
Parallel Convolutional Neural Networks for Music Genre and
Mood Classification

Thomas Lidy
Vienna University of Technology
Institute of Software Technology

lidy@ifs.tuwien.ac.at

Alexander Schindler
Austrian Institute of Technology

Digital Safety and Security Department
alexander.schindler@ait.ac.at

Abstract

Our approach to the MIREX 2016 Train/Test Classi-
fication Tasks for Genre, Mood and Composer de-
tection is based on an approach combining Mel-
spectrogram transformed audio and Convolutional
Neural Networks (CNN). We utilize two different
CNN architectures, a sequential one, and a parallel
one, the latter aiming at capturing both temporal and
timbral information in two different pipelines, which
are merged on a later stage. In both cases, the cru-
cial CNN parameters such as filter kernel sizes and
pooling sizes were carefully chosen after a range of
experiments.

1 Introduction

The use of Convolutional Neural Networks (CNN)
have, after recent successes in image and text re-
trieval, also entered the audio domain. The power
of Convolutional Neural Networks is in drastically
reducing the weights that are needed to make the net-
work learn, through the spatial weight sharing prin-
ciple of the filter convolution approach.

A popular method in the audio domain is to use
a spectrogram (derived from the Fast Fourier Trans-
form and/or other transformations) as an input to
a CNN and to apply convolving filter kernels that
extract patterns in 2D. The presented approach ad-
vances an earlier publication related to our winning
contribution to the MIREX 2015 music/speech clas-
sification and detection task, where we have shown
the successful application of Mel-spectrogram based

Convolutional Neural Networks on for the task of
music/speech discrimination with 99.73 % accuracy
[1]. Based on a number of alterations in the ar-
chitecture of the Convolutional Neural Network we
showed that a combination of a CNN that cap-
tures temporal information and another one that cap-
tures timbral relations in the frequency domain is a
promising approach for music genre recognition [2].

2 Approach

Our approach trains Convolutional Neural Networks
on Mel-scale spectrograms derived from the audio
input. We describe these two parts in more detail.

2.1 Audio Preprocessing

Before being input to the neural network, a few pre-
processing steps are carried out on the original audio
which are depicted in Figure 1.

Audio File FFT Mel Log NN

Figure 1: Audio preprocessing

First of all, a stereo audio signal is transformed to
mono by averaging the two channels. Then, we ap-
ply a Fourier transform with a Hanning window of
3072 samples1 length and 50 % overlap to compute
a spectrogram. The choice for this window length

1All sample indications are given for 44 kHz and will be au-
tomatically adapted proportionally for 22 or 11 kHz input.

1

was motivated by the intention to triple the length
of the ‘default’ window of 1024 samples to cover a
larger time span, while keeping the number of frames
equal (see below). Following the FFT, a Mel filter-
bank is applied to the spectrogram, deriving 40 Mel
frequency bands. Subsequently, we perform a Log10
transform of all values.

This process is performed on chunks, or segments,
of 124,416 samples length (2.82 seconds), resulting
in 80 frames. The idea is to process a multitude
of short-term segments from an audio example to
be learned by the neural network. Our framework
has the option to extract such segments consecutively
from a file (which would result in 1̃0 segments from
a 30-second audio file). We, however, also imple-
mented an option to extract any arbitrary number of
such segments from random positions in the audio
file. We set the number of excerpts to extract to 30
random segments. By that, a form of data augmenta-
tion is performed implicitly (without any audio trans-
formations, however).

The extracted data matrices have a shape of 40
Mel bands×80 frames.

2.2 Convolutional Neural Networks

2.2.1 Model 1

Our first model is a single layer CNN with a filter
kernel size of 10 ×12 followed by a Max Pooling
layer of size 1 ×20 (see Figure 2). The layer applies
30 such filters which are subsequently pooled dras-
tically on the time axis, meaning that the result will
mostly capture relations on the frequency axis, i.e.
timbral characteristics.

2.2.2 Model 2

Following [2] we use a parallel CNN architecture for
our second model, which comprises a CNN Layer

80 frames

4
0
 M

e
l
b

a
n

d
s

...

filter

30 filter maps

200
units

Softmax
layer

#
classes

20%
dropout

max
pooling

Input CNN Layer

10x12

1x20

Pooling Layer Dense Layer Output

30x

Figure 2: One layer CNN architecture (model 1)

80 frames

4
0
 M

e
l
b

a
n

d
s

...

filter

30 filter maps

200
units

Softmax
layer

#
classes

20%
dropout

max
pooling

...

30 filter maps
max
pooling

Input CNN Layer

14x15

4x8

1x17

15x1

Pooling Layer Dense Layer Output

30x

30x

Figure 3: Parallel time/frequency CNN (model 2)

optimized for capturing relations in frequency do-
main, and a parallel one which is aimed at captur-
ing temporal relations (see Figure 3). Both parts of
the CNN architecture use the same input, i.e. the
40 bands×80 frames Mel spectrogram matrix, as de-
scribed in Subsection 2.1. In each epoch of the train-
ing, multiple training examples, sampled from the
segment-wise Mel extraction of all files in the train-
ing set, are presented to both pipelines of the neural
network. In each of the two CNN pipelines we use
32 filter kernels, followed by a Max Pooling stage.
However, the two pipelines differ in shapes of both
the filters and the pooling sizes. Setting the filter and
pooling parameters is less straight-forward than in
image retrieval where typically quadratic shapes are
used. In audio analysis, however, the different se-
mantics of the two axes need to be taken into ac-
count. The parameters we describe were found after
a larger set of experiments.

In our architecture, the upper pipeline is aimed at

2

modeling frequency relations. Its filter kernel sizes
are set to 14×15 and the Max Pooling size to 1×17.
This means that the output of the filtering step is 32
matrices of shape 67×68, which are then “pooled”
to 32 matrices of shape 67×4, preserving more in-
formation on the frequency axis than in time. On the
contrary, the lower pipeline uses filter sizes of 4×8
and pooling of 15×1, aggregating on the frequency
axis and therefore retaining more information on the
time axis: Its output shape is 5×75 (32 times).

In the next step, the parallel architecture is merged
into a single pipeline, by flattening all the matrices
from both previous pipelines, concatenating them
and feeding them into a dense (fully connected) layer
with 200 units. The last layer is a so-called Softmax
layer: It connects the 200 units of the preceding layer
with as many units as the number of output classes
and applies the Softmax function to guarantee that
the output activations to always sum up to 1 [3]. The
output from the Softmax layer can be thought of as
a probability distribution and is typically used for
single-label classification problems.

2.2.3 Model 3

Our third model is an experimentation, where two
pipelines with different filter shapes are created
to learn different frequency characteristics. One
pipeline processes a filter shape of 10×12 while
the other uses a much larger filter of 10×34. As
with model 2, both pipelines learn 30 filters of these
shapes, respectively. In both pipelines, we use the
same max pooling strategy in time: 1×20. All the
other parameters remain the same as described in
model 2 before.

2.3 Activation and Initialization

All layers are initialized with the Glorot uniform ini-
tialization [4]. In all architectures, we apply Leaky

80 frames

4
0
 M

e
l
b

a
n

d
s

...

filter

30 filter maps

200
units

Softmax
layer

#
classes

20%
dropout

max
pooling

...

30 filter maps
max
pooling

1x20

30x

Input CNN Layer

10x12

10x34

1x20

Pooling Layer Dense Layer Output

30x

Figure 4: Parallel frequency CNN (model 3)

ReLU activation with α = 0.3 in all Convolutional
layers, and Sigmoid activation in the dense layers.
The Leaky ReLU [5] is an extension to the Rectified
Linear Unit [6] that does not completely cut off ac-
tivation for negative values, but allows for negative
values close to zero to pass through. It is defined by
adding a coefficient α in f(x) = αx, for x < 0,
while keeping f(x) = x, for x ≥ 0 as for the ReLU.

We apply a Dropout value of 0.2 to the dense layer.
Dropout is aimed at reducing overfitting by drop-
ping a percentage of random units at each weight up-
date [7, 8].

2.4 Learning Parameters

Both CNN architectures are trained over 150 epochs
with a constant learning rate of 0.02. The model is
adapted in each epoch using Stochastic Gradient De-
scent (SGD) and a mini-batch-size of 40 instances.

2.5 Implementation

The system is implemented in Python and using li-
brosa for the Mel transform and Theano-based li-
brary Keras for Deep Learning. It supports training
of the Neural Network on a GPU.

3

References

[1] T. Lidy, “Spectral convolutional neural network
for music classification,” in Music Informa-
tion Retrieval Evaluation eXchange (MIREX),
Malaga, Spain, October 2015.

[2] J. Pons, T. Lidy, and X. Serra, “Experiment-
ing with musically motivated convolutional neu-
ral networks,” in Proceedings of the 14th Inter-
national Workshop on Content-based Multime-
dia Indexing (CBMI 2016), Bucharest, Romania,
June 2016.

[3] M. A. Nielsen, Neural Networks and
Deep Learning. Determination Press,
2015. [Online]. Available: http://
neuralnetworksanddeeplearning.com

[4] X. Glorot and Y. Bengio, “Understanding the
difficulty of training deep feedforward neural
networks,” in Proceedings of the 13th Interna-
tional Conference on Artificial Intelligence and
Statistics (AISTATS), vol. 9, 2010, pp. 249–256.

[5] A. L. Maas, A. Y. Hannun, and A. Y. Ng,
“Rectifier nonlinearities improve neural network
acoustic models,” ICML 2013, vol. 28, 2013.

[6] V. Nair and G. E. Hinton, “Rectified Linear Units
Improve Restricted Boltzmann Machines,” Pro-
ceedings of the 27th International Conference on
Machine Learning, no. 3, pp. 807–814, 2010.

[7] G. E. Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. R. Salakhutdinov, “Improv-
ing neural networks by preventing co-adaptation
of feature detectors,” arXiv: 1207.0580, pp. 1–
18, 2012.

[8] N. Srivastava, G. E. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov, “Dropout :

A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Re-
search (JMLR), vol. 15, pp. 1929–1958, 2014.

4

