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Abstract

A system for full-automatic extraction of uorescence information from lymphocytes in

digital microscope images is presented. It is applied on samples of lymphocytes invading muscle

tissue. From a single sample images are taken using n di�erent uorochrome antibody markers.

In every image a di�erent subset of the lymphocytes appears through uorescence. The

uorescent cells in every image are detected by an arti�cial neural network. After detection,

corresponding uorescences of each cell in di�erent images are collected in lists of length n,

called marker combination patterns. Each binary element of a pattern represents, if a cell

was uorescent (1), or not (0) in a particular image. The whole algorithm of detection and

correspondence analysis is easy to adapt and computes fast. This automation allows us to gain

reproducible data and opens the door for a statistical analysis of a large number of uorescence

patterns.

1 Introduction

In our work we focus on extracting multi-dimensional information about the uorescence behavior

of lymphocyte cells from microscope images.

A uorescence microscope technique [Schubert, 1992] delivers a stack of n images of a single sample

by preparing it with n di�erent uorochrome markers mi; i = 1; : : : ; n. In every image di�erent

subsets of the lymphocytes are uorescent and appear with shining boundaries. Every lymphocyte

in the sample has its speci�c uorescence behavior in the image stack. It is uorescent in a subset

of images and is invisible in the rest of the stack. We want to collect the di�erent uorescences for

each lymphocyte in n-dimensional binary lists (see �g. 1). The ith element of a lymphocytes list

denotes if the cell was uorescent in the ith image (1) or not (0). The binary list of a cell is called

its marker combination pattern

pj = (f
(i)
1 ; ::; f (i)

n ); f
(i)
i 2 f0; 1g:

To extract the uorescence patterns from the image stack the uorescent lymphocytes in the n

images have to be detected. The uorochrome-marked lymphocytes di�er in number, location and

intensity, therefore, image parameters like contrast and noise change from image to image. Because

the lymphocytes are located in tissue their shape and size show considerable variation. Image

interpretation by human employees is infeasible, because it takes to much time and the results are



often unreliable, since the visual inspection is tiresome and makes concentration decrease even after

a short time.

Previous related work for automatic cell detection has mainly centered around model-based ap-

proaches. Those include the idea of �tting a geometrical model to a gradient ensemble

([Mardia et al., 1997], [Dow et al., 1996]), the use of wave propagation [Hanahara and Hiyane, 1990]

or a Hough-transform to detect circle-like objects ([Gerig and Klein, 1986],[Ballard, 1981]). These

approaches are often sensitive to changes in the shape of the object and can not be adapted easily

by a non-expert. Furthermore, the images are noisy because of heterogeneous light conditions and

the cells occlude partially which makes a detection by boundary tracing ([Galbraith et al., 1991])

unsuitable.

Our new approach is a model-free algorithm for cell detection based on neural networks. An arti-

�cial neural network computes for every point of an image an evidence value, which describes the

degree of belief that a uorescent cell is centered at this point.

After obtaining the positions of the cells, the complete uorescence patterns are gained by calcu-

lating the correspondences of the cells' positions in the n images. This is done by evaluating the

evidences of the neural network of all images to get the positions of all lymphocytes that were

uorescent in at least one image. A simple search for corresponding lymphocyte positions in the n

images delivers the desired uorescence patterns.

2 Multiparameter Fluorescence Imaging

We use uorochrome markers on lymphocytes to identify the presence of proteins in the cells surface.

Each marker binds to a subset of the lymphocytes which depends on the existence of the protein in

the lymphocytes membrane. Fluorescence excitation makes the binding lymphocytes appear with

high intensities and an image is taken by a CCD-camera. After that, the marker is bleached from the
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Figure 1: Simpli�ed sketch of the imaging process: The lymphocytes are prepared with n markers

in an iterative procedure. At each step, the uorescence excitation makes those lymphocytes appear

in the image that bind to the marker. An intensity image is taken by an integrated CCD-camera.

After all n steps are completed a stack of n images with di�erent subsets of lymphocytes can be

evaluated.



cells and the process is repeated with another marker. In our system the process of marking, imaging

and bleaching can be repeated with up to nine markers (see [Schubert, 1992],[Schubert, 1997] for

details). During each repetition the positions of the lymphocytes are not a�ected, allowing a

matching of positions between di�erent images.

In this experimental set-up we analyze T-Lymphocytes invading muscle tissue in case of sarcoid

Myopathy. We prepared the lymphocytes with n = 7 markers and took seven uorescence images

with di�erent subsets of cells appearing through uorescence (see �g. 2).

3 Automated Cell Classi�cation

The detection of objects in digital intensity images is a main topic in the �eld of computer vision and

classi�cation. In our work we want to detect cells in noisy grey images in front of dull background.

This is interpreted as a classi�cation task. For every point in the image it has to be decided if it is

a center of a cell or not. Since the lymphocytes are located in organic �ber during an invasion their

shape is not circle- but \potato"-like and is called mainly convex. For classi�cation we use a special

kind of neural network, called Local Linear Map (LLM) [Ritter, 1991]). The LLM-classi�cator is

trained by a set of image patches containing cells. After training the LLM-classi�cator computes for

every point in the image an evidence value which represents the degree of belief that a uorescent

cell is positioned there. Evaluating the evidences for every marker delivers the desired uorescence

patterns. The whole learning and classi�cation process is described in �gure 3 and in the following.

3.1 Training the Classi�cator

To train the LLM-classi�cator one image is selected from the image stack. A human expert marks a

set of uorescent cells using a computer mouse. The set of N�N -sized image-patches around these

cells builds the set of positive training examples. A second set of patches is selected by random

(a) (b) (c)

Figure 2: Clippings from three uorescence images: The images show identical regions of the

sample. One can see, that some uorescent lymphocytes appear in every image and some only in

one or two of them.
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Figure 3: Sketch of the system: Using a mouse an expert selects a set of image points which are

centers of cells. These are fed to the LLM-classi�cator which learns the classi�cation rule. Using

the trained classi�cator the uorescent cells in every image are detected. After that corresponding

uorescences are collected to the desired binary uorescence patterns pi.

full-automatically from the same image with a minimum distance of 5 pixels to the expert-marked

regions, which is the set of negative training example patches.

For every training example patch a din-dimensional feature vector x is calculated. Therefore, a

Principal Component Analysis is carried out on the set of hand-selected cell patches. This is a

well-known technique in classi�cation tasks in Computer Vision (see [Turk and Pentland, 1991]for

example). The basic idea of PCA is that the high-dimensional image patch is mapped into a

much lower dimensional (din = 6) feature space. These features provide the input feature vectors

x. Calculating the feature vectors for the positive and the negative input examples delivers the

training set of (input, output)-pairs

� = f(x�;y�)g�:

For the positive training set y� is set to 1, to 0 for the negative ones.

The LLM is given through

fwin
i 2 IRdin ;wout

i 2 IRdout;Ai 2 IRdin�dout; i = 1::lg:



A triple �i = (win
i ;w

out
i ;Ai) is called a node. For training the LLM a pair (x�;y�) is selected from

� by random and the learning rules

�win
� = �in(x� �win

� ) (1)

�wout
� = �out(y� � y(x�)) +A��w

in
� (2)

�A� = �A(y� � y(x�))
(x� �win

� )
T

k x� �win
� k2

(3)

are carried out. �in; �out; �A 2]0; 1[ are decreasing learning step sizes and � holds

� = argminkfk x�win
k kg. So win

� is the next neighbor to input x. This is repeated l � 10:000
times.

The trained LLM-classi�cator performs a mapping of uorescence image points to evidence values

in [0; 1]. To calculate the evidence value for a uorescent cell at one image point the feature vector

x for its surrounding region is calculated and the LLM output for the input x is computed by

y(x) = wout
� +A�(x�win

� ) (4)

with � = argminkfk x�win
k kg.

In this work the number of nodes is l = 5 and the patch size is N = 15.

3.2 Detection of uorescent cells

To detect all uorescent cells in one image of the stack every image point is mapped to its evidence

value by (4). The surrounding image region of the point is given to the classi�cator which calculates

its evidence value. Calculating the evidences for every point of an image gives a so called evidence

map of the image (see �g. 4(b)). Regions of large evidences (bright clouds in evidence maps

in �g. 4(b)) indicate uorescent cells in the corresponding uorescence image. All points with

an evidence value larger than 0:5 and no larger evidences in their neighborhood form the set of

uorescent cells' positions in the image (see �g. 4(c)). This is done for all images of the stack.

3.3 Selection of Threshold by ROC

We validate the selection of threshold t = 0:5 for the LLM by a Receiver Operator Characteristic

(ROC) plot (see [Zweig and Campbell, 1993] for a review). Therefore 20% of the positive examples

and 20% of the negative examples were subtracted from the training set �. The subtracted examples

build the new test set �test of (input,output)-pairs. The remaining examples form the new training

set �train. The LLM is trained as described in section 3.1 with �train. After training, for every input

x of �test the evidence value y(x) 2 [0; 1] is calculated by equation (4). If the output holds y(x) > t

the input vector is classi�ed as a cell (positive), otherwise it is classi�ed as a non-cell (negative).

Using the target output values of the inputs the classi�cation rates of true positives (TP) and true

negatives (TN) for �test were calculated. This was done for 10 di�erent �test and the mean values

for TP and NP were calculated. The results are shown for t = 0:0; 0:1; 0:2; : : : ; 1:0 in �gure 4(d).

One can see that the LLM performs with similar accuracy on positive and negative examples when

t is set to 0:5. Because it is not possible to measure the costs for either false positives or false

negatives t = 0:5 was selected to ensure homogeneous performance on positive and negative inputs.
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pi = (f
(i)
1 ; ::; f

(i)
n ) is set to 1 if a cell was detected in the j-th uorescence image of the stack in a

close neighborhood of its coordinates (xi; yi). The operation is illustrated in �g. 5.
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Figure 5: Collecting of marker combination patterns: The maximum evidence values for all points

are written to the master-evidence map. The positions of all uorescent cells in all images, the

master set are extracted from these. A simple local matching procedure between the master set

and the lists of the cell positions detected for all uorescence images delivers the binary uorescence

patterns of all detected cells.

5 Results

A stack of seven uorescence images were taken as described above. The seven di�erent markers

are cd2, cd3, cd4, cd8, cd11b, cd19 and cd26, which are common antibody markers in uo-

rescence microscopy. The training set of cell patches was selected by hand from the cd4-image. In

every image uorescent cells were detected by the LLM-classi�cator. Using the maximum condition

on the evidences computed by the LLM the master evidence map was assembled. From the master



evidence map the positions of M = 550 uorescent cells were extracted. Finally, the local matching

step delivered the marker combination patterns pj; j = 1; : : : ; 550.

To look at the distribution of the marker combination patterns within the set of lymphocytes their

binary patterns (f
(j)
1 ; :::; f

(j)
7 ) were mapped to a numerical label by simple mapping from the dual

system to the decimal system. The frequencies of the patterns were counted and plotted to a his-

togram of 27 = 128 boxes. The histogram is shown in �gure 6. Looking at �gure 6 one observes,

that only 24 of the 128 possible patterns were found in the whole set of lymphocytes. On �rst

sight three patterns dominate in number, (1000000)(=1), (0010000)(=8) and (1010000)(=9).

These are cells which only coupled to the cd2 or to cd4 or only to both of them. The rest of the

frequencies are less then 30.

To get an impression about the coincidence of a particular marker with remaining ones, for every

marker a corresponding histogram was computed (see �g. 7). The black box in the histograms show

the absolute number of cells which were uorescent with this selected marker. The grey boxes show

the numbers of cells which were uorescent with this marker and with the (black box-) marker.

Looking at the histograms in �gure 7 one can see that the absolute numbers of uorescent cells vary

strongly. Most dominant are the markers cd2 and cd4. Lymphocyte uorescent with marker cd19

occur seldom and coincide only once with another marker (cd2). One can say that this marker is

highly selective.

Strong coincidence can e. g. be observed between the pairs (cd2,cd8), (cd3,cd8) and (cd2,cd3).

A table of all 24 marker combination patterns and their frequencies is given in the appendix.

6 Discussion

In the present example, images recorded from one single visual �eld was analyzed. Given a large

number of several hundred visual �elds, it will be possible by our approach to present, within a

200
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Figure 6: Histogram of the absolute frequencies of the marker combination patterns: The binary

patterns were mapped from the dual system to the decimal system to label them. Only a small

fraction of 24 possible patterns were found in the whole set of lymphocytes. For illustration, three

example patterns are indicated below the label-axis for illustration. Note that 4 of the patterns

were only found once so that their frequency is not visualized in this plot.
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Figure 7: Coincidence histograms for all seven markers: For each marker the absolute number of

binding cells is plotted (black boxes). The number of cells with coincident binding with another

marker are plotted in the grey boxes. Note the di�erent scaling of the frequency axis for better

viewing.

relatively short timescale, a precise statistical analysis of the immune cell subsets that have invaded

the sites. The quantitative data show that the most frequent cells are lymphocytes expressing the

cd2 receptor alone or the cd4 receptor alone, without co-expression of other receptors labeled by our

antibody library. This result supports our previous notion, that muscle-invasive lymphocytes ex-

press unusual cell surface receptor patterns ([Schubert et al., 1993],[Schubert, 1997]). The present

constellation is surprising, because in the periphery, i. e. in blood, cells expressing cd2, as a rule

co-express cd3 and co-express either cd4 or cd8. In addition the limited heterogeneity of the im-

mune cells generated by di�erential combinations of 7 di�erent receptor proteins in the cells (only

24 di�erent subsets) argues for a largely restricted usage of a probably much larger combinatorial

program. Hence our multi-parameter approach uncovers hitherto unknown new combinatorial pat-

terns with restricted receptor expressions. It is likely that these patterns are directly linked to the

disease speci�c pathogenetic activity of the cell surfaces of the invasive immune cells interacting

with tissue sites.

We present an algorithm that is able to extract quantitative data from stacks of uorescence im-

ages of tissue-invading lymphocytes. The algorithm is easy to adapt to new image stacks because

the training of the cell classi�cator only needs the estimated mean size of the cells and a selected

training set. This can easily be done by a non-expert. The computation time for a stack of seven

658� 517-images is less then 5 minutes on a standard PC.

We also solve the problem of matching uorescence of one and the same cell to binary data. This



list in addition to the coordinates of the lymphocyte gives its uorescence pattern. Full automated

collection of the uorescence patterns of large sets of data opens the door for advanced statistical

analysis.

Future work will focus on designing more advanced methods for visualizing the data in connection

to the development of data mining tools for this kind of data. In this way we want to get insight

into relationships between functionalities of lymphocytes and combinatorics of surface proteins

which �nally produces insight into the molecular compartmentalization of the lymphocyte system

in health and disease at the molecular level of cell surfaces.
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A Table of marker combination patterns

frequency cd2 cd3 cd4 cd8 cd11b cd19 cd26

190 0 0 1 0 0 0 0

140 1 0 0 0 0 0 0

82 1 0 1 0 0 0 0

27 1 1 1 0 0 0 0

17 1 0 0 0 1 0 0

11 0 0 0 0 1 0 0

10 1 0 0 1 0 0 0

8 1 1 0 1 0 0 0

7 1 1 0 1 0 0 1

7 1 1 1 0 0 0 1

6 0 0 0 0 0 1 0

5 1 0 1 1 0 0 0

5 1 0 1 1 0 0 1

4 1 1 0 0 0 0 0

4 0 1 1 0 0 0 0

4 0 0 1 0 1 0 0

3 1 0 0 0 0 0 1

2 1 1 1 1 0 0 0

2 0 0 1 0 0 0 1

2 1 0 0 0 1 0 1

1 1 0 1 0 1 0 0

1 1 0 0 0 0 1 0

1 1 0 0 1 0 0 1

1 0 0 1 1 0 0 1

Table of all 24 found marker combination patterns. They are listed in decreasing frequencies
computed by our algorithm.
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