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Abstract

Multivariate time series (MTS) data are widely available in di�erent �elds including

medicine, �nance, science and engineering. Modelling MTS data e�ectively is important

for many decision-making activities. In this paper, we will describe some of our e�orts

in modelling these data for numerous tasks such as outlier analysis, forecasting and

explanation. Through the analysis of various kinds of MTS data to achieve those tasks,

we hope to trigger discussions in the workshop about what \I" could mean in \IDA"

for this type of application.

1 Introduction

Recent developments in computing have provided the basic infrastructure for fast access

to vast amounts of online data; processing power and storage devices continue to become

cheaper and more powerful, networks are providing more bandwidth and higher reliability,

personal computers and workstations are widespread, and On-Line Analytic Processing

(OLAP) allows rapid retrieval of data from data warehouses. This is especially true for the

recording of time series data, for example in medical and �nancial sectors.

Clinicians evaluate patients' condition over time. The analysis of large quantities of time-

stamped data will provide doctors with important information regarding the progress of

a disease. Therefore systems capable of performing temporal abstraction and reasoning

become crucial in this context. Shahar has developed a general framework for this purpose

[28]. Although the use of temporal abstraction and reasoning methods requires an intensive

knowledge acquisition e�ort, such methods have found many successful medical applications

[19], including data validation in intensive care [11], the monitoring of child growth [8],

the modelling of medical concepts [14], and the monitoring of heart transplant patients

[18]. In particular, Bellazzi et al. [3] discuss the use of temporal abstraction to transform

longitudinal data into a new time series containing more meaningful information, whose

features are then interpreted using statistical and probabilistic methods. Their approach

was successfully applied to the analysis of diabetic patients' data.

Much research has gone into the development of ways of analysing multivariate time series

(MTS) data in both the statistical and arti�cial intelligence communities. Statistical MTS

modelling methods include the Vector Auto-Regressive process, the Vector Auto-Regressive



Moving Average process, and other non-linear and Bayesian approaches [4, 23, 26], while

various AI methods have been developed for di�erent purposes. These include dependence

detection in MTS of categorical data [24], knowledge-based temporal abstraction [13, 28],

Bayesian clustering of similar MTSs [27], and forecasting [1, 31]. Over the last few years,

we have looked at several MTS modelling tasks in public health and process industry and

have started accumulating experiences in analysing MTS data.

In this paper, we shall look at three MTS modelling tasks in some detail: outlier analysis,

short MTS forecasting, and explanation in dynamic processes. We hope that by examining

how these tasks are approached we could trigger discussions on what \I" could mean in

\IDA" for this type of application.

2 Outlier analysis

The handling of anomalous or outlying observations in a data set is important for the

following reasons. First, outlying observations can have a considerable in
uence on the

results of an analysis. Second, although outliers are often measurement or recording errors,

some of them can represent phenomena of interest, something signi�cant from the viewpoint

of the application domain. Third, for many applications, exceptions identi�ed can often lead

to the discovery of unexpected knowledge.

There are two principal approaches to outlier management [2]. One is outlier accommoda-

tion, which is characterised by the development of a variety of statistical estimation or test-

ing procedures which are robust against, or relatively una�ected by, outliers [12]. In these

procedures, the analysis of the main body of data is the key objective and outliers them-

selves are not of prime concern. This approach is, however, unsuitable for those applications

where explicit identi�cation of anomalous observations is an important consideration, e.g.

suspicious credit card transactions. The other approach is characterised by identifying out-

liers and deciding whether they should be retained or rejected. Many statistical techniques

have been proposed to detect outliers and these techniques range from informal methods

such as the ordering of multivariate data, the use of graphical and pictorial methods, and

the application of simple test statistics, to some more formal approach in which a model for

the data is provided, and tests of hypotheses that certain observations are outliers are set

up against the alternative that they are part of the main body of data. The identi�cation

of outliers has also received much attention from the computing community [15].

However, there appears to be much less work on how to decide whether outliers should

be retained or rejected. In the statistical community, a commonly-adopted strategy when

analysing data is to carry out the analysis both including and excluding the suspicious

values. If there is little di�erence in the results obtained then the outliers had minimal

e�ect, but if excluding them does have an e�ect, options need to be sought to analyse these

outliers further.



In order to successfully distinguish between noisy outlying data and noise-free outliers,

di�erent kinds of information are normally needed. These should not only include various

data characteristics and the context in which the outliers occur, but also relevant domain

knowledge. The procedure for analysing outliers has been experimentally shown to be

subjective, depending on the above mentioned factors [6]. The analyst is normally given

this task of judging which suspicious values are obviously impossible and which, while

physically possible, should be viewed with caution. However, in the context of data mining

where a large number of cases are normally involved, the number of suspicious cases would

also be sizable and manual analysis would become too labour-intensive.

We have conducted much research on how to analyse outliers using domain knowledge

[21, 32]. Two general strategies for distinguishing between phenomena of interest and

measurement noise have been proposed. The �rst strategy attempts to model \real" mea-

surements, namely how measurements should be distributed in a domain of interest, and

rejects values that do not fall within the real measurements. The other strategy uses knowl-

edge regarding our understanding of noisy data points instead, so as to help reason about

outliers. Noisy data points are modelled, and those outliers are accepted if they are not

accounted for by a noise model.

Figure 1 illustrates how the strategy based on noise models works. Suppose that a set of

training data, by using relevant domain knowledge, can be labelled into two classes: \noisy"

and \rest". Class \noisy" indicates that the corresponding outliers in this data set are noisy

data points, while class \rest" says we have good reason to believe the outliers in the data

set are not due to measurement noise. Given su�cient amounts of training data, one can

use any supervised machine learning techniques to build a \noise model" and this model,

after validation, can then be used to help distinguish between the two types of outliers.

Figure 1: The Process of Outlier Analysis



Note that the labelling of training instances is not always easy, especially with multi-

dimensional time-series data. To assist in this process, we used Self-Organising Maps [16]

to visualise and compress data into a two-dimensional map. Data clusters and outliers then

become easy to spot, and data are then relatively easily interpreted using the meaning of

the map and relevant domain knowledge. So given a data set, outliers may be detected and

can then be tested using the noise model. As a result, noisy outliers can then be deleted,

while the rest of outliers are kept in the data set for further analysis.

This strategy has been successfully applied to glaucoma screening data, collected from

subjects at various public environments [22]. Measurements were repeatedly taken over

time from a number of �xed testing locations in the visual �eld. Let us look at a particular

glaucoma study in some detail. All patients aged 40 years or older who routinely attended

a GP clinic in North London for a three-month period were o�ered the test. A total of 925

patients were screened and 78 of them were later assessed clinically in the practice by an

ophthalmologist; this sample included all people failing the test and a randomly sampled

age-matched control group. Among these, 22 eyes were later assessed as glaucoma, 81 were

con�rmed as normal eyes without any disease, and the rest were diagnosed as other types

of ocular abnormalities. The noise model was applied to these 103 test records, resulting

in a dataset with selected outliers deleted. This dataset was then used to compare the

performance of the test with those using the original (raw) dataset and another dataset

obtained with all the outliers deleted. Figure 2 summarises the results of examining the

discriminating power of the test in terms of its glaucoma detection rate versus false alarms

using these three di�erent datasets. The decision threshold used for discriminating between

normal and abnormal eyes is the average percentage of positive responses within the test.

Figure 2: The Results

It is clear that the dataset with selected outliers performs better than the other two (the raw

dataset and the dataset without any outliers). Although there are areas where using the

dataset without outliers leads to better detection rates, the dataset with selected outliers

performs better in most areas, especially in the top left corner. This area is the most



important since we are trying to �nd out which dataset allows for the maximisation of the

detection rate, and at the same time, the minimisation of false alarms. This comparison

demonstrates the usefulness of deleting noisy outliers from the test data.

3 Forecasting of short MTS

Although much research has been performed in the modelling of MTS data for forecasting

purposes, one area that has been largely overlooked is the particular type of time series

where the data set consists of a large number of variables but with a small number of

observations.

We have been researching into the key issues in the modelling and analysis of the short MTS

for prediction purposes. In particular, we have been looking into statistical MTS modelling

methods [10] since these have the desirable feature of interpretability in that it is relatively

easier to understand the internal constructs of the model. This feature is lacking in many

modern methods such as neural networks. However, there are di�culties in using traditional

statistical methods to model short MTS data. Let's have a look at the visual �eld data

collected from a standard testing machine, crucial for the forecasting of visual deterioration

in glaucoma patients. The patients were tested approximately every six months for between

�ve and 22 years. The particular test used with this dataset examines 76 points in each

eye, thereby producing a multivariate irregular time series of length between 10 and 44.

The visual-�eld dataset exhibited features that made the standard methods di�cult to

apply. The value of each of the 76 �eld points ranges exclusively between 0 and 60, and the

length of this MTS is rather short. A suitable way of modelling this data appears to be the

Vector Auto-Regressive Process, usually denoted as VAR(P) for a model of order P . The

standard statistical methods for �tting a VAR process to a set of data often consist of two

steps: order selection and parameter estimation.

Order selection is commonly performed through the use of information theory based metrics

such as AIC (Akaike's Information Criterion) [23]. Many of these metrics will impose a

restriction on N , the minimum length of a MTS, based on the number of degrees of freedom

of the model being estimated, namely N > KP + 1, where K is the number of variables

being modelled, and P is the order of the VAR process. For example, for the visual-�eld

MTS involving 76 variables, to �nd the most appropriate order of a VAR process with

a maximum order of �ve under consideration, N must be at least 382 in length. This

restriction is unacceptable for modelling the visual-�eld type of data.

Even if the above problems were to be ignored, the parameter estimation step can experience

some di�culties when dealing with a short MTS. The standard methods for parameter

estimation include maximum likelihood (ML) methods, the Yule-Walker (YW) equations

method, and the least squares (LS) method. With ML methods, there must be some

distribution assumptions on the noise vector. Since the range of the visual �eld values

is exclusively within a set interval, an appropriate continuous distribution is di�cult to

�nd. The YW method can involve matrix inversion, which is computationally expensive

with large matrices and can fail if the matrix is singular. The LS method is often used



in preference to the YW equations, but it too can involve matrix inversion, and can also

impose the degree of freedom restriction mentioned above (this is involved in computing an

unbiased estimator for the covariance matrix of the associated noise vector).

However, a genetic algorithm can be used to �nd the parameters and order of a VAR process

without making any of the assumptions outlined above. In addition, a genetic algorithm

(GA) may reduce the length restriction to N > P , which makes it possible to model many

short MTSs [29]. The general idea is illustrated in Figure 3. Below are some of the details.

Figure 3: Modelling Short MTS for Forecasting

A VAR process of order P, written VAR(P), is de�ned in equation 1.

x(t) =

pX

i=1

Aix(t� i) + "(t) (1)

Where x(t) is the next data vector of size K (the number of variables in the model), Ai is a

K�K coe�cient matrix at time lag i, and "(t) is a K length noise vector at time t (usually

Gaussian) with zero mean. The value of each element in Ai is usually a real number in the

range [-1, 1]. To use equation 1 for prediction purposes the parameter matrices Ai must be

estimated from the data.

VARGA is a genetic algorithm designed to �nd the order and associated parameter matrices

for a VAR(P) process best suited to �tting a dataset. The level of accuracy for the GA (the

�tness function) is de�ned in equations 2 and 3, namely

"̂(t) = x(t)�

pX

i=1

Âix(t� i) (2)



and

" =
kX

j=1

j"̂j(t)j : (3)

Where "̂(t) is the estimation of the noise vector, "̂j(t) is the jth element of "̂(t), Âi is the

estimation of the ith parameter matrix, and " is a scalar that represents the level of noise.

All other variables were de�ned earlier. The model with the smallest " value is deemed to

be the best for forecasting since it is assumed that the best estimation for any unobserved

noise vector is the zero vector.

Figure 4: The Chromosome Representation

The chromosome representation is a list of K � K matrices, whose elements are integers

over the set [0, 20000). A simple scaling is done to map each value into the set [-1, 1].

The order of each matrix in the list corresponds to the equivalent coe�cient matrix for

the VAR process being represented. The visual �eld data is mean-adjusted before being

used in this method. This chromosome representation is shown in Figure 4. The VARGA

algorithm essentially follows the standard Holland genetic algorithm, however, crossover is

di�erent and there are two mutation operators: one for gene mutation and the other for

order mutation [29].

The models found using the VARGA method are compared with those produced by the

conventional way of �nding a VAR process, i.e. the solution of the Yule-Walker equations

using S-Plus. To provide more insight into the accuracy of the VARGA method, it is

further compared with the results from two other techniques: the Holt-Winters model (a

commonly-used univariate forecasting model) and the noise model. Using a set of visual

�eld data supplied by the Moor�elds Eye Hospital, the VARGA method has been found

to perform better than the other three methods for relatively long MTS, but also is able

to predict the short MTS where other methods such as S-Plus may fail to do so [29].

The fact that it performs better than the Holt-Winters model appears to suggest that the

VARGA method is able to take into consideration the dependencies among related time

series variables. However, one should note that these results are obtained from only one

real-world application, and many more experiments need to be performed on applications

of di�erent kinds to have a general picture regarding the applicability of VARGA. Work is

indeed under way to obtain a deep understanding of various characteristics of the method.



3.1 Explanation in Dynamic Processes

The learning of appropriate models for diagnosis, or causal explanation, in MTS data is

an important issue for many AI problems, including patient monitoring, robot navigation,

data-mining for temporal sequencies and learning to control a complex plant. For example,

many complex chemical processes record multivariate time-series data every minute. This

data is characterised by a large number of interdependent variables, though some may have

no substantial impact on any others. There can be large time lags between causes and e�ects

(over 120 minutes in some chemical processes). In many situations certain anomalous events

have a signi�cant adverse economic impact, whether in terms of reduced yield, excessive

equipment stress, or violation of environmental constraints. The identi�cation of these

events is important but of greater importance still are adequate diagnoses of them, which

could then be used to modify operating practices, retrain operators or conduct anticipatory

planning.

In order to perform diagnosis, some method is required for reasoning about relationships

between these variables back in time. For example, the reason for a particular temperature

becoming extremely high may be that a 
ow rate dropped ten minutes ago and the 
ow

dropped because, one minute before that, a valve was closed by a control engineer. A

number of diagnostic approaches have been proposed by di�erent AI communities over the

years. Early proposals include the use of rule-based and model-based systems. A more recent

paradigm for performing causal inference is the Bayesian Network [25], and its dynamic

counterpart can model a system over time [7]. Most of the research on dynamic networks,

however, has focused on small models or models with small time lags. It would be desirable

to learn a Dynamic Bayesian Network (DBN) for large datasets with large possible time

lags such as oil re�nery data.

The search for a causal model from a large multivariate time series with large time lags

is a daunting task, particularly if it must be found quickly. In some applications such as

diagnosis in an oil re�nery, the causal explanation may be required in a very short space of

time. We have suggested a general methodology which attempts to overcome some of the

key problems associated with learning such a model. In particular, a representation that

produces a DBN is proposed, based on a reasonable assumption. An algorithm for �nding

a good structure in as short a time as possible using evolutionary computation and relevant

knowledge is then developed.

The assumption is that a DBN contains no links within the same time slice (contemporane-

ous links). A DBN with only non-contemporaneous links can be represented by a selection

of K+Q nodes, whereK is the number of variables at a single time slice, and Q is the collec-

tion of nodes at previous time slices up to some maximum lag MaxT , with Q � K �MaxT ,

where all members of Q have a direct dependency on nodes at time slice 0. We can use

a list of triples to represent a possible network: (a,b,l) where a is the parent variable, b is

the child variable and l is the time lag. Therefore each triple maps directly to a link in the

network. So a list for K = 5, MaxT = 5 and Q = 9 such as (2,4,5), (4,3,4), (0,1,3), (2,1,2),

(0,0,1), (1,1,1), (2,2,1), (3,3,1) and (4,4,1) would represent the DBN in Figure 5.

In many applications, where data is recorded frequently this assumption may well be true

- that is, all variables take at least one time slice to have any e�ect on another variable.



Figure 5: An Example DBN Using the Triple Representation

Although this assumption has already signi�cantly reduced the search space, the number

of possible network structures is still very large. For K variables and MaxT possible time

lags, this number will be:

2MaxT �K2

: (4)

Two more heuristics are therefore used to contrain the search space even further: the

exploitation of the Description Length [17] of each single link in the network, and the

decomposition of the network into a group of simple tree structures [30]. These led to

a general evolutionary algorithm for learning DBNs with the Description Length metric,

outlined below.

Given a multivariate time series with K variables we can generate a DBN with a maximum

time lag of MaxT . This is achieved �rstly by applying Evolutionary Programming methods

to a random selection of single triples in order to produce a list of good links. A random

selection of triples from this list is then used to seed the initial generation of a GA where

each individual chromosome comprises a selection of triples and the �tness function is the

Description Length of the network. After a number of generations, the �ttest individual

comprises those triples which correspond to the DBN learned from the multivariate time

series. The detailed algorithm is documented in [30].

To assess the performance of the algorithm we initially tested it on 10 synthetic datasets

generated from di�erent DBNs. Each DBN consisted of 11 variables and a maximum time

lag of 60 minutes. The generated data contained 10000 data points for each variable and

each variable could be in one of two possible states. We wanted to see if each original

DBN could be learned quickly from its generated dataset using this algorithm. The next

assessment step involved measuring how accurately the learned network structure represents

the sort of relationships an expert would �nd in an oil re�nery dataset. We do this by asking



a control engineer, who has extensive knowledge of the re�nery process and data, to produce

some dependency diagrams that represent the expected relationships between the variables

in an oil re�nery time series. We then compare these diagrams to explanations generated

using the network learned from the same time series.

The limited space prevents us presenting all the experimental results from those two assess-

ments, so we just summarise the key results here. The algorithm does indeed manage to

�nd all the original DBN structures that were used to generate the synthetic data, and does

so much more quickly than a standard GA algorithm. In the experiment involving the oil

re�nery data, the algorithm manages to detect all of the suggested relationships correctly;

however, it generates more explanations than those speci�ed in the dependency diagrams.

This is to be expected since the diagrams are not meant to be exhaustive in that they only

capture some of the obvious relations that should exist in the dataset. It must also be

pointed out, however, that there are a few relationships found within the network structure

that were known to be false, leading to some incorrect explanations. A full analysis of this

phenomenon is given in [30]. Further research is under way to explore, on the evolution-

ary front, di�erent parameters and operators; and on the Bayesian network front, di�erent

discretisation policies, scoring metrics and search strategies.

4 Concluding remarks

Data analysis is performed for a variety of reasons by scientists, engineers, medical and

government researchers, business communities and so on. Statistical methods have been

the primary analysis tool, but many new computing developments have been applied to

challenging real-world problems. This is a truly exciting time. Questions have been con-

stantly raised: how can one perform data analysis most e�ectively {intelligently{ to improve

the quality of life, to gain new scienti�c insights, to capture bigger portions of the market,

and so on? And is there a set of established guiding principles to enable one to do so?

Statistics has laid some important foundations, but the evolution of computing technology

and the ever-increasing size and variety of data sets have led to new challenges as well as

new opportunities for both the computing and statistical communities [9, 20].

Although basic IDA issues are beginning to be understood, this interdisciplinary �eld ap-

pears to be too young to allow for a precise de�nition of what is the \intelligent" way of

performing data analysis. What is certain, though, is that IDA requires careful thinking

at every stage of an analysis process, intelligent application of relevant domain expertise

regarding both data and subject matters, and critical assessment, selection or integration

of relevant analysis methods. In any case, we need to obtain further, substantial experience

in analysing complex real-world data before we can have a de�nitive understanding of the

intelligent data analysis process.

In this paper, we have described three pieces of work on the modelling of multivariate time

series data. First, outlier analysis is one of the key data quality issues, and we have exper-

imented with various ways of incorporating relevant domain knowledge to help distinguish

between noisy outliers and noise-free outliers. Second, model selection is arguably the most

important and most di�cult aspect of model building, and yet is the one where there is least



help [5]. This situation is even worse for modelling short MTS data. We have developed

a method that bypasses the size restrictions of traditional statistical methods, makes no

distribution assumptions, and also locates the order and associated parameters as a whole

step. Third, we have accumulated experiences about how evolutionary computation tech-

niques, when incorporating relevant heuristics, may signi�cantly reduce the search space,

thereby helping make the algorithm for learning dynamic Bayesian networks scalable. A

common feature in addressing all of the three issues is that AI techniques have been used

to enhance the capabilities of traditional statistical methods for problem-solving.
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