 1 is inadequate for the implementation of a reduced set of fuzzy rules.

A similar set of experiments was performed on some of the considered ECG
records [3], particularly on records 200 and 233. In this case, a re-training phase
of the system was allowed after the removal of the input features with lowest
information gain. Generally, after re-training the information gain is di�erently
distributed among the ECG measures describing the same part of the ECG
waveshape. For example, new QRS complexmeasures, di�erent from the previous
ones, can carry the main information for VPBs classi�cation. Since all QRS
measures are related with each other and carry similar amounts of information,
the algorithm chooses every time one of those measures according to the sequence
of training pattern presentation and to the more or less informative combinations
of input features.

5 Conclusions

A method is presented to analyze input features merit in fuzzy systems. After a
fuzzy model is available for a given training set, its input features are analyzed



in terms of information for the �nal task implemented by the fuzzy model. In
particular, a cardiac arrhythmia classi�cation task has been considered for this
paper.

Twelve simple and composed ECG measures are used to characterize car-
diac beats of electrocardiographic records from the MIT-BIH database. A fuzzy
model is built and the input features merit analyzed. Six main ECG measures are
detected: the prematurity degree (RR), the QRS width, the positive QRS ampli-
tude and area, the negative QRS area and the PR interval. Among them, the PR
interval was mainly responsible for normal vs. SVPBs classi�cation, while the
QRS width and positive area and amplitude characterized several sub-clusters
of VPBs. The main advantage of the presented method consists of the low com-
putational expenses, inheritated from the characteristics of fuzzy systems.

In the future, a comparison with probabilistic feature merit measures has to
be performed and the information gain associated with combinations of ECG
measures for arrhythmia classi�cation has to be investigated.
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