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Fig. 1. Application examples built using TimeBench: (1) Monthly health data of 20 cities over 14 years in a Horizon Graph [44]; (2)
14 years of daily health data in a GROOVE visualization [39]; (3) a project plan using the PlanningLines metaphor [3]; (4) a project
plan as a Gantt chart [28]; (5) an Arc Diagram [50] showing relationships between events of three categories; (6) a ThemeRiver
visualization [29]; (7) multiple line plots with indexing [9]. Health data from the NMMAPS study [42] is used in (1), (2), (5), (6), and (7).

Abstract—Time-oriented data play an essential role in many Visual Analytics scenarios such as extracting medical insights from
collections of electronic health records or identifying emerging problems and vulnerabilities in network traffic. However, many software
libraries for Visual Analytics treat time as a flat numerical data type and insufficiently tackle the complexity of the time domain such
as calendar granularities and intervals. Therefore, developers of advanced Visual Analytics designs need to implement temporal
foundations in their application code over and over again. We present TimeBench, a software library that provides foundational
data structures and algorithms for time-oriented data in Visual Analytics. Its expressiveness and developer accessibility have been
evaluated through application examples demonstrating a variety of challenges with time-oriented data and long-term developer studies
conducted in the scope of research and student projects.

Index Terms—Visual Analytics, information visualization, toolkits, software infrastructure, time, temporal data

1 INTRODUCTION

Time-oriented data is ubiquitous in many domains as for example
medicine, business, engineering, and security. Time itself is an in-
herent data dimension that is central to the tasks of revealing trends
and identifying patterns and relationships in the data. Time and time-
oriented data have distinct characteristics that make it worthwhile to
treat such data as a separate data type [2, 5]. This view has also been
expressed earlier by Shneiderman [45] as well as by Card and Mackin-
lay [15]. As example for such characteristics, time-oriented data can
be given for either a time point or a time interval. While intervals
can easily be modeled by two time points, they add the complexity
of 13 qualitative temporal relations [4]. Also, intervals of validity
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may be relevant to domain experts but might not be explicitly spec-
ified in the data. Another characteristic of time is its calendar aspect:
we often interpret and reason about time by using a calendar whose
time units are essential for this reasoning. However, calendars have
complex structures: in the Gregorian calendar the duration of a month
varies between 28 and 31 days and a single week can overlap with two
different months and even two different years. Furthermore, available
data might be measured at different levels of temporal precision. Some
patterns in time-oriented data emerge when a cyclic structure of time
is assumed, as with traffic volume by time of day or unemployment
rate by season. In other cases, analysts need to filter out such effects
in order to understand long-term trends. Additionally, analysts might
be interested in comparing developments in the data that do not cover
the same period of time. For such comparisons, the analysis is usually
focused on relative time, according to some sentinel events.

Therefore, visualization and analysis techniques need to address the
characteristics of time. Time is comprehended differently than other
dimensions by analysts and might influence other variables and physi-
cal dimensions. Therefore, special methods for time-oriented data are
necessary in order to reveal trends and identify patterns that might be
hidden if time is treated merely as a quantitative dimension. Many
methods and applications exist for the visualization of time-oriented
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data [2]. Yet, most available techniques deal with simply structured
time-series data (time-value pairs). More complex temporal structures
including intervals, multiple types of temporal primitives, temporal in-
determinacies, multiple granularities, multiple calendars, multiple per-
spectives, and branching histories are only sporadically supported by
current methods. Such methods are rather specific to their application
domains and tailored towards a particular model of time.

There is a lack of software libraries that support the modeling, vi-
sualization, and processing of time-oriented data at a higher level than
time-series data. Considering the importance of time-oriented data
in many fields, more general support is desirable in order to ease the
creation of new Visual Analytics (VA) methods and to increase their
reusability. The need for an appropriate infrastructure has also been
emphasized by Elvins [19] as well as by Silva and Catarci [46]. More-
over, building and providing reusable infrastructures is an important
challenge called for in most VA research agendas [35, 48] and is seen
as key for the growth of the discipline. Designing such an infrastruc-
ture is a formidable research challenge, not to mention the effort re-
quired to actually implement the library’s broad functionalities. How-
ever, the gain from having such infrastructures available is significant
[35, Ch. 6]. First, the usage of “standardized” components increases
the quality of software compared to ad-hoc solutions. Second, results
may be attained faster since the (re)implementation of basic infrastruc-
tural components is avoided. Third, both compatibility and compara-
bility are increased if the solutions are based on common infrastruc-
ture. Such an infrastructure for VA of time-oriented data must be based
on an expressive data model in order to capture the characteristics of
time on a generalized level.

We propose the design of a versatile and reusable library that al-
lows for easy modeling, visualization, and processing of time-oriented
data, called TimeBench. After discussing the unique characteristics of
time-oriented data (Section 2), the design requirements (Section 3),
and related work (Section 4), we elaborate on the contributions of this
work:

• A conceptual model of time-oriented data that describes time
primitives explicitly and can express complex temporal data in
a uniform data structure (Section 5).

• A software library that implements this conceptual model spe-
cific to the requirements of VA. It includes instants, intervals,
spans, multiple granularities, as well as multiple calendars, and
temporal indeterminacy. The library is based on established soft-
ware design patterns, which make it easy to use by developers
and are runtime efficient (Section 6).

We present three application examples built using this library in Sec-
tion 8.1. These examples demonstrate both the expressiveness of
TimeBench and the flexibility it offers for designing VA solutions for
time-oriented data. In addition, three long-time developer studies in
Section 8.2 report on its usefulness for research and student projects.
Finally, Section 9 discusses how TimeBench fulfills its requirements,
what limitations it has, and outlines possibilities for future work.

2 TIME-ORIENTED DATA

Time-oriented data has an inherent structure that encompasses several
aspects stemming from natural or social sources. Due to the impor-
tance of time-oriented data, its structure has been studied in numerous
scientific publications (e.g., [2, 11, 23, 34]). As proposed by Aigner et
al. [2], we divide the aspects of time-oriented data into general aspects
required to adequately model the time domain and human-made ab-
stractions that are useful to deal with the complexity of time-oriented
data. The general aspects are scale, scope, arrangement, and view-
points. In TimeBench, we focus on explicitly modeling the human-
made abstractions, which we describe in the following:
Granularities. Time can be divided according to units that were origi-

nally derived from calendric systems. Analyzing data at the scale
of several calendar units is important, e.g., when not only local
artifacts affect the data but seasonal or weekly cycles as well.
Also, when measurements are taken irregularly, it might be im-
portant to decide at which time points “steps” make sense. A
full and formal definition of calendar units is given by Bettini et

al. [11]. They base their work on a view on the discrete time
domain that is composed of atomic units called chronons, which
they represent by integer numbers. A granularity is defined as
a mapping from chronons of the discrete time domain to subsets
of these chronons. The authors also define a granule as a subset
of chronons mapped by a certain granularity. Furthermore, they
define grouping operations that allow for finer granularities to be
grouped into coarser granularities. As example, if the chronons
are days, they can be grouped into months or into years. Months
can also be grouped into years. In actual calendars, the group-
ing operation usually happens periodically: all chronons in any
January belong to the granule January. To define a particular
January, the granularities month and year have to be combined.

Time Primitives. Several time primitives are defined by Goralwalla et
al. [27]: Instants are a model for single points in time, intervals
for ranges between two points in time, and spans are durations
(of intervals) without a fixed position. Instants and intervals are
anchored primitives, as they have a fixed position in time. Spans
are unanchored primitives, as they do not contain information
about their position. Allen [4] presents a set of 13 qualitative
relations between two intervals as an extension of order theory
to the time domain. This set can be expanded with further re-
lations between instants and intervals [2]. An example for data
where multiple time primitives are of importance are electronic
health records, where medical tests are more or less instanta-
neous snapshots of a patient’s state while conditions and thera-
pies are present over longer intervals.

Determinacy. Time-oriented data can be subject to uncertainty in the
time domain. Indeterminacy might stem from incomplete or in-
exact data in the application domain or from conversion between
granularities (e.g., when weekly data are combined with daily
data). Determinacy also plays an important role in project plan-
ning (e.g., when the duration of tasks is not fully known in ad-
vance) and medical treatment plans (e.g., latest possible begin-
ning of a therapy) [2, 36].

The human-made abstractions of time-oriented data – granularities,
time primitives, and determinacy – are related to each other and to the
general aspects as well. Granularities can express a cyclic arrange-
ment of time. Indeterminacy can be modeled by the time primitives
indeterminate instant and indeterminate interval, which can be com-
posed of standard intervals and spans [2, 3]. The time references of
primitives are not necessarily chronons, but can be granules of any
granularity. Thus, an instant or the begin of an interval can be an-
chored on a day granule. A span can be given as a number of granules
and its length needs not to be a fixed number of chronons (e.g., a span
of two months). Anchored time primitives as well as particular gran-
ules can be defined by their first and last chronons. These chronons are
called the infimum and the supremum, which can be seen as functions
in f (x) and sup(x) from primitives or granules to chronons. Figure 2
illustrates the interplay between granules and anchored primitives.

In the following section, we explain the requirements that arise
when modeling the human-made abstractions of time-oriented data.

3 DESIDERATA

Based on the theory of time-oriented data (Section 2), existing work
in VA of time-oriented data [2], and our own experience from multiple
design studies, we establish the following desiderata that a VA library
for time-oriented data should fulfill:
Expressiveness. The library needs to tackle the complexity of time-

oriented data and support various aspects of this data such as
primitives and granularities (Section 2). It must be flexible and
extensible for a wide range of usage scenarios.

Common Data Structure. The library must offer standardized data
structures as a common basis to allow recombining different vi-
sualizations, interactions, and automated methods in a polylithic
fashion (cp. [8]).

Developer Accessibility. The library has to be as simple and slim as
possible to ensure ease of use by software developers. The un-
derlying data structures and operations should be exposed to the
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Fig. 2. Granules and anchored primitives. Granules of three granular-
ities G0, G1, and G2 (e.g., days, weeks, and months) are displayed as
rectangles. Three time primitives are anchored to these granules. An
interval intervalc (orange) is defined beginning at instanta (blue) and end-
ing at instantb (green). The first instant instanta is anchored at granule gk
of granularity G1, which is composed of the seven blue chronons in the
discrete time domain G0. The second instant instantb is anchored at the
green chronon in G0, which implies that the ending of intervalc is more
precise than its beginning. The left-most blue chronon is the infimum of
intervalc and the green chronon is its supremum.

developer using an application programming interface (API) that
“speaks the language” of the time domain. The library should be
modular and easy to extend.

Runtime Efficiency. The data structures and the operations need to be
optimized for interactive exploration in time-related scenarios.
For this purpose, they have to take advantage of the different
aspects of time-oriented data.

These desiderata compete with each other. For example, a high degree
of expressiveness limits the options to optimize efficiency and leads to
a more complex and less accessible architecture. As we discuss in Sec-
tion 9, we prioritize the desiderata in TimeBench in the order as listed
above, because TimeBench aims to support the rapid development of
research prototypes.

We show in the next sections how TimeBench provides solutions to
these desiderata and, thus, contributes to the vision of VA, beyond the
state of the art.

4 RELATED WORK

VA of time-oriented data is a wide area, which is illustrated by the over
one hundred visualization techniques recently collected by Aigner et
al. [2]. Some of these techniques are generic, like line plots, but many
are design-study prototypes targeted at a specific domain problem.
Moreover, these prototypes are built on diverse software infrastruc-
tures, which makes it hard to combine them in a multiple-view setting
or to compare them in an evaluation framework.

Thus, related work can rather be identified in software libraries
such as prefuse/Flare [32], ProtoVis [13, 31], D3 [14], Tulip [6], IVTK
[20], Obvious [21], behaviorism [22], Simile TimeLine [33], and
JFreeChart [25]. These libraries are focused on visualization and have
limited or no support for automated methods. Applying them to build
VA prototypes requires additional effort. In addition, there are data
analysis and visualization tools such as Improvise [51], uVis [37, 38],
Polaris/Tableau [47], SAS JMP, and MS Excel. These tools allow – to
varying degrees – to interactively build VA prototypes. Some of them
expose their APIs, which can be used as infrastructure for VA. An im-
portant criterion for software libraries and tool APIs is extensibility:
While in some cases components can be customized only through a
fixed set of properties (e.g., a bar chart widget), other libraries allow
components to be refined by inheritance (e.g., a stacked bar chart wid-
get as a subclass), or by composition (e.g., a stacked layout and a bar
renderer as chart properties). The latter two possibilities are referred
to as monolithic and polylithic architectures [8]. Next we analyze how
the libraries and tools mentioned above support time-oriented data.
Time as Attribute. All the software libraries and tools are capable of

working with data that has time points as one or more attributes.
Internally, the time points are usually saved as numbers repre-
senting offsets in milliseconds, days, or years from some origin.

Also dealing with input and output of various date/time formats
is well supported. Many, but not all libraries and tools provide a
linear time axis with major and minor tick marks based on cal-
endar structures.

Granularities and Cycles. Calendar units are often used to group vi-
sual items and thus reveal temporal cycles. For example, the
“reruns” view of Improvise [52] displays daily data as glyphs
on a matrix, where the user can adapt how many glyphs fit in a
row and, thus, change the cycle length. Weekend days are repre-
sented by a different glyph. Edges to separate the days by month
and background gradients to represent seasons can be added in
the background of the glyph matrix. Similarly, the “calendar
view” demo of D3 [14] displays daily data in a pixel-based layout
with week-of-year mapped to column and day-of-week mapped
to row. This layout is achieved declaratively using date formats
(e.g., “%w” for day-of-week) in the formulas that specify the
coordinates. The tool uVis provides a Granularity component,
which is used in different building blocks for time-oriented data
[38]. For example, the CyclicalTimeAxis defines the x-axis map-
ping to build a Cycle Plot [16].
However, these operations work only with a fixed set of fre-
quently needed granularities such as day-of-week but cannot be
used in a generic way. Furthermore, they do not address that the
granules of one granularity can be grouped to other granularities,
which can be a source of temporal imprecision.

Time Primitives and Determinacy. While all libraries and tools can
deal with data anchored to instants, other time primitives are less
often supported. Interval data can be displayed as interval bars
in the style of LifeLines [43] or Gantt charts in some of the tools,
such as the “Gantt chart” component of Polaris/Tableau [47], the
IntervalValues building block of uVis, and Simile TimeLine [33].
Nevertheless, there is a clear interest in such interval bar charts,
which is illustrated by a variety of proposed workarounds to dis-
play a Gantt chart in MS Excel using stacked bar charts or er-
ror bars. The remaining time primitives are even less supported.
We could not identify any library or tool that supported indeter-
minate intervals. Furthermore, the possibilities to mix different
types of time primitives are limited.

Finally, VA is distinguished by the intertwinedness of visualization
and automated methods, which are steered by coherent interaction
methods, but these libraries and tools focus on the visual mapping of
data and do not provide data transformations that go beyond that.

Due to the complexity and importance of time, there are also li-
braries that focus on dealing with time itself. τZaman [49] is a power-
ful client/server system that supports multiple calendric systems with
multiple calendars and conversions between them. New calendric
systems, calendars, and granularities can be specified in XML or by
adding Java classes to define more complex structures. Joda Time
[17] is a library that aims at replacing Java’s default calendar classes.
It supports multiple calendar systems and is focused on providing a
simple API. Both libraries can be integrated as calendar backends in
TimeBench, which is planned in future work.

5 EXPRESSIVE MODEL FOR TIME-ORIENTED DATA

Unlike the related libraries presented above, we propose a data model
that describes time primitives explicitly. Thus, it is possible to work
uniformly with different primitives (instants, intervals, and spans) in
the same data structure. In addition, this allows for the extension with
more complex time primitives such as indeterminate intervals, which
are defined by an interval representing an imprecise begin, an interval
representing an imprecise end, and two spans each representing the
minimum and maximum of an imprecise duration [2, 3].

For this purpose, we introduce the temporal dataset as a generic
data structure for time-oriented data. A temporal dataset D is the com-
position of temporal objects O , temporal elements E , and a timing
function t from objects to elements:

D = (O,E , t) t : O → E (1)



The temporal objects O are a set of data items containing non-
temporal attributes and are mapped to time by the function t. These
attributes can be defined based on the requirements of the target do-
main. The model imposes no constraints on their number or data types
and does not require a specific data structure; the temporal objects can
be organized in a table, in a tree, or in a graph.

The temporal elements E are a set of time primitives, which hold
the temporal attributes of the data, including information about the re-
spective calendar granularities. As proposed by Lammarsch et al. [40],
these can be instants that reference a granule or spans that reference a
count of granules. Moreover, time primitives can form more complex
structures specific to a target domain (e.g., indeterminate intervals). In
order to express such complex primitives while keeping the attribute
schema simple and consistent, time primitives can be built hierarchi-
cally. For example, an interval can be built from its begin instant and
a span denoting its duration. In addition, a temporal element can be
defined as a subset that groups temporal primitives without a specific
structure. To improve the expressiveness even further, this hierarchy
is organized as a directed acyclic graph, which allows a primitive to
have multiple parts and be part of multiple other primitives.

The timing function t maps each temporal object to exactly one tem-
poral element. Conversely, the inverse function t−1 maps each tempo-
ral element to a (possibly empty) set of temporal objects. This 1-to-
n relationship between objects and elements is an adequate trade-off
between expressiveness and accessibility. Without loss of generality,
the temporal dataset can model objects having multiple temporal ele-
ments. For this purpose, multiple timing functions can be used, if a
fixed number of temporal elements are needed for each object (e.g., an
electronic health record with date of birth and period of treatment). To
support an arbitrary count of temporal elements per object, these ele-
ments can be grouped under a composite time primitive (e.g., adminis-
tration time of a medication). If an object without timing information
is needed, it can be mapped to a special primitive that spans over the
complete calendar or the lifespan of the dataset.

Example. We demonstrate our data model by illustrating some
items of an electronic health record as depicted in Figure 3. Each
entry contained in the record can be related either to a time point or
to a time interval. Medical encounters, medical tests, or images are
examples of instantaneous entries, which are represented by temporal
objects that are mapped by the timing function to an instant:

o1 = (Pulse,92) t(o1) = i1 = instantminute(2013-02-2116:10) (2)

An example of interval data is a health condition such as influenza
from one medical encounter to another one. This temporal object is
mapped to an interval that is built from two instants (begin, end) rep-
resenting the time of the medical encounters. Another example is a
drug prescription from today for seven days, which is mapped to an
interval built from an instant and a span (begin, duration).

Next, we explain how software design patterns can be extended with
this time-oriented data model in order to flexibly support a wide vari-
ety of time-oriented datasets.

v5v4
s7

i6i3i2i1

o1 o2 o3 o4 o5

Fig. 3. Example of a temporal dataset on the conceptual level. The tem-
poral objects o1–o3 represent data at the time points i1–i3 (e.g., blood
tests), whereas o4 and o5 occurred during time intervals v4 and v5 (e.g.,
artificial ventilation). Dashed arrows denote the building of composite
primitives such as interval v4, which begins at i3 and ends at i6, and
interval v5 beginning at i6 for the time span s7.

6 LIBRARY DESIGN

The following sections give an overview of the library’s architectural
design choices and abstractions. TimeBench focuses on supporting
time-oriented data. For general visualization features it reuses soft-
ware components from an existing polylithic visualization library, in
our case, prefuse [32]. The software design of TimeBench is based on
established design patterns for Information Visualization [30], which
makes it possible to apply its abstractions in different software en-
vironments. The overall architecture follows the Reference Model
pattern1 and separates abstract data, visual data, views, and interac-
tion techniques. A major part of TimeBench is the implementation
of the expressive data model for time-oriented data in data structures
that are accessible to developers and efficient to run. This extends
the abstract data component of the Reference Model as we show in
Section 6.1. Another important part is the calendar component (Sec-
tion 6.2), which provides operations for calculation with granularities
and granules. On this basis, various data transformations as well as
visual mappings, renderers, and interactive controls for VA of time-
oriented data are possible. Interaction passes throughout the archi-
tecture encompassing both visual mapping and data transformations,
which allows for VA. We present some examples in Section 6.3 and
Section 6.4 to demonstrate the general applicability of our design.

The diagrams in this section use the extended object-modeling tech-
nique notation [24, 30] to depict classes and their relations. A cir-
cle at the end of an arrow indicates a 1-to-n relationship and a dia-
mond at base of a relation denotes aggregation. Classes with white
background are part of TimeBench, whereas gray background denotes
classes preexisting in the software environment (i.e., prefuse). The
diagrams show an abstract view and do not specify all details of the
implementations.

6.1 Data Structures

TimeBench realizes the data model proposed in Section 5 and allows
developers to work with temporal objects and temporal primitives in
an object-oriented fashion. It provides factory and accessor methods,
time-specific indexing structures, and input/output features.

Internally, temporal objects and temporal elements are stored as
rows in relational data tables. This data structure is efficient and flex-
ible thanks to the Data Column pattern and can be integrated directly
with relational databases. For convenient development in an object-
oriented fashion, each table row can be accessed as a tuple object,
which is backed by the data residing in the data columns (Proxy Tuple
pattern, a variant of the Facade pattern). Graph or tree data structures
can also be built using relational data tables by storing the nodes and
the edges as tuples in separate tables (Relational Graph pattern).

Figure 4 gives an overview of the data structures in TimeBench.
The central class is TemporalDataset, corresponding to D from the
model. Tuples in this data set are TemporalObjects. Internally the
temporal dataset is composed of a number of data columns holding
non-temporal attributes, O , and a TemporalColumn. This specialized
data column holds one reference to a temporal element for each row,
which realizes the timing function t. The TemporalElement tuples, E ,
are created and stored by the TemporalElementStore.

By default, TemporalDataset is a subclass of Graph, which makes it
compatible with existing visualization components. It holds temporal
objects as graph nodes and stores their relationships as non-temporal,
directed edges. Temporal objects have exactly one temporal column,
with a predefined attribute name and accessor functions. However, this
is just a common default structure, which we adopted based on various
prototypes we created so far. TimeBench, just like the time-oriented
data model, does not limit the number of timing functions nor how the
data is organized. Temporal columns can be added to a flat table, to a
tree, or to the edges of a graph. Additional temporal columns can be
added to define additional timing functions.

1Design patterns are denoted in italics and refer to Information Visualization
design patterns described by Heer and Agrawal [30] or general software design
patterns described by Gamma et al. [24].



Fig. 4. Overview of the data structures. TemporalDataset and Tempo-
ralElementStore are subclasses of Graph, and allow access to Tempo-
ralObject and TemporalElement tuples respectively.

Table 1. Columns of the TemporalElement Table.

Column Name Type Explanation

id long unique identifier
inf long first chronon for anchored elements

granule count for unanchored element
sup long last chronon for anchored elements

granule count for unanchored element
granularityID int identifier of the granularity
granularityContextID int identifier of the context granularity
kind int enumeration of primitive types (0 = span,

1 = set/custom temporal element, 2 = in-
stant, 3 = interval)

The TemporalElementStore is a separate data structure and can be
shared between different temporal datasets. This has the advantage
that the same temporal elements can point both to original data and to
filtered or derived data. It is also possible to use one temporal element
store throughout a scenario as a Singleton object. The TemporalEle-
mentStore references back to the TemporalColumns where it is used.
This allows listing all temporal objects timed at a specific temporal
element.

The TemporalElementStore has a uniform structure that is stable
across all scenarios. The temporal elements are stored as nodes in
a directed acyclic graph and have a fixed table schema (Table 1). De-
pending on whether a temporal element represents an anchored prim-
itive or an unanchored primitive, the semantics of the “inf” and “sup”
columns differ. For an anchored primitive these columns hold the first
(infimum) and the last (supremum) chronon of the element. For an
unanchored primitive they both hold the length in granules of the el-
ement. In addition, there are columns that denote the granularity, a
switch for the primitive type, and a unique element identifier. The
edges of the graph represent the hierarchical structure of composite
primitives. They can also be interpreted as aggregation to sets or as
custom relationships between temporal elements to allow for wider
flexibility. Thus, TimeBench is optimized for performance in regard
of the temporal occurrence, while retaining a common and expressive
data structure.

Due to the different semantics of the columns, creating the temporal
elements and manipulating their attributes and relationships directly
can be cumbersome and prone to mistakes. Therefore, TimeBench
instantiates Proxy Tuples as objects of a specific subclass of Tempo-
ralElement (Figure 5): The classes Instant, Interval, and Span have
dedicated accessor methods that handle the respective aspects of the
time domain. Additionally, the TemporalElementStore provides dedi-
cated Factory Methods for these primitives. These classes also inter-

face with the calendar package, as they take Granule and Granularity
objects as input and output. For example, an instant can be created
from a granule, and an interval can be created from an instant (be-
gin or end) and a span (duration). Custom primitives can be defined
as subclasses that implement their particular semantics in an object-
oriented fashion. In addition, the subclass GenericTemporalElement
allows direct, unrestricted access to the internal data. If needed, devel-
opers can switch seamlessly between these two perspectives because
these objects save their attribute values not locally but in the Tempo-
ralElementStore.

The availability of factory and accessor methods allows maintain-
ing good-practice rules for dealing with time-oriented data. For exam-
ple, anchored primitives should begin with the infimum (first chronon)
of a granule in their granularity. Yet, TimeBench does not check or
enforce such practice in order not to limit flexibility and efficiency.

The efficiency of data lookup is improved further through index
structures. In particular, the interval index [18] allows efficient ac-
cess to temporal objects by their occurrence time. Specifically, it sup-
ports the full range of qualitative relations [4] between the queried
temporal objects and a given time point or interval. For example, it
is possible to look up temporal objects that occur within or intersect
with a time interval. These relations can be implemented on top of
the IntervalComparator interface. The interval index is implemented
as a red-black tree, which guarantees O(log n) algorithmic complexity
both for adding and removing elements to the index, and for perform-
ing the temporal queries. TimeBench updates the index automatically
upon changes in the temporal elements.

TimeBench provides a range of input/output features. There are im-
porters for calendar data in iCal format and comma-separated text files
in various data layouts. If the layout and the format of temporal data
are not automatically detected, it can be specified in a metadata file.
Data exchange between TimeBench and the R Project for Statistical
Computing works bidirectional, supporting the R classes ts and zoo.
TimeBench data can be saved as a GraphML document that retains the
internal structure of the TemporalDataset as closely as possible.

6.2 Calendar Operations

The classes of the calendar package offer an intuitive interface to de-
velopers hiding the complexity of the powerful calendar operations
described by Bettini et al. [11] and Goralwalla et al. [26]. These op-
erations mostly revolve around Granule objects (see Section 2) and
integer arithmetic with identifiers and inf/sup values. Typical opera-
tions are (1) checking the qualitative temporal relations [4] between
granules, e.g., whether they overlap or which is before the other; (2)
shifting granules by a given number of identifiers (e.g., two months)
or chronons using robust methods for chronons that do not fit a gran-
ule; (3) the conversion of granules on one granularity to the corre-
sponding granules on another granularity (e.g., hours to days). This
operation can determine the extent to which a granule on one granu-
larity lies within another granule on a different granularity. An exam-

Fig. 5. Subclass hierarchy of temporal elements. Different temporal
primitives are first-class objects.



ple application for this is the organization of temporal objects in tree
structures based on granularities (see GranularityAggregationAction in
Section 6.3).

Dealing with calendars is mainly related to the Granule class. Table
2 lists its attributes. A granule is defined by its identifier, its granu-
larity, and a context granule. For example, a “January” granule might
have the number 0 as identifier and the granularity “month in context of
year”. Depending on whether the contextGranule is specified or not,
the granule is either particular or general. For example, a general gran-
ule is just January, without further specification. A particular granule
is the January of 1987. General granules can be used to model tempo-
ral cycles (every January) or indeterminacies (some January). In both
cases, there are as many identifiers as there are different granules on
their granularity. E.g., for the granularity month of year, the identifier
can range from 0 (January) to 11 (December).

Like an instant or an interval, a particular granule has an inf value
and a sup value representing its first and last chronons. Thus, the
context granule also determines whether the granule has a temporal
location or not. A general granule, having no context granule, does
not need to have values set for inf and sup. Furthermore, each granule
is given a human readable label that depends on the localization of the
environment.

To create a Granule on a given Granularity (see below for granulari-
ties), users have to either provide the identifier or the chronons inf and
sup. The other values are calculated on-demand. TimeBench provides
a number of variants for dealing with fuzzy input: If the provided inf or
sup do not correspond to the inf and sup of any granule in the provided
granularity, it is possible to use the granule around the inf, the granule
around the sup, or the granule around their mean. It is also possible to
create an array of Granule instances that fill a certain interval of time
between two given chronons. Granule objects can also be directly cre-
ated from temporal primitives, such as Instant and vice versa. In this
case, the granule object is cached by the TemporalDataset so that re-
lated operations, such as the calculation of an identifier do not need
to be performed multiple times upon subsequent queries for the same
granule. To reduce the computational overhead further, granule objects
are created on-demand only. Also, when exporting the data, granules
are not exported with it, since they can be recalculated automatically
upon import.

As stated above, each granule is dependent on a granularity. With-
out a granularity, operations like creating identifiers or checking
whether the inf and sup fit in the boundaries of an actual granule are
undefined. Thus, TimeBench also provides a Granularity class. An
instance of Granularity is required to create a Granule instance. Each
granularity has its own identifier (e.g., day) as well as a context iden-
tifier (e.g., week or month). Granularities in turn might have different
meanings depending on the calendar they belong to. Therefore, like a
Granularity instance is needed to create a Granule instance, to create a
Granularity instance developers need an instance of the Calendar class.
Each Calendar instance has a unique identifier as multiple calendars
might be needed in the same application.

Several different implementations of calendric systems are possible,
each supporting a different set of calendars that all might be needed by

Table 2. Attributes of the Granule Class.

Attribute Explanation

inf The infimum, the first chronon of the granule.
sup The supremum, the last chronon of the granule.
identifier The granule identifier, its global number or its

number inside the context granule.
label A human readable label for the granule (e.g., a 0

for identifier can become “January”).
granularity The granularity to which the granule belongs.
contextGranule The context granule. If this it null, the granule

will be a general one (e.g., a general January).

Fig. 6. The classes of the calendar package support multiple granu-
larities and multiple calendars. A calendar manager implementation is
provided using the Strategy pattern.

developers, or, respectively, their users. Some very powerful systems,
like τZaman [49], are very flexible in defining and handling custom
calendars (e.g., Academic) and granularities (e.g., business week), but
are rather complex to set up and connect to. Therefore, we made the
design decision to implement granules, granularities, and calendars in
a generic way as Facade to different calendar backends. The calendar
package is as flexible and extensible as its backends. It delegates the
calendar calculations to classes that implement the CalendarManager
interface (Figure 6). This structure of the calendar package allows in-
tegrating different calendar backends with minimal need for changes
to existing code (Strategy pattern). The runtime performance largely
depends on the calendar manager and its backend. So far, we have
implemented the JavaDateCalendarManager, which performs all cal-
culations based on the methods provided by the Java core classes and
supports the Gregorian calendar only.

To access different calendar managers at runtime (e.g., when load-
ing a configuration file) an identifier is needed to retrieve them from
the CalendarManagerFactory class. Next, developers can create an in-
stance of the Calendar class by specifying a calendar manager and the
identifier of the required calendar.

Finally, the calendar package also is our way of modeling relative
time. It is possible to create a calendar with a given origin (if sup-
ported by the calendar manager). Commonly used origins are the birth
of Christ or of UNIX. By specifying a manual origin, all granule iden-
tifier calculations are performed according to this origin, while the
chronon level remains unchanged.

6.3 Transformations on Data Tables
In TimeBench, automated analysis methods can be implemented as
data transformations over the TimeBench data structures described in
Section 6.1. By means of an extension we introduce to the software
library prefuse, user interactions can not only modify the visual map-
ping but also perform data transformations. These transformations can
be implemented in the same way as in prefuse without being limited
to visual attributes. Two design patterns can be used for this purpose:
The Operator pattern, which is implemented as Action in prefuse, can
be used to transform a table or a graph into another table or graph (e.g.,
a TemporalDataset into another), or to compute additional values in a
procedural fashion (e.g., results from visual mappings). The Expres-
sion pattern can be used to define the transformation in a more func-
tional way of programming. Existing actions or expressions from the
prefuse packages can be seamlessly applied to TimeBench data struc-
tures and be combined with TimeBench data transformations. For ex-
ample, a pattern finding method can use the built-in ComparisonPredi-
cate to handle non-temporal attributes and TimeBench expressions for
temporal attributes.

One novel action provided in TimeBench to support various auto-
mated analysis methods and visualizations is the GranularityAggrega-
tionAction. This action arranges the temporal objects as leaves of a
tree that is generated based on a set of granularities. The branches are



filled with aggregated values for the non-temporal data, allowing for
various aggregation methods, like mean or sum. For example, hourly
values can be aggregated to daily means and subsequently to yearly
means. The generation of the tree is supported by the calendar pack-
age (Section 6.2). Using the GranularityAggregationAction, visualiza-
tion methods, like Cycle Plot [16] or GROOVE [39] have already been
implemented in TimeBench (see Section 8.1).

We have also implemented time-oriented expressions that represent
a temporal element or an array of temporal elements. Based on these
expressions, we have implemented predicates that evaluate if the prim-
itive type, granularity, or context granularity of these temporal ele-
ments matches the query. There are also expressions for shifting tem-
poral elements by a given amount of chronons. Finally, the Temporal-
ComparisonPredicate evaluates whether two expressions representing
two temporal elements or a temporal element and a literal anchored
primitive are in a specified qualitative temporal relation (e.g., before,
starts, overlaps) [4]. These expressions can also be combined. For
example, by shifting a temporal element a certain number of chronons
and testing for the meets relation, it is possible to check whether it ends
exactly a given time before a given instant. These expressions can be
used both to filter and aggregate the data and to define the visual map-
ping in existing actions, such as conditional coloring.

6.4 Visual Mapping, Rendering, and Interaction

Since the TemporalDataset is a subclass of the built-in Graph data
structure, it can be added to a regular prefuse Visualization object.
Prefuse creates a VisualGraph that inherits all data columns from the
Graph and adds columns for visual attributes (Cascaded Table pattern).
Thus, non-temporal attributes of the temporal dataset are immediately
available for prefuse visual mappings such as AxisLayout. Likewise,
all built-in renderers and interactive controls in prefuse are compatible
with the new data structure.

Leveraging temporal attributes in the visualization is possible in
multiple ways thanks to the polylithic architecture of TimeBench and
prefuse. First, there are standard components available in TimeBench
such as TimeAxisLayout. Laying out temporal objects along a lin-
ear time axis is possibly the most common visual mapping of time.
For this purpose, the TimeAxisLayout comes with a suite of interactive
zooming and panning controls and gridlines. The gridlines and labels
use calendar granules for meaningful time units and expand or collapse
automatically during interactive zoom. Second, the developer can im-
plement custom visual mappings, renderers, or interactive controls that
are aware of the TimeBench data structures. Prefuse supports this cus-
tomization by means of several base classes that can be extended for
easily achieving the desired visualizations. Third, the developer can
use the Expressions and Operators presented in Section 6.3. This can,
e.g., be used to color visual items according to the granule they belong
to, whether they happen during a certain range of time, or according
to any other qualitative temporal relation.

Alternatively it is possible to add the TemporalElementStore to the
Visualization as a VisualGraph. However, in this case custom com-
ponents are needed to access the actual data which is stored in the
TemporalDataset.

7 IMPLEMENTATION

In Section 6 we elaborated on the software architecture and abstrac-
tion for a library to support VA of time-oriented data. In order to
allow widespread use of the library by the research community as
well as by practitioners, we make it available as open-source soft-
ware under a BSD 2-Clause license. Its implementation and in-
structive demos are available at http://www.timebench.org.
Furthermore, we continue extending the library at GitHub (https:
//github.com/ieg-vienna/TimeBench) and we invite the
community to contribute via this platform.

TimeBench is implemented in the Java programming language, ver-
sion 1.6, and uses the polylithic visualization library prefuse [32]. In
addition it depends on Apache Commons Lang 3.0, Apache log4j 1.2,
iCal4j 1.0.4, and on the Java/R Interface (JRI), which is part of rJava.

Currently, TimeBench is comprised of 136 classes with about 13,000
lines of code.

8 EVALUATION

We investigate the applicability and usefulness of TimeBench using
application examples and long-term developer studies. The devel-
opment of VA solutions cannot be broken down to routine activities.
Therefore, we apply qualitative evaluation methods, which offer more
realistic results.

8.1 Application Examples

The following examples were chosen to demonstrate TimeBench un-
der different data characteristics and challenges (Table 3). Their im-
plementations by the authors are available from the project webpage
(http://www.timebench.org).

Horizon Graph. In the first example (Figure 1.1), we compare
multiple time-series over a linear time axis using the Horizon Graph
technique [44]. For the visual mapping of time to the x-coordinate, we
use the TimeBench component TimeAxisLayout (see Section 6.4). This
layout provides mouse controls together with user interface elements
that allow the user to pan and zoom in time. The time axis labels au-
tomatically expand or collapse accordingly based on calendar units.
As data transformation, indexing is often used together with horizon
graphs and is an effective technique to make time series with largely
different value ranges visually comparable [1, 9]. For this example we
use the TimeBench component IndexingAction with a mouse control
that interactively sets the indexing point to the temporal element clos-
est to the point clicked with the mouse. This shows the development
relative to that point in time. For the y-coordinates, colors, and areas
we do not need to tackle temporal aspects.

GROOVE. This example (Figure 1.2) comprises an implementa-
tion of Granularity Overview OVErlay (GROOVE) visualizations, a
pixel-based visualization technique specialized for time-oriented data
[39]. It requires that the temporal objects are organized in a calendar-
based tree structure that has input values in the leaves and aggregated
values in their parents, up to the root. We create such a structure
from a table dataset using the GranularityAggregationAction provided
by TimeBench (see Section 6.3). The temporal objects of various lev-
els in the tree are depicted as nested rectangles, whose positions are
determined based on the structure of the tree and on the identifiers
of granules created from their temporal elements. This placement is
performed by a layout action we developed for GROOVE, but would
also be suited for the time axis of a Cycle Plot [16]. In a pixel-based
visualization, numerical values are mapped to color. In our example,
we show a color overlay variant of GROOVE. This variant maps the
values of two aggregation levels to hue and lightness [39]. We have
implemented a specific OverlayDataColorAction for this purpose.

PlanningLines. Indeterminacy is the main challenge of the third
example (Figure 1.3) where a project schedule or a medical treatment
plan is visualized. We use the visual metaphor of PlanningLines [3],

Table 3. Characteristics of the Application Examples.

Example Data/Time Challenges

Horizon Graph instants, numerical,
multivariate

linear time axis,
interactive indexing

GROOVE instants, numerical,
univariate
transformed to tree
with 5,965 nodes

granularity-based
aggregation & layout,
color based on two
granularities

PlanningLines indeterm. intervals,
nominal, graph

indeterminacy,
scheduling

http://www.timebench.org
https://github.com/ieg-vienna/TimeBench
https://github.com/ieg-vienna/TimeBench
http://www.timebench.org


which is similar to a Gantt chart [28], to represent tasks that are sched-
uled during an indeterminate interval. The intervals between earliest
and latest begin as well as earliest and latest end are shown as black
caps, while the minimum and maximum duration are shown as colored
bars. We use the hierarchical structure of temporal elements to store
these complex primitives and we apply the decorator item feature of
prefuse to render the individual parts of the PlanningLines metaphor.
For the encoding of time, we reuse the linear time axis component of
TimeBench, in particular the IntervalAxisLayout. The dependencies be-
tween the tasks are stored as directed graph edges and are represented
as arrows.

Summary. Even though each example would be possible without
TimeBench, we observed that the code complexity did not increase by
using TimeBench while the code volume decreased through reusable
components such as the time axis and granularity aggregation. In par-
ticular, GROOVE depends heavily on calendar operations and hierar-
chical structure of temporal objects. PlanningLines use indeterminacy
to demonstrate the need for complex temporal primitives.

8.2 Long-term Developer Studies
In addition to the application examples which re-implemented existing
work within a time frame of hours or days, TimeBench was applied in
research and student projects for a period of several months. Next, we
report observations on its usefulness for some of these projects.

TiMoVA. This project was conducted by one M.Sc. student as part
of his master thesis in computer science. The student had no previous
experience with TimeBench or prefuse. As a result of the work a VA
solution for the selection of time series models in a highly interactive
visual interface has been designed, implemented, and evaluated [12].

The prototype loads time series data from comma-separated text
files into a TemporalDataset. It uses the bidirectional interface to R
because it performs statistical computations in R and shows diagnos-
tic plots using TimeBench/prefuse. It was relatively easy to implement
direct manipulation of model parameters within the plots. For visual-
izing the time series and the residuals over time, TiMoVA provides
line plots built using the time axis component of TimeBench.

Summary. The student could adapt the line plots based on existing
demo code. He could reuse existing data import/export interfaces and
TimeAxisLayout. Therefore, he did not need to learn how TimeBench
works internally or re-implement standard features but he could focus
on statistical methods and on designing a smooth user experience.

DOI Time Scale. The second developer study reports on the final
project of two high-school students specialized in information tech-
nology (19 years old). The students had gained some experience in
TimeBench and prefuse during a one-month internship with the au-
thors. Before that, they had only developed in C#. The students de-
veloped extensions of the linear time axis component of TimeBench
addressing two issues of visualizing irregularly sampled data [7].

The first extension tackles large gaps in the data by compressing
the time scale at gaps larger than a user-defined threshold. The second
extension allows the user to distort the time axis in a way similar to
a fisheye lens. For this the GranularityAggregationAction is used to
compute aggregated values.

Summary. The students did not only reuse TimeBench compo-
nents but also extended some of them. They recorded a total devel-
opment time of 165 person hours (ph): 10 ph for setup on basis of a
demo, 46 ph for the gap time scale, and 109 ph for the DOI time scale.

Temporal Pattern Discovery. Finally, we report on a research
project conducted by four TimeBench authors and one external expert
in knowledge discovery in databases. The outcomes are a new pat-
tern finding approach that extends existing work [10] to better capture
the temporal aspects in event data and an interactive visualization for
exploring the resulting patterns in such data [41].

The pattern finding approach first searches for events, which are
defined as consecutive temporal objects that fulfill specific conditions
(e.g., value above the threshold for all objects). The conditions may
contain temporal aspects (e.g., event duration is more than one hour
or includes a Monday). Then, it iteratively chains events to patterns,

whereby one of a number of temporal relations between events must
be fulfilled (e.g., meets). The implementation uses separate Temporal-
Datasets for input data, events, and patterns. The patterns are stored
as a forest with the temporal relations represented as tree edges. Each
path from a root to a leaf represents a pattern instance. Both steps are
implemented as data transformations and they use temporal predicates
to specify the event-forming conditions and the temporal relations be-
tween the events (Section 6.3).

The visualization shows the patterns as an Arc Diagram [50] with
the events depicted as colored bars in the middle of the view. In the
example in Figure 1.4, there are three colors representing three cate-
gories of events. The arc color depends on the category of the first
event in the respective pattern.

Summary. TimeBench supported the development in multiple
ways: (1) The data structures, in particular storing patterns as a forest,
help in avoiding difficulties which some team members encountered
while implementing a predecessor approach [10]. (2) The two steps of
the pattern finding approach are implemented as separate Operators,
which helps in improving code readability and reusability. (3) The
temporal predicates provide a high flexibility, making not only new
parameters, but also completely new kinds of parametrization possible
without changing the algorithm itself. (4) All information encompass-
ing the input data, the events as intermediate results, and the patterns
as final results can be added to the same visualization, because Tempo-
ralDataset is compatible with prefuse data structures. (5) The Arc Di-
agram relies largely on existing TimeBench/prefuse components (e.g.,
linear time axis). The only module that had to be developed was the
ArcRenderer.

9 DISCUSSION

In this section, we demonstrate how TimeBench can fulfill the desider-
ata from Section 3 based on the application examples and developer
studies presented in Section 8.

Expressiveness. Our expressive model for time-oriented data de-
scribed in Section 5 supports time primitives as well as determinacy
by building more complex time primitives from simple ones. Tempo-
ral datasets can be as simple as a time series, or more complex with a
mixture of various time primitives as the one shown in Figure 3.

The calendar package introduces granularities in a way that allows
for developing complex calendar managers while working with well-
known human abstractions only. This includes full support for the fre-
quent tree structures in calendric time as well as cycles, like seasons.

We have validated the expressiveness of TimeBench by using it in
several research projects such as Temporal Pattern Discovery (Sec-
tion 8.2). In addition, Section 8.1 presents three examples: The Hori-
zon Graph shows multivariate time-series data, the GROOVE visu-
alization shows several levels of granularities at the same time, and
PlanningLines show the handling of indeterminate intervals.

Common data structure. We have presented a data structure in
Section 6.1 that is suitable for all VA scenarios dealing with time-
oriented data that we could conceive. In Section 8, we present appli-
cation examples and projects that demonstrate various kinds of time-
oriented data and various kinds of suitable VA methods that are all
using this data structure. Internally, data is stored as rows in relational
data tables. This data structure is efficient and flexible and can be in-
tegrated seamlessly with relational databases to improve scalability.

Developer accessibility. We differentiate between developers who
use or recombine existing TimeBench components and developers
who implement new or derivative components. For the first group,
the demo programs provided with the library serve as templates and
as source for copying code snippets, which is a frequently used ap-
proach to familiarize oneself with a new API [32]. The TiMoVA
project serves as an example for this. Thus, it is possible to build
visualizations such as a line plot or a Gantt chart very quickly with-
out the need to understand the inner workings of TimeBench. In fact,
the main difference between a prefuse scatter plot and a TimeBench
Gantt chart is the change of AxisLayout to IntervalAxisLayout. Without
TimeBench the developer would need to implement a data structure
for intervals and a layout that considers intervals themselves.



The second group of developers needs to understand the design of
TimeBench. To facilitate this, TimeBench is built on software design
patterns and uses common terminology for time-oriented data. Fur-
thermore, TimeBench provides an object-oriented API that uses the
Proxy Tuple pattern to access its internal data structure and the Fa-
cade pattern to encapsulate complex calendar logic. Modeling the
non-temporal data aspects works as with prefuse. We have evaluated
the accessibility of TimeBench with two high school students who ex-
tended TimeBench as part of their final project. They experienced a
steep learning curve, but once they mastered prefuse and how it uses
software design patterns they adopted TimeBench relatively quickly
and finalized their project with great success. Another obstacle was
the incomplete documentation, which was due to the project being
performed parallel to finishing TimeBench.

Runtime Efficiency. The efficiency can be appraised using our ap-
plication demos. They run smoothly and responsively on standard
hardware. The Horizon Graph shows 3,360 temporal objects. In the
GROOVE demo 5,115 original and 850 aggregated objects are visible.
The Arc Diagram presents 3,842 different patterns.

To increase efficiency, we would have to sacrifice expressiveness or
accessibility. In this trade-off we focus on the latter two, as TimeBench
is a framework designed mainly for developing research prototypes.

Limitations. The flexibility of TimeBench stems from more com-
plex data structures which impose an overhead in memory require-
ments. However, a linear overhead is usually not a severe problem on
modern computer hardware. The main recipe to limit memory con-
sumption is using efficient algorithms.

TimeBench has been developed in Java like many existing research
libraries. As a result, web-based applications can only be deployed as
Java applets or by Java Web Start, which do not seamlessly integrate
with web pages and are often disabled for stability and security rea-
sons. However, our concepts and the design patterns we use do not
rely on Java and can be replicated in other languages.

The JavaDateCalendarManager only provides a Gregorian calen-
dar which does not allow specifying a user-defined origin but always
centers around 1970-01-01 0:00:00,000am. The calendar package in
general does not have this limitation, thus this implementation detail
has to be addressed by creating a more versatile calendar manager.

Future Work. As an open, polylithic library, TimeBench can be
extended in many ways, such as introducing additional actions for vi-
sual mapping and automated methods or designing user interactions.

We do not currently support huge datasets or streaming data. How-
ever, integrating the in-memory data structures of TimeBench with
relational databases, big data repositories, or data streams would be
possible. In this case, only parts of the data are loaded at a time, to
generate smaller aggregated temporal datasets from them that are sub-
sequently used. A possible way to achieve this is to support the inter-
operability with the meta library Obvious [21], which was designed to
facilitate such data integration efforts.

The calendar package allows integrating new calendar managers.
The current JavaDataCalendarManager has been rapidly developed to
allow using the Gregorian calendar. As our final goal is to provide
more powerful calendar support, we are in the early stages of develop-
ing a calendar manager that connects to the τZaman system [49]. This
calendar manager should also support the relative time model.

Another aspect of time-oriented data that we do not directly model
in TimeBench is branching time [2]. The tree structures we make
available for temporal objects as well as for temporal elements allow
the developers to model branching time manually. However, it would
be more expressive to extend the TimeBench data model to handle this
kind of time-oriented data.

Finally, time is not the only dimension that has an inherent struc-
ture. Other types of data, like spatial data, can be very complex and
much research has been put into understanding their structures. Based
on our data model, it is worth to investigate the integration of spatial
elements to model spatial data, in a similar fashion as our temporal
elements.

10 CONCLUSION

Time-oriented data plays an essential role in many VA scenarios. How-
ever, there is no reusable software infrastructure that provides foun-
dational data structures and algorithms for time-oriented data in VA.
Such infrastructure should respect that the time domain and time-
oriented data have a complex structure. It should facilitate reuse
through a common data structure, provide an accessible API to de-
velopers using concepts from the time domain, and provide adequate
runtime performance.

In creating the software library TimeBench, we fill the gap by pro-
viding this infrastructure. In this paper we presented its underlying
conceptual data model and elaborated on its architectural design and
abstractions. In addition, we provide the library as open-source soft-
ware. From designing this library, we can deduct the following lessons
learned:

• The complexity of time-oriented data (granularities, time primi-
tives, and determinacy) can be expressed in a common data struc-
ture by modeling time primitives explicitly using a simple and
consistent table schema and hierarchical composition.

• By applying the Proxy Tuple pattern to enhance data tuples with
a time-specific API, we make it easy for developers to build vi-
sual mappings, interactive controls, and data transformations for
time-oriented data.

• Powerful calendar operations based on granularities provide VA
techniques with a solid basis for insight discovery. The calendar
manager encapsulates these operations, which is advantageous
when connecting to more complex calendar managers and when
dealing with relative and branching time.

• By explicitly modeling the structural aspects of time, data trans-
formations such as granularity aggregation and qualitative tem-
poral relations can directly access these aspects and be imple-
mented in a much simpler fashion than based on “raw” data. This
also holds for visual mappings, like mapping granule identifiers
directly to locations on various axes, or mapping the infimum
(first chronon) and supremum (last chronon) of an interval to two
locations on the same axis.

We demonstrated TimeBench by means of three application examples,
reported on three projects built on top of it, and discussed how it ful-
fills its design requirements. Thus we can conclude that (1) it eases the
development and testing of new visualization, interaction, and anal-
ysis methods for time-oriented data; (2) it facilitates the reuse and
the combination of such methods thanks to its common data struc-
ture; and (3) thus, it fosters the reproducibility and comparability of
VA techniques for time-oriented data. Consequently, we assume that
TimeBench is a valuable asset when developing research prototypes
for VA of such data and is extendable to address future challenges in
this area.
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MuTIny: A multi-time interval pattern discovery approach to preserve the
temporal information in between. In A. P. dos Reis and A. P. Abraham,
editors, Proc. IADIS European Conf. Data Mining, pages 101–108, 2010.

[11] C. Bettini, S. Jajodia, and S. X. Wang. Time Granularities in Databases,
Data Mining, and Temporal Reasoning. Springer, Berlin, 2000.
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