
Advanced visualization of Self-Organizing

Maps with Vector Fields

Georg Pölzlbauer a Michael Dittenbach b Andreas Rauber a,b

aDepartment of Software Technology, Vienna University of Technology,

Favoritenstrasse 9–11, Vienna, Austria

beCommerce Competence Center – ec3, Donau-City-Str. 1, Vienna, Austria

Abstract

Self-Organizing Maps have been applied in various industrial applications and

have proven to be a valuable data mining tool. In order to fully benefit from their

potential, advanced visualization techniques assist the user in analyzing and inter-

preting the maps. We propose two new methods for depicting the SOM based on

vector fields, namely the Gradient Field and Borderline visualization techniques, to

show the clustering structure at various levels of detail. We explain how this method

can be used on aggregated parts of the SOM that show which factors contribute

to the clustering structure, and show how to use it for finding correlations and de-

pendencies in the underlying data. We provide examples on several artificial and

real-world data sets to point out the strengths of our technique, specifically as a

means to combine different types of visualizations offering effective multidimensional

information visualization of SOMs.

Key words: Self-Organizing Maps, Visualization, Gradient Field, Borderline

Preprint submitted to Elsevier Science 21 March 2006

1 Introduction

The Self-Organizing Map (SOM; Kohonen (2001)) is an unsupervised artificial

neural network especially valuable in exploratory data analysis. It is used

in a variety of scientific and industrial applications (Kaski et al., 1998; Oja

et al., 2001). In this paper, we use the SOM primarily as a visualization tool

that performs a non-linear projection from a high-dimensional feature space

onto a two-dimensional map lattice. We present our work on several flavors

of a visualization method that shows the clustering structure of the map as a

gradient field and show various extensions and possible application scenarios.

The gradient field is displayed as arrows that point to the most likely cluster

center for each map unit. One property of this technique is that it can be

adjusted by interactively setting a kernel smoothing parameter to show the

granularity of the clustering, similar to the choice of the number of clusters in

clustering algorithms, revealing the structure at various levels of detail.

The rest of the paper is organized as follows: In Section 2 we describe re-

lated SOM visualization techniques. In Section 3 we discuss basic properties

of the SOM and neighborhood kernel functions. In Section 4 we introduce the

Gradient Field method and several extensions to it, namely the Borderlines

representation as well as grouped gradient fields. In Section 5 we provide ex-

periments on a benchmark data mining data set, a real-world industrial data

set, and some experiments on artificial data. Section 6 summarizes this paper

and gives directions for future work.

2

2 Related work

In this section, we provide a brief survey on SOM-related concepts and visu-

alization techniques. The two primary qualities of the SOM are vector quanti-

zation and non-linear vector projection. The former aims at finding a reduced

representation of the data samples by significant prototypes, while the latter

applies a reduction of dimensionality and presentation in human-perceivable

form (Grinstein et al., 2001). The most important vector quantization method

is k-means (Hartigan and Wong, 1979) which is very similar to the SOM.

Prominent non-linear vector projection methods include pair-wise distance

preserving techniques like multi-dimensional scaling (Torgerson, 1952) and

Sammon’s Mapping (Sammon, 1969), which aim at preserving pair-wise dis-

tances in the resulting projections. Other techniques measure distance based

on distribution and density of the data set to be projected, like Isomap and

Curvilinear Distance Analysis (Lee et al., 2004). Isomap (Tenenbaum et al.,

2000) relies on nearest neighbor graphs of the input data and finding the short-

est path to construct the latent space. ViSOM (Yin, 2002) is an extension of

the SOM that aims at positioning the prototype vectors in a roughly equidis-

tant way in order to avoid post-processing visualization methods. With this

model the training process itself is adapted to capture data space character-

istics. A lot of effort has been directed to extend the topology of the SOM to

more flexible topologies to reveal the cluster structure as part of the resulting

architecture (Martinetz et al., 1993; Fritzke, 1994; Dittenbach et al., 2002).

SOM visualization usually uses the map lattice as a visualization platform

(Vesanto, 1999), where quantitative information is most commonly depicted

as color values or as markers of different sizes. More advanced approaches

3

exploit the analogy to geography (Skupin, 2004). SOM visualization methods

mainly fall in two categories: techniques that rely solely on the codebook vec-

tors, and ones that take the distribution of the data samples into account.

We begin with the former category. Component planes are projections of one

single dimension of the codebook. By plotting the component planes for all

dimensions, all information on the prototype vectors is revealed. However, as

with other methods in statistics, it becomes increasingly difficult to perceive

important information such as clustering structure and underlying dependen-

cies. We show how to aggregate component planes into groups and how to

examine their differences in Section 4.3.

The unified distance matrix (U-Matrix; Ultsch and Siemon (1990)) is a vi-

sualization technique that shows the local cluster boundaries by depicting

pair-wise distances of neighboring prototype vectors. It is the most common

method associated with SOMs and has been extended in numerous ways. The

Gradient Field that we describe in this paper has some similarities with the

U-Matrix, but applies smoothing over a broader neighborhood and a different

style of representation. One drawback of the U-Matrix is that it is less suited

for large sparse SOMs (Emergent SOMs; Ultsch (1999)).

Another form of visualizing the map is clustering the prototype vectors (Vesanto

and Alhoniemi, 2000), disregarding the SOM topology. This provides a vector

quantization point of view and can be used to identify homogeneous regions.

Another type of visualization is concerned with gradients (Kaski et al., 2000)

for local models of the SOM, which is also closely related to our method.

The second category of visualization techniques takes the distribution of the

data into account. The most simple ones are hit histograms, that show how

4

many data samples are mapped to a map unit, and labeling techniques, that

plot the names and categories, provided they are available, of data samples

onto the map lattice. More sophisticated methods include smoothed data his-

tograms (Pampalk et al., 2002), which show the clustering structure by map-

ping each data sample to a number of map units, and graph-based meth-

ods (Pölzlbauer et al., 2005c), that show connections for map nodes that are

close in feature space. The P-Matrix (Ultsch, 2003a) is another density-based

approach that depicts the number of samples that are within a sphere with a

certain radius around the prototype vectors. The radius is a quantile of the

pair wise distances of the data vectors. The U*-Matrix (Ultsch, 2003b) is a

combination of P-Matrix and U-Matrix, and is applied to large SOMs. The

U-Matrix value, defined as the sum of distances of each node to its direct

neighbors, is multiplied by a scaling factor induced by the local density of the

data points around the corresponding prototype vector. This results in high

values for areas where there the distance to neighboring areas is high and the

data density is low, and low values otherwise.

The Generative Topographic Mapping (GTM; Bishop et al. (1998)) has been

introduced as an alternative to the SOM with a continuous output space that

models the probability distribution in feature space. The magnification factors

visualization (Bishop et al., 1997) depicts local stretching of the mapping as

ellipsoids in a discrete number of latent space centers. This method is related

to our technique as it explains directional changes. Magnification factors can

also be computed for the SOM, where a continuous interpolation is applied to

the discrete SOM lattice in order to perform differential analysis. Apart from

that, our method differs mainly in the way that smoothing is applied: While

magnification factors for the SOM show similar results as the U-Matrix, we

5

apply a smoothing according to an adjustable parameter that defines the width

of the area over which the differences are aggregated and investigated. Further

extensions of magnification factors for GTM investigate their curvature (Tino

et al., 2001).

3 Self-Organizing Maps and neighborhood kernels

A Self-Organizing Map is a mapping from an N -dimensional feature space to

a low-dimensional output space. The output space is called the “map lattice”

and consists of M neurons (map units). In this work, we assume the output

space to be two-dimensional and the feature space to be a vector space over

the real numbers (RN). We introduce a strict formal notation to differentiate

between the various scenarios where vectors, coordinates or positions are used.

We explicitly distinguish between a map node ξi on the two-dimensional map

lattice and its corresponding prototype vector (or model vector) mi in feature

space. The index 1 ≤ i ≤ M connects a map node to its prototype vector. The

set of all prototype vectors is called the codebook M. We denote the horizontal

and vertical coordinates of ξi as ξu
i and ξv

i , respectively. The prototype vector

mi lives in the same space as the data samples. Another use of the word

“vector” in this paper is in the context of the resulting visualization, that

consists of a field of arrows pointing to cluster centers. We will refer to it as

the Gradient Field method. There are two distance metrics involved in the

SOM algorithm, one in feature space, the other one between units on the map

lattice. The distance between prototype vectors mi and mj in feature space is

denoted as

6

dF (mi,mj) = ‖mi −mj‖F (1)

where ‖ · ‖F is the distance measure of feature space also applied during SOM

training, which can be basically any metric, such as the cosine distance, or

any Minkowsky metric, while the most common distance usually being Euclid-

ean (Aggarwal, 2003). dF is also used to compute the distance between data

samples and prototype vectors.

On the map lattice, the distance between units ξi and ξj is measured by the

Euclidean Metric

dO(ξi, ξj) = ‖ξi − ξj‖O =
√

(ξu
i − ξu

j)2 + (ξv
i − ξv

j)2 (2)

As our method is primarily concerned with post-processing of a trained SOM

we do not introduce the training process in detail, but rather refer to (Ko-

honen, 2001) for an in-depth discussion. A crucial concept in SOM training

is the neighborhood kernel hσ, which is a monotonously decreasing function

hσ : R → R+. It converts the distance dO into a measure of proximity. Far

apart units ξi and ξj will have a low kernel value. Thus, the kernel acts as a

weighting function for the influence of nodes ξi and ξj onto each other. Ker-

nels are used in many fields of statistics such as probability density estimation;

however, for use with SOMs, the kernel does not have to be a probability func-

tion with unit area.

There are numerous kernel functions, the most widely used one is the Gaussian

kernel hG
σ , which resembles a bell-shaped curve

7

hG
σ (dO) = exp

(
− d2

O

2σ

)
(3)

The kernel value for distant nodes is exponentially decreasing and will be close

to zero for dO > σ. For computational reasons, the kernel can be cut off at

this threshold (“cut-off Gaussian kernel”):

hG’
σ (dO) =





hG
σ (dO) if dO ≤ σ

0 otherwise

(4)

A very simple kernel is the bubble kernel, which is a step function that is

defined as

hb
σ(dO) =





1 if dO ≤ σ

0 otherwise

(5)

It relies solely on the concept of cutting off outside the radius σ, weighting

all distances up to this point equally. This function is not continuous in a

mathematical sense.

Another choice is the inverse proportional kernel:

hip
σ (dO) =





1− d2
O

σ2 if dO ≤ σ

0 otherwise

(6)

It is similar to the Gaussian Kernel but decreases faster to zero.

All of the above kernels are non-linear functions. The linear kernel is an ex-

8

ception:

hl
σ(dO) =





1− dO

σ
if dO ≤ σ

0 otherwise

(7)

It decreases linearly from one to zero. The parameter σ deserves special atten-

tion. It determines the breadth of the neighborhood function, such that very

high values correspond to high influence of far-away and close units alike, and

very low values emphasize only the direct neighbors of the map unit. It is

used in the proposed visualization techniques to control the granularity of the

structures detected, serving as a smoothing parameter.

4 SOM visualization with vector fields

In this section, we introduce two methods for visualizing the clustering struc-

ture based on vector fields (Pölzlbauer et al., 2005b). The gradient is plotted

on top of the SOM lattice with one arrow per map unit. The length and

direction of each arrow indicate where the cluster centers are located. The en-

tirety of the arrows forms a smooth vector field especially intended for use by

professionals with engineering backgrounds, exploiting their familiarity with

gradient and flow visualizations. The Borderline visualization is derived from

the Gradient Field and provides an alternative view that emphasizes the clus-

ter boundaries. In Subsection 4.3, we further extend the Gradient Fields to

contrast contributing factors of the clustering structure.

9

4.1 Gradient Field Visualization

In this subsection we describe the algorithm for obtaining a vector field that

shows homogeneous areas. Each of its arrows ai is computed based on the

prototype vectors, the map topology, and the choice of the neighborhood ker-

nel. The ai will be plotted on top of their corresponding map units ξi. The

vectors ai have a u and v component, denoted as au
i and av

i , corresponding to

the horizontal and vertical coordinates, respectively. The algorithm outlined

in the next paragraphs consists of two main steps which are repeated for each

map unit: In the first one, weighted distances to all other prototype vectors

are computed and separated along both the u and v axes in positive and nega-

tive directions. In the second step, these contributions are aggregated for each

coordinate and normalized in order to avoid border effects.

From this point, we will outline the algorithm to compute the coordinates of

ai, for map unit ξi and its associated prototype vector mi. Some of the formulas

involve pair wise comparisons to other units and models vectors, which will

be denoted with index j. These computations have to be performed for all

1 ≤ j ≤ M with j 6= i. First we need to obtain the vector connecting the

positions of ξi and ξj in output space, which is defined as

χij = ~ξiξj = ξj − ξi (8)

The angle α of this vector χij is simply

αij = arctan
(χv

ij

χu
ij

)
(9)

10

(a) (b)

Fig. 1. (a) distances to prototype of map unit in the center; dark values denote high

distances, (b) map unit size scaled according to Gaussian neighborhood kernel with

σ = 4

Using the above notation, it is now possible to apply the neighborhood kernel

to the distance between units ξi and ξj, which is the length of χij, and to split

up this weight into u and v directions:

ωu
ij = cos αij · hσ(||χij||), ωv

ij = sin αij · hσ(||χij||) (10)

The value of ωu
ij will be close to zero when either the distance between ξi

and ξj is high, resulting in a very low kernel value, or in case ξu
i = ξu

j , i.e.

ξi is directly above or below ξj with no horizontal offset. The value of σ also

influences the kernel function and thus the value of ω since high σ tend to

weight far-away map units higher than with low σ values. Note that ωu
ij will

be negative in case ξj is to the left of ξi.

In the following, we will only explicitly provide formulas for the u coordinate,

as v follows analogously. In the next step, the distances between the associated

prototype vectors mi and mj are taken into account, weighting these distances

by ω, and assigning them to either the positive or negative side of u:

11

δu+
ij =





dI(mi,mj) · ωu
ij if ωu

ij > 0

0 otherwise

(11)

δu−
ij =





dI(mi,mj) · (−ωu
ij) if ωu

ij < 0

0 otherwise

(12)

Dividing the weighted distance contribution of the prototype vectors along

the positive and negative directions will provide a means to find the direction

where the dissimilarity of the current vector mi is relatively low, and where

the arrow ai will ultimately point to. If, for example, ξj is next to ξi on the

right side, and the distances between the prototype vectors are high, then δu+
ij

will be high, which will contribute significantly to ai pointing to the left, away

from ξj. Figure 1 gives a schematic overview of the weighting process to the

unit in the center of the map ξi: First, the pair wise feature space distances

dI(mi,mj) are shown in Figure 1(a), where the ith node is the one in the

middle of the map; then, the sizes of the hexagons are scaled according to the

kernel value of their output space distance to the center node hσ(||χij||) in

Figure 1(b). The arrow in this figure points in the direction where the least

weighted distances are. Repeating this calculation for all the ξj, we can finally

aggregate the δu+
ij and δu−

ij values:

ρu+
i =

∑

j=1...M,j 6=i

δu+
ij , ρu−

i =
∑

j=1...M,j 6=i

δu−
ij (13)

Once we know ρu+
i and ρu−

i , we can tell whether and to which extent one of

the directions outweighs the other. For ρu+
i > ρu−

i , the accumulated distances

12

from the right side are bigger than the ones on the left, so the arrow will

point to the left. Close to the map borders, the distance contributions in the

direction of the border will always be lower than in the direction inside of the

map since there are simply no prototype vectors for which a distance could

be computed. The resulting arrows are thus biased to always point outside of

the map. To avoid this, a normalization has to be performed that sums the

ωu
ij values in positive and negative directions

ωu+
i =

∑

j=1...M,j 6=i





ωu
ij if ωu

ij > 0

0 otherwise

(14)

ωu−
i =

∑

j=1...M,j 6=i





−ωu
ij if ωu

ij < 0

0 otherwise

(15)

Finally, we can determine the components of ai as

au
i =

ρu−
i · ωu+

i − ρu+
i · ωu−

i

ρu+
i + ρu−

i

(16)

where the accumulated input space differences ρu+
i and ρu−

i are weighted by

the opposing accumulated ωu−
i and ωu+

i , respectively. In case the node ξi does

not lie close to the edge of the u axis, ωu+
i and ωu−

i will be equal, and the effect

of this normalization will vanish. The most important of the computational

steps are performed in (13) and (16). The roles of ρ+
i and ρ−i of either u or v

coordinates deserve special attention and will be briefly discussed:

• ρ+
i ≈ ρ−i : In this case, distances are balanced and the component of a will

be small. If the values of ρ+
i and ρ−i are small, the prototype vectors mj of

the surrounding map units of ξi are very similar to mi and likely to be in

13

the center of a cluster. In case both ρ+
i and ρ−i are large, ξi is likely to be

right in between two clusters to neither of which it belongs. Such units are

called interpolating units and are easily recognized as arrows of neighboring

units are pointing away from them.

• ρ+
i > ρ−i : The distances in positive direction outweigh distances in negative

direction. mi is more similar to its neighbors in negative direction and ai

will reflect this by pointing there.

• The length of ai is determined by the difference between ρ+
i and ρ−i . Large

differences result in long arrows.

Our method differs from the U-Matrix in the way that it can be represented

as a field of arrows, and by the smoothing that is performed by the kernel to

override small cluster boundaries that may be artifacts that come from the

choice of the map size. The choice of the kernel width σ plays an important

role in what the visualization actually shows, since a small value of σ weights

the direct neighbors of the map unit ξi much stronger than the other units,

while a large value takes the surrounding units into account, weighting them

nearly equally, and thus smoothing over wide areas. The effect of choosing

σ lies in whether the visualization is a fine-grained vector field, where the

neighboring arrows vary sharply, or a coarse representation that show the

global clustering structure. One of the main advantages of our method is that

it allows interactively setting and tuning σ to different levels, so different

kinds of clustering structures can be observe. The value of σ has to be seen

in relation to the size of the map. For usual settings, we recommend setting σ

to around one sixth of the number of units along the shorter side of the map,

which usually results in a balanced visualization that is neither coarse nor

granular.We provide examples and further discussion of σ in Subsection 5.1.

14

The computational complexity of calculating the vector field is O(M2) since

it requires the pair wise distances between the map nodes and prototype vec-

tors. In case the kernel is cut off after a certain threshold, like hG’, hb, hip, or

hl, which is plausible since distant map nodes influence each other by negli-

gible amounts, the complexity reduces to O(M). The computational cost of

the U-Matrix also scales linearly with the number of map units, thus compu-

tation of the vector field is not more expensive in terms of complexity than

the U-Matrix. The experiments in Section 5, which include SOMs with up

to 2000 nodes, have been computed in several seconds even for the O(M2)

case, running under an implementation in Matlab code, thus offering itself for

interactive visualization with different sets of σ.

4.2 Borderlines representation

Another representation that emphasizes cluster boundaries over vector fields

pointing towards cluster centers can be easily derived. By depicting the or-

thogonal of each ai as a line from both sides of the center instead of an arrow,

the resulting visualization shows likely cluster boundaries. The length of the

arrows is preserved such that long lines hint at a strong separation between

clusters. We call this representation the Borderline visualization. An example

is shown in the next section.

4.3 Extension to groups of component planes

In this subsection, we describe an extension of the Gradient Field technique.

As data mining methods usually assume that the observed data samples follow

15

an unknown statistical distribution, local correlations and dependencies be-

tween variables are often an interesting property to assess. We assume that the

clustering structure is induced by certain groups of variables. The variables of

these distinct groups are either correlated to a certain degree or statistically

dependent in a non-linear way. Our assumption implies that the clustering

structure can be decomposed into these groups of variables. The basic idea is

to plot two or more groups simultaneously with the Gradient Field method.

This combined visualization shows the contributing factors of the clustering

and gives an additional feel about the underlying data.

The reliance on variables and component planes rather than codebook vectors

and their distances requires us to introduce some additional formal definitions.

A projection of the the codebook’s ith variable is called the ith component plane

Ci, which lies in a one-dimensional subspace of the feature space. Component

planes can be conveniently visualized on the map lattice. We define groups of

component planes as the combination of several variables, and denote S =

{1, . . . , m} as the set that consists of all the indices of these variables. We

are further interested in comparing g subsets S1,...,g ⊆ S. The sets must be

disjoint, i.e. Si∩Sj = ∅, i, j ≤ g, ∀i 6= j must hold. The union
⋃g

i=1 Si does

not necessarily have to contain all the variable indices if only a subset of the

variables is of interest. We denote by M(Si) =×k∈Si
Ck, where × refers to

the Cartesian Product, the reduced codebook which consists of the component

planes Si. M(Si) is a “sub-SOM” with the same number of map units, for

which e.g. the U-Matrix and Gradient Field visualizations can be computed.

Interesting subsets S1,...,g can be chosen either based on correlations between

component planes (Vesanto and Ahola, 1999; Himberg, 1998) or by grouping

variables that are known to be semantically similar, for example variables

16

that have a common source. The former choice can be performed by either

investigating the correlation matrix or by visual inspection of the component

planes, combining the ones that are similar. Determining the correlation of

component planes can be performed by

dcomp(i, j) = abs(γ(Ci, Cj)) (17)

where γ(Ci, Cj) is a suitable measure of correlation such as the Pearson cor-

relation coefficient on the variables Ci and Cj. For highly similar compo-

nent planes, the absolute value is close to 1. If there is no linear correlation,

its value is close to zero. Grouping components together is then performed

by partitioning the set of component planes. The more interesting choice is

grouping variables that are semantically similar, since this exploits a-priori

knowledge about the data. We then investigate whether the groups provide

contrasting clustering structures. For a thorough discussion of this approach,

see (Pölzlbauer et al., 2005a).

Once the relevant variable groups have been selected, the Gradient Field

method can be applied to both sets and visualized simultaneously. In order

to adjust the length of the arrows to negate the effect of different numbers of

variables between the sets, we compute

â
(S1)
i = a

(S1)
i

|S1|
|S1|+ |S2| (18)

where | · | denotes the cardinality of a set. In the next section, we provide

examples that explain the relation to variable dependence and applications on

a real-world data set.

17

5 Experiments

In this section, we will investigate the usefulness of the previously described

techniques with two real-world data sets and several artificial ones. The first

one is the “Phonetic” benchmark data 1 , which describes 20 distinct phonemes

from continuous Finish speech, which are measured in 20 variables. It consists

of 1962 data samples. The SOM trained on this data set consist of 30 × 40

map units. The other real-world data set comes from the domain of petroleum

engineering (Zangl and Hannerer, 2003). The “Fracture Optimization” data

set has been collected from 199 gas wells in 10 dimensions. The variables can

be grouped according to their source and use, which we will discuss in more

detail below. We have trained two SOMs on this data set, one with 7 × 10

map units, and one with 44 × 44 to show the characteristics of our method

for largely differing SOM sizes of both conventional as wel as emergent SOM

types. We show the general properties of our method with the Phonetic data

set, and the dual visualization and correlation discussion with the Fracture

Optimization data. The artificial data sets thereafter are used to stress our

method’s capabilities of visualizing non-linear correlations between groups of

variables.

5.1 Effects of the neighborhood radius

At first, we want to show the effects of the kernel width σ with the SOM

trained on the Phonetic data set with a Gaussian kernel hG. In this dataset,

many of the phoneme classes coincide with the homogeneous areas on the

1 Included in LVQ-PAK, available at http://www.cis.hut.fi/research/software

18

(a)

N

A

U

O

I

E

S

(b)

Level: E (119 cases)

(c)

(d) (e)

Fig. 2. Phonetic data mapped to the SOM: (a) U-Matrix, (b) Clusters and corre-

sponding labels, (c) hit histogram of data with label “E”, (d) k-means clustering

with 8 clusters, (e) k-means clustering with 4 clusters

map. The U-Matrix of this 30× 40 SOM is shown in Figure 2(a). Figure 2(b)

highlights some regions that are primarily occupied by one vowel or consonant.

As an example for a phoneme that is highly clustered, Figure 2(c) shows the

hit histogram for data samples of phoneme “E”. In Figure 3, the results for

both Gradient Field and Borderline methods for σ = 1, 5, 15 are shown. The σ

values “1”, “5”, and“15” have been chosen to represent low, medium, and high

radii, respectively, in relation to the map size of 30 × 40. Low values of this

parameter lead to very granular visualizations, where only direct neighbors

are taken into account for the computation of each arrow and thus only local

gradients can be observed, as visualized in Figures 3(a),(d). By increasing σ,

the clustering structure revealed shifts gradually from local towards global.

Figures 3(b),(e) provide a far better overview on the clustering structure, and

19

(a) (b) (c)

(d) (e) (f)

Fig. 3. Phonetic data with 30 × 40 SOM, Gradient Field visualization: (a) σ = 1,

(b) σ = 5,(c) σ = 15; Borderline visualization: (d) σ = 1, (e) σ = 5,(f) σ = 15

individual regions can be distinguished. In Figures 3(c),(f), the global structure

is shown for σ = 15. It reveals that the upper third is most strongly separated

from the rest of the map, which has not been indicated by any of the former,

more local representations. The relation to a clustering algorithm is shown in

Figures 2(d),(e), which show the results of k-means of the codebook vectors

with 8 and 4 clusters. The map topology is omitted for the clustering process,

so clusters can consist of non-adjacent nodes. σ is loosely related to the number

of clusters, as high values of σ show few boundaries and are comparable to

clustering with few cluster centers, while a low σ results in many local cluster

boundaries and is thus comparable to clustering with many cluster centers.

When compared to Figure 3, it can be seen that the k = 4 clustering reveals

20

(a) (b)

Fig. 4. Fracture Optimization data with 44× 44 SOM: (a) U-Matrix, (b) Gradient

Field with σ = 8

similar information as the Gradient Field method with a high σ, while k = 8

is comparable to the ones with a lower smoothing parameter. The choice of

σ has to be performed interactively and varies for the type of kernel used,

but a good starting point for the Gaussian kernel hG is 1/6th of the shorter

side of the map. σ always has to be seen in relation to the size of the map

since it is defined in absolute terms over the number of units over which the

smoothing is performed. While the choice of σ strongly influences the type

of information on the structure revealed, the results are insensitive to the

choice of the neighborhood kernel function. We have not noticed significant

differences between different neighborhood kernels. The only exception is the

Bubble kernel hb, which is is not continuous in a mathematical sense and does

not allow a smooth convergence across the neighborhood range, and is also

hardly used for SOM training. Thus, a cut-off kernel variant may be employed,

resulting in linear complexity for calculating the vector field.

21

5.2 Smoothing sparse maps

The next example shows the smoothing effect on sparse maps which are some-

times preferred if the SOM is used for visualization only and vector quantiza-

tion is not of interest. We use a 44 × 44 as an example of an oversized SOM

trained on the Fracture Optimization data set with an inverse proportional

kernel hip. The Fracture Optimization data set that we use for this experiment

consists of 199 samples in 10 variable dimensions, where each sample corre-

sponds to a well for gas drilling. Since the number of the map nodes (1936) is

about ten times higher than the number of data samples (199), the U-Matrix

visualization shown in Figure 4(a) shows artifacts that come from the fact that

most samples are mapped to nodes that they occupy solely. The remaining

units are merely interpolating units. The U-Matrix implies that these transi-

tions are actually cluster boundaries, while the significant boundary between

the upper and lower parts are overshadowed. In Figure 4(b), a Gradient Field

with σ = 8 is visualized, the radius being roughly one sixth of the map axes.

The smoothing effect overrides the insignificant cluster boundaries and focuses

on a more global clustering structure, which consists of two big clusters on

the upper and lower part of the map and a transition region slightly right of

the center. It is thus possible to adapt the visualization accordingly for sparse

SOMs.

5.3 Dual Gradient Fields on petroleum engineering data

Next, we discuss the combination of Gradient Fields to show how groups of

component planes influence the overall clustering structure with a 7×10 SOM

22

(a) (b) (c) (d) (e) (f)

Fig. 5. Fracture Optimization, 7× 10 SOM: (a) Component plane “produced gas”,

(b) component plane “stimulation costs”; (c) U-Matrix, (d) U-Matrix of M(Sgeo),

(e) M(Sparam), (f) M(Soutput)

(a)

A

B

(b) (c)

Fig. 6. Fracture Optimization SOM Dual Gradient Fields (the first group is indicated

by black, and the latter by grey vectors): (a) M(Sout) vs M(Sgeo), (b) M(Sout) vs

M(Sparam), (c) M(Sgeo) vs M(Sparam)

trained on the Fracture Optimization data. The map size is determined by the

number of training data samples and the ratio of the axes is calculated from

the ratio of the first to the second largest eigenvalue from principal compo-

nent analysis, as performed by default in the Matlab SOM Toolbox (Vesanto

et al., 1999). The variable dimensions come from 3 types of sources: (1) Geo-

logical factors that describe properties mainly determined by the choice of the

geographic position; (2) Engineering parameters set during the gas pumping

process; and (3) Output parameters that assess the success of the operation:

“Stimulation Costs” and “Produced Gas”. The data is gathered during three

steps, each corresponding to one of these groups. First, the position where to

23

build the well after checking the geological data is selected; then, the engi-

neering parameters are determined and the pumping proppant and fluids is

started; and finally, after the gas has been obtained, the output variables can

be assessed. The index sets are denoted as Sgeo (3 dimensions), Sparam (5 di-

mensions), and Sout (2 dimensions), respectively. We have trained a 7 × 10

SOM on this data set and want to find out how these groups of variables

depend on each other and how they decompose the clustering structure. Note

that we use the output variables in the same way as the other ones for training

since the SOM is an unsupervised learning method. What we intend to do is

thus related to canonical correlation analysis rather than to regression. Data

analysts are concerned with measuring the impact of the choice of the well’s

position or the fine-tuning of the engineering parameters on the output.

Figures 5(c)–(f) show the U-Matrices for the SOM and the sub-SOMs M(Sgeo),

M(Sparam), and M(Sout). From these, an impression of the the cluster boundaries

can be gained. The engineering parameters seem to divide the map horizon-

tally, while the geological factors are responsible mainly for a vertical bound-

ary. The output parameters are the most interesting ones, since we aim to

explain which regions of the map correspond to desirable outcomes, i.e. where

wells with low costs and high produced gas are located. Figures 5(a),(b) show

the component planes for these variables. It can be seen that the costs are

high in the lower part of the map, and low in the upper regions. The gas

production is high for wells that are mapped to the left border and slightly

below the center of the map. Thus, the most desirable position for wells is the

upper left corner with both low costs and high output. Figures 6(a)–(c) show

the pair wise Dual Gradient Fields of the three groups. For the arrows point-

ing in different directions for most parts of the map, the underlying variable

24

groups are likely to be statistically independent and explain different parts of

the overall clustering structure, which will be discussed in the next example.

Figure 6(c) shows Sgeo and Sparam, where the arrows are orthogonal in most

cases. This information can be exploited in order to improve the fracture op-

timization process. The horizontal position of the sample projected onto the

map is apparently determined by the geological factors since the black arrows

are parallel to the horizontal axis. The vertical position corresponds to the

engineering parameters. Thus, once the well is physically built, the geologi-

cal factors cannot change anymore, and the horizontal position on the SOM

describes a constraint for the effect of tuning the engineering parameters. It

is desirable to shift a well towards the upper left corner to optimize output

and costs. The lengths of the arrows correspond in how much a parameter has

to be changed to achieve a change in the node that the sample is projected

to. For example, Figure 6(b) shows Sout (black) and Sparam (grey). Suppose

a well is mapped to position “A”, where the black arrow is short, while the

grey arrow is long, thus moving one node up would require changing the engi-

neering parameter by a large amount, while resulting only in small differences

in output. For position “B”, the arrows are approximately orthogonal, thus

changing the parameters would only have marginal effects on the output since

the gradients do not indicate that there is a change in output vertically.

5.4 Statistical dependencies between groups of variables

Next, we examine the effect of the Dual Gradient Field method on 4 artifi-

cial data sets where we want to find out whether one variable is statistically

dependent on the other two. The data sets consist of 10, 000 samples. The

25

(a) (b) (c) (d)

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
0

500

1000

1500

x
1

x
2

x
1

x
3

x
2

x
3

(e) (f)

Fig. 7. Artificial Data SOM (no relationship): Component planes: (a) x1, (b) x2, (c)

x3; (d) length of difference vector, (e) scatterplots and distribution of x1, x2, x3, (f)

Dual Gradient Fields M(Suniform) vs M(Sprob dep)

first 3 examples are 3-dimensional, and the last one is 20-dimensional. In the

3-dimensional examples, the first two variables x1 and x2 are uniformly dis-

tributed between 0 and 1, and are statistically independent. The set of indices

forming this group is denoted as Suniform = {1, 2}. The second group consist

of the third probably dependent variable Sprob dep = {3} for which we want

to know whether it can be explained by the former two variables.

In the first example, we consider a third variable x3 that is independent of the

former two and is also uniformly distributed. Scatterplots for this data set are

provided in Figure 7(e), which show the variables x1, x2 and x3 in rows and

columns, and pair-wise scatterplots where they intersect; the bar charts show

the distribution of each single variable. The scatterplots clearly show that

26

(a) (b) (c) (d)

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
−0.5

0

0.5

0 0.5 1
0

500

1000

1500

0 0.5 1
−0.5

0

0.5

−0.5 0 0.5
0

500

1000

1500

2000

x
1

x
1

x
2

x
3

x
2

x
3

(e) (f)

Fig. 8. Artificial Data SOM (linear relationship): Component planes: (a) x1, (b) x2,

(c) x3; (d) length of difference vector, (e) scatterplots and distribution of x1, x2, x3,

(f) Dual Gradient Fields M(Suniform) vs M(Sprob dep)

there is no correlation between any of the variables. Figure 7(a)–(c) shows the

component planes after training a 30×30 SOM with a cut-off Gaussian kernel

hG’ on this data. The Dual Gradient Fields in Figure 7(f) show that most

arrows do not have common directions. To emphasize this, we have calculated

the length of the vector connecting the two arrows ‖aSuniform
i − a

Sprob dep

i ‖O in

Figure 7(d). This value is high (light values) if the black and grey arrows point

in different directions and low (dark values) if the black and grey arrows are

similar. The figure has numerous light nodes, and thus indicates that there

are no dependencies between the variable groups.

In the second setup, the third coordinate of each sample is defined as x3 =

x1+x2

2
. Scatterplots can be seen in Figure 8(e). Pearson’s correlation coefficient

27

(a) (b) (c) (d)

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

500

1000

1500

0 0.5 1
0

0.5

1

1.5

0 0.5 1 1.5
0

500

1000

1500

2000

x
1

x
1

x
2

x
2

x
3

x
3

(e) (f)

Fig. 9. Artificial Data SOM (non-linear relationship): Component planes: (a) x1,

(b) x2, (c) x3; (d) length of difference vector, (e) scatterplots and distribution of x1,

x2, x3, (f) Dual Gradient Fields M(Suniform) vs M(Sprob dep)

between x1 and x3 is 0.7, and between x2 and x3 is −0.7, indicating strong

linear dependence. The component planes plots for the 30 × 30 SOM on this

data are shown in Figures 8(a)–(c). It can be seen that the projection results in

linear ascent along diagonal lines, which are orthogonal for x1 and x2, stressing

their independence. This has not happened in the previous example. Here, the

data set is a 2-dimensional subspace embedded in the 3-dimensional feature

space, and thus equal in dimension to the map lattice. The dependent com-

ponent x3 interferes with the other axes. When we apply the Dual Gradient

Field method for groups Suniform and Sprob dep, the result can be seen in Fig-

ure 8(f). Aside from some deviations introduced by the SOM’s border effect,

it shows that the cluster structure of this map is caused by the same factors,

28

since the black and grey arrows are very similar both in angle and length. This

is an expected result, since the third variable is predictable, and it will not

introduce a different clustering structure than the one already present from

the previous coordinates. Figure 8(d), where again the differences of the black

and grey arrows are depicted, shows that the arrows are very similar for all

parts of the map.

In the third case, the dependent variable is given as x3 = abs(x1 + x2 − 1)

which is then multiplied by a factor to normalize its variance to the other vari-

ables. Although there exists a deterministic relationship between the variables,

the correlation is zero for all pairs of variables, since there is no global linear

relationship. x3 is only piece-wise linearly dependent. Scatterplots are shown

in Figure 9(e), which reveal that there is some sort of dependency between

x1 and x3, and between x2 and x3. Component planes for the SOM trained

on this data are visualized in Figures 9(a)–(c). The component plane for x3

shows that the peak vales are on two edges of the map, the SOM thus has

adjusted properly to this 2-dimensional manifold. By applying the Gradient

Fields, the arrows in the regions with a linear relationship are almost iden-

tical. The smoothing performed to obtain the arrows only weights gradients

within a certain radius, and the linear relationship can be observed within

this radius. In the transition region, however, where x3 approaches zero, no

linear relationship is found, resulting in high differences between the arrows.

Again, in Figure 9(d) the lengths of the difference vector between the arrow is

depicted. This deviation shows where the linear relationship is not given, but

recognizing that there is a linear relationship in most other areas of the map.

When compared to Figures 7(d) and 8(d), where the same is performed for the

independent and the linearly dependent case, we can now show in Figure 9(d)

29

(a) (b) (c)

Fig. 10. Artificial Data SOM (XOR-like relationship): (a) Component plane x11, (b)

length of difference vector, (c) Dual Gradient Fields M(Suniform) vs M(Sprob dep)

where the visualization recognizes piece-wise linear relationships. While most

statistical coefficients fail to quantify the deterministic dependence of x3 in this

case, our method can be used in order to identify piecewise linear portions of

the data. Also, this implies that if cluster structures of variable groups over-

lap in certain regions of the map, we can learn about piece-wise dependencies

between the variables.

The last example examines a more complex high-dimensional data set in 20

variables. Again, the data are split into two groups, and the dependence of

the second group Sprob dep = {11, . . . , 20} is investigated. The first group

Suniform = {1, . . . , 10} is further divided into two subgroups of 5 dimensions.

The variables in these subgroups are equally distributed with zero mean, and

are constructed in a way that they are highly correlated within each subgroup

with correlation coefficient of 0.9. Pairs of variables from different subgroups

are not correlated. The second group of 10 variables is dependent on the first

one and is constructed by an XOR-like function

30

xk = sign(xi) · sign(xj) (19)

with 11 ≤ k ≤ 20 the variable from the second group to be computed, 1 ≤
i ≤ 5 a variable of the first subgroup, and 6 ≤ j ≤ 10 a variable from

the second subgroup. The results for the Dual Gradient Flow can be seen

in Figure 10. Figure 10(a) shows an example component plane of Sprob dep

computed by (19). In Figure 10(c), the results of the Dual Gradient Flow

method are depicted. The arrows are highly divergent in the regions where

the boundaries are: The grey arrows, denoting M(Sprob dep), point away from

these boundaries towards their 4 cluster centers, while the black arrows are

almost uniform over the map, with a small disturbance in the middle of the

map that was probably introduced during training. The difference is visualized

in Figure 10(b), which shows the deviation of the arrows. In the dark areas, the

statistical relationship between the two groups is evident, while the light areas

correspond to transitions. This is another example of a non-linear dependency

that cannot be captured by a linear correlation coefficient, which is zero for

pairs of variables from Sprob dep and Suniform.

6 Conclusion and Future Work

In this paper, we have described a visualization technique for Self-Organizing

Maps with gradient fields that are especially aimed at professionals with en-

gineering backgrounds. The method can be displayed either as a flow diagram

where arrows point in the direction of most likely cluster centers, or as an

equivalent that emphasizes at showing cluster boundaries. It has a parameter

that determines how much smoothing is applied to the resulting visualization.

31

We have also provided an extension to simultaneously plot multiple groups of

variables to show the decomposition of the clustering structure in contributing

factors. We have also shown that this method can be used to detect linearly

and non-linearly dependencies between variables.

Future work will be directed towards efforts to cluster variables for the dual

visualization, such that this task can be performed automatically without

need for explicit user interaction. Another enhancement may be achieved by

integrating data density information in input space, as the current model relies

solely on the prototype vectors. A further possible extension is the analysis and

visualization of the rate of change of the arrows, thus investigating the second

order differentiation of the feature space distances. Also, the applicability of

the vector field visualization to other related mapping models is currently

under investigation.

References

Aggarwal, C. C., 2003. Towards systematic design of distance functions for

data mining applications. In: ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD’03). ACM Press, New York,

NY, USA, pp. 9–18.

Bishop, C., Svensen, M., Williams, C., 1997. Magnification factors for the

GTM algorithm. In: Workshop on Self-Organizing Maps (WSOM’97). pp.

333–338.

Bishop, C., Svensen, M., Williams, C., 1998. GTM: The generative topo-

graphic mapping. Neural Computation 10 (1), 215–234.

Dittenbach, M., Rauber, A., Merkl, D., 2002. Uncovering hierarchical structure

32

in data using the growing hierarchical self-organizing map. Neurocomputing

48 (1–4), 199–216.

Fritzke, B., November 1994. Growing cell structures – a self-organizing network

for unsupervised and supervised learning. Neural Networks 7 (9), 1441–1460.

Grinstein, G., Trutschl, M., Cvek, U., 2001. High-dimensional visualizations.

In: Data Mining Conference KDD Workshop 2001. ACM Press, New York,

San Francisco, CA, USA, pp. 7–19.

Hartigan, J. A., Wong, M. A., 1979. A K-means clustering algorithm. Applied

Statistics 28, 100–108.

Himberg, J., 1998. Enhancing SOM-based data visualization by linking dif-

ferent data projections. In: International Symposium on Intelligent Data

Engineering and Learning (IDEAL’98).

Kaski, S., Kangas, J., Kohonen, T., 1998. Bibliography of self-organizing map

(SOM) papers: 1981–1997. Neural Computing Surveys 1, 102–350.

Kaski, S., Nikkilä, J., Kohonen, T., 2000. Methods for exploratory cluster

analysis. In: International Conference on Advances in Infrastructure for

Electronic Business, Science, and Education on the Internet. L’Aquila,

Rome, Italy.

Kohonen, T., 2001. Self-Organizing Maps, 3rd edition. Springer, Berlin, Hei-

delberg.

Lee, J., Lendasse, A., Verleysen, M., 2004. Nonlinear projection with curvilin-

ear distances: Isomap versus curvilinear distance analysis. Neurocomputing

57, 49–76.

Martinetz, T., Berkovich, S., Schulten, K., 1993. “Neural-gas” Network for

Vector Quantization and its Application to Time-Series Prediction. IEEE

Transactions on Neural Networks 4 (4), 558–569.

Oja, M., Kaski, S., Kohonen, T., 2001. Bibliography of self-organizing map

33

(SOM) papers: 1998-2001 addendum. Neural Computing Surveys 3, 1–156.

Pampalk, E., Rauber, A., Merkl, D., August 27–30 2002. Using smoothed data

histograms for cluster visualization in self-organizing maps. In: Proceedings

of the International Conference on Artifical Neural Networks (ICANN’02).

Springer, Madrid, Spain, pp. 871–876.

Pölzlbauer, G., Dittenbach, M., Rauber, A., September 5–8 2005a. Gradi-

ent visualization of grouped component planes on the som lattice. In: Cot-

trell, M. (Ed.), Proceedings of the Fifth Workshop on Self-Organizing Maps

(WSOM’05). Paris, France, pp. 331–338.

Pölzlbauer, G., Dittenbach, M., Rauber, A., July 31 – August 5 2005b. A visu-

alization technique for self-organizing maps with vector fields to obtain the

cluster structure at desired levels of detail. In: Proceedings of the Interna-

tional Joint Conference on Neural Networks (IJCNN’05). IEEE Computer

Society, Montreal, Canada, pp. 1558–1563.

Pölzlbauer, G., Rauber, A., Dittenbach, M., May 30 – June 1 2005c. Advanced

visualization techniques for self-organizing maps with graph-based meth-

ods. In: Jun Wang, Xiaofeng Liao, Z. Y. (Ed.), Proceedings of the Second

International Symposium on Neural Networks (ISNN’05). Springer-Verlag,

Chongqing, China, pp. 75–80.

Sammon, J. W., May 1969. A nonlinear mapping for data structure analysis.

IEEE Transactions on Computers C-18 (5), 401–409.

Skupin, A., 2004. A picture from a thousand words. Computing in Science

and Engineering 6 (5), 84–88.

Tenenbaum, J. B., de Silva, V., Langford, J. C., 2000. A global geometric

framework for nonlinear dimensionality reduction. Science 290 (5500), 2319–

2323.

Tino, P., Nabney, I., Sun, Y., 2001. Using directional curvatures to visualize

34

folding patterns of the GTM projection manifolds. In: International Con-

ference on Artificial Neural Networks (ICANN’01). Springer, pp. 421–428.

Torgerson, W., 1952. Multidimensional scaling: I. theory and method. Psy-

chometrika 17, 401–419.

Ultsch, A., 1999. Data mining and knowledge discovery with emergent self-

organizing feature maps for multivariate time series. In: Oja, E., Kaski, S.

(Eds.), Kohonen Maps. Elsevier Science, pp. 33–46.

Ultsch, A., 2003a. Maps for the visualization of high-dimensional data spaces.

In: Proceedings of the Workshop on Self organizing Maps. Kyushu, Japan,

pp. 225–230.

Ultsch, A., 2003b. U*-matrix: a tool to visualize clusters in high dimen-

sional data. Tech. rep., Departement of Mathematics and Computer Science,

Philipps-University Marburg.

Ultsch, A., Siemon, H. P., 1990. Kohonen’s self-organizing feature maps for

exploratory data analysis. In: Proceedings of the International Neural Net-

work Conference (INNC’90). Kluwer, pp. 305–308.

Vesanto, J., 1999. SOM-based data visualization methods. Intelligent Data

Analysis 3 (2), 111–126.

Vesanto, J., Ahola, J., 1999. Hunting for correlations in data using the self-

organizing map. In: International ICSC Congress on Computational Intel-

ligence Methods and Applications (CIMA’99). ICSC Academic Press, pp.

279–285.

Vesanto, J., Alhoniemi, E., 2000. Clustering of the self-organizing map. IEEE

Transactions on Neural Networks 11 (3), 586–600.

Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., 1999. Self-

organizing map in matlab: the SOM toolbox. In: Proceedings of the Matlab

DSP Conference 1999. pp. 35–40.

35

Yin, H., 2002. ViSOM - a novel method for multivariate data projection and

structure visualisation. IEEE Trans. on Neural Networks 13 (1), 237–243.

Zangl, G., Hannerer, J., 2003. Data Mining: Applications in the Petroleum

Industry. Round Oak Publishing.

36

