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Abstract

In management of severe trauma patients, trauma surgeons need to decide which

patients are eligible for damage control. Such decision may be supported by utilizing

models that predict the patient's outcome. This paper investigates the possibility to

construct patient outcome prediction models from retrospective data. As the retrospective

data included in this study comprises rather excessive number of features, special attention

was paid to the problem of selecting only the most relevant features. We show that a

small subset of features may carry enough information to construct reasonably accurate

prediction models.

1 Introduction

Trauma surgeons face complex management and decision making problems when treating pa-

tients with severe traumatic injury. In the initial period of treatment, the patient's continued

hemodynamic instability may increase the risk of diÆculty of de�nitive repair of all injuries.

Bold attempts to completely correct acute surgical problems, especially trauma, were ex-

plored in 1970s and 1980s. The application of extracorporeal support, extensive resections,

aggressive 
uid resuscitation (including blood products), and primary extensive reconstruc-

tion was reported during this era. Often, with these early excursions into complex trauma

reconstruction and resection, the surgical goals were achieved at the initial operation, but

the patients went on to die of respiratory failure, multiple organ distress, and coagulopathy.

Even with such aggressive attempts, undesirable outcomes in terms of cost, lengthy stay in

intensive care unit (ICU) or hospital, cerebral insuÆciency, and death were encountered [7].

Within the last ten years, the damage control approach emerged from a need to meet the

challenge of the changing scope and severity of injury. The basic concept of damage control



for trauma patients is to avoid extensive procedures on unstable patients, stabilizing fatal

problems at initial operation, and applying staged surgery after successful initial resuscitation.

As the success of damage control has grown, so has its acceptance in the traditional surgical

community.

Several problems regarding damage control remain. One of the most important but diÆcult

issues is determining which patients are eligible for damage control. As there is no widely

accepted standard, the surgeons are still looking for the systematized approach to de�ne the

eligibility of patients.

Damage control requires a massive investment of personnel, e�orts, and resources in a small

group of critical injured patients who carry a mortality rate in excess of 50%, even under

the best circumstances [3]. From the viewpoint of resource allocation, it would be desired

to be able to accurately predict patient's outcome to prevent futile use of limited resources.

This paper investigates the possibility of constructing an outcome prediction model for severe

trauma patients after the �rst surgery. The model is derived from the data that includes

patient's features and the observed outcome. As the original dataset included rather excessive

number of features, special attention was paid to the problem of selecting only the most

relevant features. We show that a small subset of features may carry enough information to

construct reasonably accurate prediction models.

2 Data

We retrospectively examined 68 patients who required damage control surgery at Trauma

and Critical Care Center, Ben-Taub General Hospital in the period from 1994 to 1997. A

set of 174 features including patient characteristics, features of prehospital care, and physical

and laboratory �ndings in emergency room, operating room and intensive care unit was used

in the analysis. The dataset included many missing values: preliminary dataset inspection

showed that for 78 features data was missing for at least 50% of patients { these features

were not included in the further analysis. The resulting dataset (68 patients, 96 features) had

20.7% of missing values.

3 Methods

A number of preprocessing, modeling and quality estimation methods were used in this work.

We �rst describe feature mining techniques that were used to narrow a list of features used.

From the resulting dataset, prediction models were derived by classi�cation trees and naive

Bayesian techniques. The quality of the models was assessed through using various criteria

and statistical tests.



3.1 Feature mining

Feature (or attribute) mining is a data mining preprocessing stage where, for a classi�cation

tasks, a subset of most relevant features is identi�ed and potentially reformulated [12]. The

identi�cation of most relevant features often refers to their ranking, subset selection and to

their categorization.

In the �rst step of the preprocessing, we categorized (discretized) the continuous features.

This was required for naive Bayesian modeling technique which does not directly handle

continuous features. Besides, the mere information on how the features were categorized can

be interesting for the domain expert to verify the relevance of the data base (if categorization

is as expected) or to point out for new and interesting categories and cut-o� points. We have

used two approaches for categorization: quartiles and entropy-MDL based discretization.

The quartile discretization splits the range of feature's values into four intervals, so that

the number of patients within each interval is approximately equal. The more sophisticated

entropy discretization [2] uses a top-down approach, similar to clustering methods. It start

with an interval covering all the feature's values and �nds a cut-o� point which maximizes the

informativity. If the gained information is greater than the increase of the minimal description

length for the feature values, the interval is cut into two subintervals and the procedure is

repeated on both of them. However, it often happens that the process stops at the �rst step

already. If this is the case, there was no cut-o� point and such features can be regarded as

irrelevant. In this way the entropy-based discretization can also be used as a feature selection

tool.

As the quartile discretization considers only the values of the feature that is being discretized

independently of other features or outcomes, it tends to be more noise-proof on one side but

potentially less interesting for the domain expert on the other side. Besides, the number of

intervals for the quartile discretization is �xed, so it cannot be used for the feature subset

selection.

After categorization, features were ranked using RELIEFF [4, 5]. RELIEFF measures useful-

ness of a feature by observing the relation between its value and patient's outcome. Intuitively,

if there is a group of patients with the same or similar feature values, the observed feature is

\valuable" as a predictor if it has di�erent values on pairs of patients with di�erent outcomes

(thus distinguishing between them), but the same value on pairs with the same outcome.

The features with negative RELIEFF estimate may be considered irrelevant. The features

with the highest score are presumed to be the most useful for predicting the outcome. In our

pilot study, features were ordered according to their scores and presented to the expert who

performed the �nal selection.



3.2 Data modeling

After we have reformulated the trauma patients' descriptions by categorizing and selecting the

features, we used two well-known machine learning techniques to induce the predictive models.

The �rst one was our own implementation of classi�cation trees derived from a commonly-

known ID3 recursive partitioning algorithm [10]. The basic idea of ID3 is to partition the

patients into ever smaller groups until creating the groups with all patients corresponding to

the same class (e.g., survives, does not survive). The partition criteria is a function computed

from predictor variables. To avoid over�tting, we have used a simple pruning criterion that

stops the induction when the sample size for a node falls under the prescribed number of

examples or when a suÆcient proportion of a subgroup has the same output.

The second machine learning method used was a naive Bayesian classi�er. Assuming the

independence of predictive variables, the probability that a patient described with values of

predictor variables V = (v1:::vn) survives can be estimated by naive Bayesian formula [6]

P (RjV ) = P (R)

nY

i=1

P (Rjvi)

P (R)

where P (R) is the apriori probability of survival and P (Rjvi) is the conditional probability

of survival if i-th predictor variable has the value vi; both are estimated from the training set

of patients.

Naive Bayes and classi�cation trees were chosen because they represent two essentially dif-

ferent approaches for induction of predictive models. Naive Bayesian models include all of

predictive variables used in the data, while classi�cation trees in general only use a subset of

most informative features. Naive Bayesian models are in essence linear, while classi�cation

trees may represent more complex models. For modeling from medical data, however, it was

observed that naive Bayes most often performs best, outscoring classi�cation trees, rules, and

even arti�cial neural networks [1, 6].

A baseline for comparison with above two methods was a majority classi�er that uses a

training set to determine the most frequent class and then classi�es all cases from the test set

to that class.

3.3 Model evaluation methods, metrics and comparison statistics

Having categorized and selected the features and induced outcome prediction models, di�erent

statistical measures can be used to evaluate the quality of derived models. From those which

we used in this study, the �rst two (classi�cation accuracy, sensitivity and speci�city) consider

the class prediction while for the other two (average probability assigned to correct class, area

under ROC curve) use the model to predict the probabilities of classes.

� Classi�cation accuracy (CA) measures the proportion of correctly classi�ed test

examples, therefore estimating the probability of the correct classi�cation.



� Sensitivity and speci�city (Sens/Spec) measure the model's ability to \recognize"

the patients of a certain group. If we decide to observe the surviving patients, sensitivity

is a probability that a patient who has survived is also classi�ed as surviving, and

speci�city is a probability that a not-surviving patient is classi�ed as not-surviving (or,

more generally, speci�city is the number of patients not wrongly classi�ed as surviving

divided by the number of patients which could be wrongly classi�ed as surviving).

� Average probability assigned to the correct class (AP) is related to classi�cation

accuracy, but it gives an additional information on the reliability of the classi�er's

decisions. If this measure is low, the classi�er can still have a good classi�cation accuracy

but its decisions are, on the average, marginal.

� Area under ROC curve (aROC) is based on a non-parametric statistical sign test

and estimates a probability that for a pair of patients of which one has survived and

the other has not, the surviving patient is given a greater probability of survival. This

probability was estimated from the test data using relative frequency.

The above metrics and statistics were assessed through strati�ed ten-fold cross validation [8].

This divides the patient's dataset to 10 sets of approximately equal size and equal distribution

of outcomes. In each experiment, a single set is used for testing the classi�er that has been

developed from the remaining nine sets. The statistics for each method are then assessed

as an average of 10 experiments. The same training and testing datasets were used for all

classi�cation methods.

The described statistics measure the quality of a single classi�er. Although they can be used

to compare them, a better and more statistically correct test is available for this purpose.

McNemar's test compares two classi�ers by counting the examples which were classi�ed cor-

rectly by the �rst but not by the second classi�er (n10) and vice-versa (n01). As the same

training and test sets are used for both induction methods, counts can be summed for all ten

cross validation experiments. Under the null hypothesis, the classi�ers are equal and so are

the counts, n10 = n01. The statistics D, computed as

D =

(jn01 � n10j � 1)

n01 + n10

is distributed approximately by the �2 distribution with one degree of freedom. The di�erence

is signi�cant at � = 0:05 level if D is larger than 3.84.

Another evaluation of at least equal importance as the statistical measures is the evaluation

done by the domain expert, who ultimately decides whether the models make sense and can

be of practical value for solving the problem for which they were induced in the �rst place.



# Feature Categories Description Reference

1 APPT WORST < 78:7; � 78:7 The worst partial active thromboplastin

time

25� 33 s

2 BE ICU < �12:6; � �12:6 Bicarbonate Excess at ICU �2 � 2

3 BLEEDING T Yes, No Physician's impression regarding coagu-

lopathy during operation

No

4 CATECHOLAM Yes, No Cathecholamine administration No

5 EBL < 2:5; � 2:5 Estimated Blood Loss

6 MBP WORST < 36:3; � 36:3 The worst mean blood pressure � 60 mmHg

7 PACO2 OR < 44:0; � 44:0 The worst arterial carbon dioxide tension 35� 45 torr

8 PH WORST < 7:0; � 7:0 The worst pH 7:35� 7:45

9 PT ICU < 22:3; � 22:3 Prothrombin time at ICU 10:7� 13:0 s

10 TYPE OF CL Skin, Bag The type of closing

12 PH ICU < 7:20, 7:20�7:33,

> 7:33

The worst pH value at ICU 7:35� 7:45

11 SBP WORST < 57:0; � 57:0 The worst systolic blood pressure � 90 mmHg

Table 1: Selected features and their description (in alphabetical order).

4 Feature mining and model construction

From the set of 96 features, the entropy based discretization found 56 features as irrelevant.

RELIEFF assigned negative score to additional four features, thus resulting in a dataset with

only 36 features. From these, the expert (a board certi�ed emergency physician) selected

10 predictive features (features 1 to 10 in Table 1) considering also their potential clinical

signi�cance. The expert additionally veri�ed and con�rmed that among features not included

in the set of 36 there are none that should be additionally selected for modeling. This con�rms

the usefulness of feature subset selection in our setting.

The expert also inspected the categorization found by the entropy-based algorithm by using

previous reports, his own pathophysiological knowledge and the analysis of odds-ratio signif-

icance. His �ndings mostly con�rm those of the discretization algorithm. For instance, for

APPT WORST he proposed 80 as a simpler boundary than 78.7. For BE ICU he proposed a

higher range of 22.5. Using odds-ratio visualization he also commented that these are the only

two attributes that should always be treated as categorical, while other continuous attributes

can also be modeled as continuous, if the modeling technique allows it. The remaining features

should be, by his opinion, categorized on three rather than two intervals. We can expect that

the method used would indeed devise a �ner categorization if more patients were available.

Apart from this, he found the proposed categorization to be reasonable.

The selected ten features, together with the two-valued outcome (Death, Well) constituted our

�rst dataset. Additionally, the expert proposed another feature subset in whichMBP WORST

and PH WORST were replaced by SBP WORST and PH ICU (features 11 and 12 in Table 1),

respectively.



Prognostic model CA AP Sens/Spec aROC

Majority 0.662 0.552 1.000/0.000 0.500

Decision tree (quartiles) 0.824 0.663 0.800/0.870 0.834

Decision tree (entropy) 0.824 0.686 0.822/0.696 0.849

Naive Bayes (quartiles) 0.809 0.777 0.800/0.826 0.891

Naive Bayes (entropy) 0.794 0.777 0.800/0.826 0.882

Table 2: Classi�cation accuracy (CA), average probability assigned to the correct class (AP),

sensitivity and speci�city (Sens/Spec) and area under ROC curve (aROC).

Modeling algorithms were successful on both datasets. The classi�cation accuracy was espe-

cially high for the second one, reaching accuracy of 93% correct classi�cations. The conditional

probabilities in the naive Bayesian classi�er and the graphical presentation of the decision

tree revealed though the models' main strategy: for decision trees, all the patients which were

given Cathecolam were classi�ed to \Death" and similarly, the conditional probability of sur-

vival after being given Cathecolam was 0.00. The inspection of the data indeed proved that

from 68 patients, all the 16 patients who were given Cathecolam died. The expert con�rmed

the found relation is sensible but useless. As this drug is usually the last resort used for the

most severe patients, it is highly correlated to the patient's outcome but the surgeon cannot

use it for making predictions { its use does not cause the death but is (in a sense) caused by

the surgeon's prediction of the probable death of the patient. The expert proposed to remove

this feature from the dataset for the further experiments.

We therefore formed a third dataset, with the same features as the second one but with

CATECOLAM removed. The results on this dataset are presented in Table 2. Decision

trees and naive Bayesian classi�er are better than the baseline majority classi�er, though the

statistical signi�cance of the di�erences is (at best) marginal, probably due to the low number

of patients. Using McNemar's test, the decision tree model with entropy-based discretization

was found to be signi�cantly better than majority classi�er (p = 0:04), while the tree models

with quartiles discretization and naive Bayesian models with quartiles and with entropy-based

discretization have signi�cance levels of 0.06, 0.09 and 0.14, respectively.

Figure 1 shows a decision tree build from the dataset with all 68 patients. The left tree was

obtained using a simple prepruning (minimal number of examples in each leaf is 2, maximal

proportion of majority class in each internal node is 90%). For the tree on the right, all

decisions with all leaves having the same majority class are removed. Although it is much

simpler, the results of the right tree are comparable to the results of the left one for all of the

measured statistics.

From the expert's perspective, the right tree is a reasonable model for outcome prediction.

It is based on the two important representatives from two of the most important groups of

factors which a�ect the outcome, coagulopathy and acidosis. It is also interesting that the

particular importance of this two features to the patient's outcome was theoretically stressed
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Death
0.00 (0/15)
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0.88 (14/16)
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0.82 (9/11)

<78.70

Death
0.00 (0/7)

>=78.70

Figure 1: A decision tree model, derived with entropy discretization with simple prepruning

(left) and with removing the internal nodes leading to the leaves with the same majority class

(right).

in the work of Rotondo et al [11].

The topmost decision in the trees from Figure 1 is based on the blood's pH value (PH ICU),

which re
ects many of important aspects of the injury (respiratory and cardiovascular distress,

blood loss and cellular damage). As lower value indicates severe damages to patient's vital

systems, patients with pH level below 7.20 are not expected to survive. A normal value of pH

(> 7:33) predicts probable survival of the patient. The outcome for the patients with the pH

values between 7.20 and 7.33 is predicted from the worst partial active thromboplastin time

value (APPT WORST), which assigns a greater probability of survival to the patients with

normal blood coagulation.

The larger tree from Figure 1 further divides two subgroups of the patients. The use of

the features BLEEDING T and PACO2OR in the rightmost tree is appropriate, since it

predicts the non-bleeding patients and the patients with normal carbon dioxide tension a

better chances for survival. Contrary to this, the expert found the left-most node with

the BLEEDING T feature unexpected and in con
ict with the domain knowledge and the

common sense; at this point the model derivation was probably mislead because of a small

sample size. Several nodes of this tree contain very small number of patients. In two cases,

exactly half of the patients in the leaf survived and a half did not, so the outcome for patients

classi�ed to this two nodes cannot be predicted.

Generally, the domain expert preferred the simpler tree where their leaves represent a higher

number of patients. We can, however, speculate that retrospective data that would include a

higher number of patients would enable us to induce a larger, yet reasonable decision trees.



5 Conclusion

This paper documents a study to construct outcome prediction models from retrospective

data of severe trauma patients. The study should be regarded as pilot since it only includes

68 patients. Despite having such small dataset, the following conclusions can be drawn:

� A rather small subset of features from trauma patient's database seems suÆcient for

modeling.

� Given a proper selection of features, prognostic models for the outcome for severe trauma

patients are plausible.

From methodological point of view, this study has found feature categorization and feature

subset selection algorithms useful preprocessing tools. Categorization of most relevant fea-

tures was inspected and con�rmed by the expert. Expert also found the feature rating by

RELIEFF to be meaningful. This rating helped him to decide which set of features should be

used in the modeling dataset. Both naive Bayes and derivation of classi�cation trees resulted

in models of reasonable performance, with two techniques not being signi�cantly di�erent.

The main outcome of this pilot study is the observation that prognostic models can be build

for prediction of outcomes for severe trauma patients. This is only a preliminary �nding, which

needs to be veri�ed in a study that would include a larger number of patients. The present

dataset includes many features, and if such comprehensive data collection poses problems |

as suggests our present dataset with many missing data | an outcome of this study may help

trauma personnel to focus mostly on features that we have observed to be most relevant for

prediction models.

References

[1] R. Bellazzi and B. Zupan. Intelligent data analysis in medicine and pharmacology: A position

statement. In IDAMAP-98, pages 1{4, Brighton, UK, 1988.

[2] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous valued attributes for

classi�cation learning. In Proceedings of the 13th International Joint Conference on Arti�cial

Intelligence, pages 1022{1029, Chambery, France, 1993. Morgan-Kaufmann.

[3] T. S. Granchi and K. R. Liscum. The logistics of damage control. Surg Clin North Am, 77:921{8,

1997.

[4] K. Kira and L. Rendell. A practical approach to feature selection. In D. Sleeman and P. Edwards,

editors, Proc. 9th Int'l Conf. on Machine Learning, pages 249{256, Aberdeen, 1992. Morgan

Kaufmann Publishers.

[5] I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In F. Bergadano and

L. De Raedt, editors, Proc. European Conf. on Machine Learning (ECML-94), pages 171{182.

Springer-Verlag, 1994.



[6] I. Kononenko, I. Bratko, and M. Kukar. Application of machine learning to medical diagnosis.

In Machine Learning and Data Mining: Methods and Applications, pages 389{408. John Wiley &

Sons, Chichester, 1998.

[7] K. L. Mattox. Introduction, background, and future projections of damage control surgery. Surg

Clin North Am, 77:753{759, 1997.

[8] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine learning, neural and statistical

classi�cation. Ellis Horwood, 1994.

[9] T. Niblett and I. Bratko. Learning decision rules in noisy domains. In Expert Systems 86, pages

15{18. Cambridge University Press, 1986. (Proc. EWSL 1986, Brighton).

[10] R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81{106, 1986.

[11] M. F. Rotondo and D. H. Zonies. The damage control sequence and underlying logic. Surg Clin

North Am, 77:761{777, 1997.

[12] I. Kononenko, B. Zupan. Attribute mining: Evaluation, discretization, subset selection and con-

structive induction In "From Machine Learning to Knowledge Discovery in Databases" Workshop

Notes, ICML-99, Bled, Slovenia.


