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Zusammenfassung

Versierte Verfahren zur Organisation von Musikkollektionen bilden die Grundlage f•ur

eine Vielzahl von Anwendungen. Hier wird besonders auf vorhandene Probleme einge-

gangen, es werden bestehende Techniken und deren Unzul•anglichkeiten beschrieben,

aber auch alternative Benutzerschnittstellen fuer Musikarchive und darauf aufbauend

neue Moeglichkeiten zur Interaktion erklaert. Dabei wird besonders aufSelf-Organising

Maps, selbstorganisierende Neuronale Netzwerke zum Clustering von hochdimension-

alen Daten, und ihre Verwendbarkeit f•ur Musikorganisation diskutiert. Um der viel-

seitigen, oft zu komplexen Information, die in Musikdaten stecken kann, gerecht zu

werden, werden Datenbeschreibungen, die •uber traditionelle Repr•asentationen hinaus-

gehen, untersucht. Traditionell verwendet die Music Information Retrieval Community

auf Signalverarbeitung aufbauende Merkmalssets f•ur Audiodaten. In dieser Arbeit

wird vor allem auf textbasierte Features und deren Informationsgehalt in Bezug auf

Diskriminanz zwischen Genres eingegangen. Au�erdem werden die M•oglichkeiten un-

tersucht, die sich f•ur kombinierte Empfehlung von •ahnlichen Songs ergeben. Dabei wird

der Ein
uss von Genre-, Artist- und Albenbeschreibungen auf die Musikempfehlun-

gen untersucht. Weiters wird ein neuer Ansatz zur Visualisierung von multimodalen

Repr•asentationen f•ur Audio beschrieben. Eine Audiokollektion kann demnach nach

verschiedenen Repr•asentationen geclustert werden: Audiofeatures und Textfeatures

auf Basis von Song Lyrics. Die entstehenden Clusterings werden graphisch aufbereitet

und mittels eines Sets von Kennzahlen verglichen.
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Abstract

Various aspects of the organisation of media archives and collections have produced

eager interest in recent years. The Music Information Retrieval community has been

gaining many insights into the area of abstract representations of music by means of

audio signal processing. On top of that, recommendation engines are built to provide

novel ways of creating playlists based on users' preferences. Another important ap-

plication of audio representation is automatic genre categorisation, i.e. the automatic

assignment of genre tags to untagged audio �les. However, for many applications rep-

resentation based on audio features only do not contain enough information. A song's

lyrics often describe its genre better than what it sounds like, e.g. `Christmas carols'

or `love songs'. Therefore, approaches for the combinationof additional data like song

lyrics, artist biographies, or album reviews for music recommendation are examined.

Further, the application of the Self-Organising Mapfor clustering, i.e. the mapping

from the resultant high-dimensional feature spaces onto two-dimensional maps, for

explorative analysis of audio collections with respect to multi-modal feature sets is

investigated (audio / text). Additionally, a new visualisation for simultaneous display

of multi-modal clusterings as well as cluster validation metrics are presented. Finally,

a short overview and outlook on future work is given.
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The universe is perfect.

You cannot improve it.

If you try to change it,

you will ruin it.

If you try to hold it,

you will lose it.

Notes to Odo Chan, CY 9191

Credits go to Andromeda { for brilliant quotes like this one12.

1http://www.andromedatv.com/
2http://en.wikiquote.org/wiki/Andromeda
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Chapter 1

Introduction

The true quarry of any great adventurer is the undiscovered territory of their

own soul.

Lady Aenea Makros, \The Metaphysics of Motion" CY 6416

Text Information Retrieval deals with the automatic retrieval of (text) documents.

Its main task is to automatically extract machine-readablerepresentations, so-called

features from all kinds of text documents. These features can subsequently be used

for key word as well as content-based and similarity search by a transformation to

a vector or matrix representation. Music Information Retrieval (MIR) is an area of

Information Retrieval which is concerned with the application of its methods to musical

data sources. In this context it does not only mean the sole audio signal of a piece of

music but also its associated metadata as well as additionalinformation, which could,

for instance, be fetched or mined from the Internet.

The large-scale adaption of new business models for digitalcontent including audio

material is already happening. Online music stores are gaining market shares, driving

the need for online music retailers to provide adequate means of access to their cat-

alogues. Their ways of advertising and making accessible their collections are often

limited, be it by the sheer size of their collections, by the dynamics with which new

8



CHAPTER 1. INTRODUCTION 9

titles are being added and need to be �led into the collectionorganisation, or by inap-

propriate means of searching and browsing it. What many content providers and online

music vendors are still missing are appropriate means of presenting their media to their

users. Amazon1 or last.fm2 have shown the potential of recommendation engines based

on data mining in transactional data. Those recommendationengines have impressively

shown the potential and merits of suggesting users new itemsin numerous online shop-

ping and other community centred applications. Private users' requirements coincide

because their collections are growing signi�cantly as well. The steadily increasing suc-

cess of online stores like iTunes3 or Magnatune4 brings digital audio closer to end users,

creating a new application �eld for Music Information Retrieval. Many private users

have a strong interest in managing their collections e�ciently and being able to access

their music in diverse ways. Musical genre categorisation based on e.g. meta tags in

audio �les often restricts users to the type of music they arealready listening to, i.e.

browsing genre categories makes it di�cult to discover `new' types of music. The mood

a user is in often does not follow genre categories; personallistening behaviours often

di�er from prede�ned genre tags. Thus, recommending users similar songs to ones they

are currently listening to or like is one of Music Information Retrieval's main tasks.

Technologies related to similarity retrieval, however, have to be adapted to be used in

the music context. The online shops of music retailers are increasingly popular places

for buying music, creating a big market for music recommendation engines. Suggest-

ing customers similar songs is a key factor in being a successful music retailer and new

ways of presenting one's collection to customers is a vital aspect of entering or staying

in the market.

Furthermore, it is an intrinsic need for every Music Information Retrieval system to

include not only recommendation or playlist generation engines, but also possibilities

to search and browse a music repository. Content-based access to music has proven

to be an e�cient means of overcoming traditional metadata categories, as shown by
1http://www.amazon.com
2http://www.last.fm
3http://www.apple.com/au/itunes/store/
4http://www.magnatune.com
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benchmarking initiatives like the Music Information Retrieval Evaluation eXchange

(MIREX) [28]. To achieve this, signal processing techniques are used to extract fea-

tures from audio �les capturing characteristics such as rhythm, melodic sequences,

instrumentation, timbre. These are feasible input both forautomatic genre classi�-

cation of music as well as for alternative organisations of audio collections like their

display via map based, two-dimensional interfaces [32].

Similarity, however, is not only de�ned by individual hearing sensation but also, to

a large degree, by cultural or community information which o�ers a far richer and more

diverse source of information. Particularly song lyrics and other cultural information

are feasible means for searching these collections. Ratherthan searching for songs that

sound similar to a given query song, users often are more interested in songs that cover

similar topics, such as `love songs', or 'Christmas carols', which are not acoustic genres

per se, i.e. songs about these particular topics might covera broad range of musical

styles. Similarly, the language of the lyrics often plays a decisive role in perceived

similarity of two songs as well as their inclusion in a given playlist. Even advances in

audio feature extraction will not be able to overcome fundamental limitations of this

kind. Song lyrics therefore play an important role in music similarity. This textual

information o�ers a wealth of additional information to be included in music retrieval

tasks that may be used to complement both acoustic as well as metadata information

for pieces of music.

Sometimes, �nding a similar Album is more important than �nding songs that

sound similar. Many users may rather be interested in songs that cover similar topics

than sound alike. Artist similarity may be of great help whenusers try not only to

�nd new songs, but are interested in new bands or concerts of these bands. Textual

artist descriptions de�ne similarity by a whole new range ofaspects too. There are

dimensions of artist similarity that can never be covered byaudio features only, for

instance the fact that split-up bands and their successors may play very di�erent kinds

of music, yet they may still be similar to each other (they once belonged to the same

band after all). Another aspect very particular to artist descriptions is its property
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of taking into account geographical information, e.g. bands from the same city or

country may be grouped together. Therefore, a text mining component is very suitable

to provide additional data and thereby achieve di�erent levels of audio description. To

the ends of a more comprehensive model of musical similarity, methods to gather and

aggregate multiple levels of text descriptions are investigated and similarity retrieval

is based on these data in this thesis.

Browsing metadata hierarchies by tags like `Artist' and `Genre' might be feasible for

a limited number of songs, but gets increasingly complex andconfusing for collections

of larger sizes that have to be tendered for manually. Hence,a more comprehen-

sive approach for the organisation and presentation of audio collections is required.

Therefore, the visualisation of high-dimensional data itself and, more importantly, its

internal structure, poses a big challenge too. Aggregationtechniques for very large

music collections being described by an even higher-dimensional vector representation

are needed. To address this issue, visualisation techniques will be introduced based on

the Self-Organising Map.

Having all of these points in mind, the main topics covered inthis thesis are:

Musical Similarity Recommendation based on multi-modal Music Information Re-

trieval, i.e. the integration of artist, album, and genre descriptions as well as song

lyrics and audio features in similarity ranking methods.

Multi-Modal Clusterings and Their Evaluation will be explained in greater detail. The

importance and relevance of lyrics to the visual organisation of songs in large audio col-

lections is going to be identi�ed as well. It is �rstly suggested to cluster complex audio

data on two-dimensional maps, using theSelf-Organising Mapclustering algorithm.

Clustering will be done according to audio as well as lyrics features. Furthermore,

quality measures for the two resultant clusterings are proposed and experimentally

evaluated on two parallel corpora of both audio and text (lyrics) �les.
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Musical Genre Classi�cation using both song lyrics and audio features. The combi-

nation of both textual as well as audio information for musicgenre classi�cation, i.e.

automatically assigning musical genres to tracks based on audio features as well as

content words in song lyrics, is chosen due to feasible results in similarity recommen-

dation. Experimental results will evince the impact on classi�cation accuracy. Parts

of the work presented and relied on in this thesis have been presented at or published

in the context of international conferences. Particularlythe automatic processing and

exploitation of song lyrics has been a pressing research topic.

First prototypes for map based applications on mobile devices were presented as a

poster at the 6th International Conference on Music Information Retrieval (ISMIR'05)

in London, United Kingdom [32]. An overview paper on map based user interfaces was

presented at the 1st Workshop on Visual and Multimedia Digital Libraries (VMDL'07),

a workshop organised in the course of the International Conference on Image Analysis

and Processing (ICIAP'07) in Modena, Italy [33]. The summary paper on the exper-

iments on musical genre classi�cation were accepted for a poster presentation at the

29th European Conference on Information Retrieval (ECIR'07) in Rome, Italy [34].

Further, the multi-modal cluster evaluation and visualisation was accepted for a pre-

sentation at the tri-annual Recherche d'Information Assist�ee par Ordinateur (RIAO'07)

conference in Pittsburgh, Pennsylvania, United States of America [35]. Finally, a book

chapter contribution about multi-modal audio analysis wasaccepted for the forthcom-

ing `Multimodal Processing and Interaction' book to be published in the context of the

EU's FP6 project `Multimedia Understanding through Semantics, Computation and

Learning' (MUSCLE).

The remainder of this thesis is organised as follows. Section 2 gives an overview of

previous work in the �eld and relevant basics as well as it introduces feature sets used

in subsequent experiments.

In Chapter 3, we then describe audio test collections and data sources, i.e. the

automated indexing and textual enrichment of the songs in these collections.
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Then, Chapter 4 theoretically presents the main contributions to the �eld made in

this thesis, namely the combination of several levels of text data and audio representa-

tions for the basic Music Information Retrieval tasks of similarity ranking, visualisation,

and musical genre classi�cation. Furthermore, a quantitative evaluation of multi-modal

clusterings is proposed.

Then, Chapter 5 presents theAtlantis and Sovis application which implement pro-

totypes for both multi-modal similarity ranking and visualisation in greater detail.

Further, Chapter 6 the visualisation method is experimentally validated. Finally, in

Chapter 7 conclusions are drawn as well as a short outlook is given.



Chapter 2

Main Principles and Underlying

Technologies

Those who fail to learn history are doomed to repeat it. Thosewho fail to

learn history correctly { why they are simply doomed"

Achem Dro'hm, \The Illusion of Historical Fact, CY 4971

This chapter gives an overview about relevant (sub-)disciplines and the techniques

used later on. This work incorporates methods from several areas, the most important

ones being Information Retrieval, more speci�cally Music Information Retrieval and

Self-Organising Mapsfor clustering and visualisation.

2.1 Music Information Retrieval

The area of Music Information Retrieval has been heavily researched, particularly fo-

cussing on audio feature extraction. Comprehensive overviews of Music Information

Retrieval are given in [8, 36], �rst experiments based on andan overview of content-

based Music Information Retrieval were reported in [9] as well as [52, 53], the focus

14
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being on automatic genre classi�cation of music. In this work a modi�ed version of

the Rhythm Patterns features is considered, previously used within the SOMeJB sys-

tem [45]. Based on that feature set, it is shown that theStatistical Spectrum Descriptors

yield relatively good results at a manageable dimensionality of 168 as compared to the

original Rhythm Patterns that comprise 1440 feature values [18]. In the remainder of

this thesis Statistical Spectrum Descriptorsare used as audio feature set and improve-

ments in similarity ranking are based thereon. Another example of a set of feasible

audio features is implemented in the Marsyas system [52].

In addition to features extracted from audio, several researchers have started to

utilise textual information for music IR. A sophisticated semantic and structural anal-

ysis including language identi�cation of songs based on lyrics is conducted in [23].

Artist similarity is de�ned based on song lyrics in [19]. It is also pointed out that

similarity retrieval using lyrics is inferior to acoustic similarity, but a combination of

lyrics and acoustic similarity could improve results. A powerful approach targeted at

large-scale recommendation engines is lyrics alignment for automatic retrieval as pre-

sented in [13]. Therein, lyrics are fetched via the automatic alignment of the results

obtained by Google queries.

A comprehensive evaluation of additional features is undertaken in [40]. This work

takes into account rhyme and style features and shows their impact on classi�cation

accuracy for the genre categorisation task in addition to content-based methods.

Artist similarity based on co-occurrences in Google results is studied in [50], creating

prototypicality artist/genre rankings, again, showing the importance of text data.

A combined similarity metric for multi-level combination of artist and lyrics retrieval

results is presented in [4], which the approach presented inChapter 3 combination will

be based on. It is also outlined in how far the perception of music can be regarded a

socio-cultural product. Di�erent aspects like year, genre, or tempo of a song are taken

into account in [55]. Those results are then combined and a user evaluation of di�erent

weightings is presented and shows that user control over theweightings can lead to
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easier and more satisfying playlist generation.

The importance of browsing and searching as well as their combination is outlined

in [6]. This work tries to improve those aspects, a combination approach can improve

both of them by satisfying users' information needs througho�ering advanced search

capabilities and improving the the recommendations' quality.

2.2 Introduction to Text Information Retrieval

In classic text categorisation low-level features are computed from a labelled training

set of su�cient size. New documents can be assigned to the class represented by the

most `similar' documents in terms of word co-occurrences.

An introduction to Information Retrieval as such is given in[49]. The basic idea is

to treat text as a bag of words or tokens. This form of IR abstracts from any kind of

linguistic information and is often referred to as statistical natural language processing

(NLP). Documents are represented as term vectors. A document collection containing

the following two documents:

This is a text document.

and

And so is this document a text document.

would represent its documents by a vector of length 7, the number of distinct tokens

over all documents. Of course, the tokenisation process makes a di�erence here, if, e.g.,

spaces were counted as separate tokens, the vector would be of size 8. Models for text

representation range from lists of whole words to vectors ofn-grams (i. e., tokens of

size n). Tokenisation may include stemming, i. e., stripping o� a�xes of words leaving
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Table 2.1: Text indexing by example. Tokens are displayed horizontally, di�erent documents are

shown row-wise. The token's occurrences make out the numbers in the table

Document/Token this is a text document and so

1 1 1 1 1 1

2 1 1 1 1 2 1 1

Document frequency 2 2 2 2 2 1

only word stems. It is very common to use lists of stop words, i. e., static, prede�ned

lists of words that are removed from the documents before further processing (see [24]

or ranks.nl1 for a sample list of English stop words). The vectors are shown in detail

in Table 2.1.

This representation is subsequently used to calculate distances between or similari-

ties of documents in the vector space; throughout this thesis we rely on the Euclidean

distance, given for the distance between two vectorsx i and x j of dimensionality D in

Equation 2.1:

dF (x i ; x j ) = kx i � x j k =

vu
u
t

DX

k=1

(xk
i � xk

j )2: (2.1)

It is de�ned by the length of the straight line connecting points x i and x j . For a

discussion of this problem and general limitations of the Euclidean Distance, see for

instance [17, 1].

2.3 Term Weighting in Information Retrieval

Once a text is represented by tokens, more sophisticated techniques can be applied. In

the context of a vector space model a document is denoted byd, a term (token) by t,

and the number of documents in a corpus byN .
1http://www.ranks.nl/tools/stopwords.html
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The number of times termt appears in documentd is denoted as theterm frequency

tf (t; d), the number of documents in the collection that termt occurs in is denoted

as document frequencydf (t), as shown in Table 2.1. The process of assigning weights

to terms according to their importance or signi�cance for the classi�cation is called

\term-weighting". The basic assumptions are that terms that occur very often in a

document are more important for classi�cation, whereas terms that occur in a high

fraction of all documents are less important. The most common weighting is referred

to as term frequency� inverse document frequency[48], where the weighttf � idf of

a term in a document is given in Equation 2.2:

tf idf (t; d) = tf (t; d) � ln(N=df (t)) (2.2)

This results in vectors of weight values for each documentd in the collection. Based on

such vector representations of documents, classi�cation methods can be applied. This

favours higher weights to less frequent terms.

2.4 Feature Selection and Dimensionality Reduction

When tokenising text documents, one often faces very high dimensional data. Tens of

thousands of dimensions are not easy to handle, therefore feature selection plays a sig-

ni�cant role. Document frequency thresholding achieves reductions in dimensionality

by excluding terms having very high or very low document frequencies. Terms that

occur in almost all documents in a collection do not provide any discriminating infor-

mation. It is similar for terms that have a very low document frequencies, although

those features might be helpful if they are not distributed evenly across classes. If a

term has a low document frequency it can still help to discriminate genres if it only

occurs in for example `Rock' song lyrics.

Several methods ranging from simple ones relying solely on frequency counts of

terms to more sophisticated ones estimating the entropy of terms for speci�c class
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distributions may be employed, which are brie
y described below.

2.4.1 Document Frequency Thresholding

Document frequency thresholding is a feasible feature selection for unlabelled data

for not taking into account a priori class information. The basic assumption here is

that very frequent terms are less discriminative to distinguish between classes (a term

occurring in every single instance of all classes would not contribute to di�erentiate

between them and therefore can safely be omitted in further processing). The largest

number of tokens, however, occurs only in a very small numberof documents. The

biggest advantages of document frequency thresholding is that there is no need for

class information and it is therefore mainly used for clustering applications. Besides,

document frequency thresholding is far less expensive in terms of computational power.

In this context that technique is used for dimensionality reduction for clustering and

to compare the classi�cation results obtained by the more sophisticated approaches.

The document frequency thresholding is followed as follows:

� At �rst the upper threshold is �xed around .5 - .8, hence all terms that occur in

more than 50 to 80 per cent of the documents are omitted

� The lower boundary is dynamically changed as to achieve the desired number of

features, removing, e.g., terms that appear in less than 5-10 documents, i.e. have

a document frequency lower than 5 or 10

2.4.2 Information Gain

Information Gain (IG) is a technique originally used to compute splitting criteria for

decision trees. Di�erent feature selection models including Information Gain are de-

scribed in [58]. The basic idea behind IG is to �nd out how welleach single feature

separates the given data set. Information Gain makes use of class information to iden-
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tify the most discriminant features.

The overall entropy I for a given datasetS is computed in Equation 2.3.

I = �
CX

i =1

pi log2pi (2.3)

whereC denotes the available classes andpi the proportion of instances that belong to

one of thei classes. Now the reduction in entropy or gain in informationis computed

for each attribute or token.

IG (S; A) = I (S) �
X

v�A

jSv j
jSj

I (Sv) (2.4)

where v is a value of attribute A and Sv the number of instances whereA has that

value. For instance, if the attribute in question is a token,v could either comprise all

occurring values for that term'stf � idf weighting or simply whether it is present in

a document or not, i.e. it can be assumed to be a binary value.Sv=0 therefore is the

number of instances where attributeA has the value 0 or the number of documents

that do not include that token.

This results in an Information Gain value for each token extracted from a given

document collection. Hence, documents are represented by agiven number of tokens

having the highest Information Gain values for the content-based experiments.

Other methods similar in spirit are� 2, based on statistical testing, Odds Ratio using

probabilities, or the Gain Ratio.

2.5 Audio Features

For feature extraction from audioStatistical Spectrum Descriptorswere used (SSDs,

[18]). The approach for computing SSD features is based on the �rst part of the al-

gorithm for computing Rhythm Pattern features [45], namelythe computation of a

psycho-acoustically transformed spectrogram, i.e. a Bark-scale Sonogram. Compared
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to the Rhythm Patterns feature set, the dimensionality of the feature space is much

lower (168 instead of 1440 dimensions), at a comparable performance in genre classi�-

cation approaches [18]. Therefore, SSD audio features are used in the context of this

work, which were computed from audio tracks in standard PCM format with 44.1 kHz

sampling frequency (i.e. decoded MP3 �les).

Statistical Spectrum Descriptors are composed of statistical characteristics are com-

puted from several critical frequency bands of a psycho-acoustically transformed spec-

trogram. They describe 
uctuations on the critical frequency bands in a more compact

representation than Rhythm Pattern features. In a pre-processing step the audio signal

is converted to a mono signal and segmented into chunks of approximately 6 seconds.

Usually, not every segment is used for audio feature extraction. For pieces of music

with a typical duration of about 4 minutes, frequently the �rst and last one to four

segments are skipped and out of the remaining segments everythird one is processed.

For each segment the spectrogram of the audio is computed using the short time

Fast Fourier Transform (STFT). The window size is set to 23 ms(1024 samples) and a

Hanning window is applied using 50 % overlap between the windows. The Bark scale,

a perceptual scale which groups frequencies to critical bands according to perceptive

pitch regions [59], is applied to the spectrogram, aggregating it to 24 frequency bands.

The Bark scale spectrogram is then transformed into the decibel scale. Further

psycho-acoustic transformations are applied: Computation of the Phon scale incorpo-

rates equal loudness curves, which account for the di�erentperception of loudness at

di�erent frequencies [59]. Subsequently, the values are transformed into the unit Sone.

The Sone scale relates to the Phon scale in the way that a doubling on the Sone scale

sounds to the human ear like a doubling of the loudness. This results in a Bark-scale

Sonogram { a representation that re
ects the speci�c loudness sensation of the human

auditory system.

From this representation of perceived loudness a number of statistical moments

is computed per critical band, in order to describe 
uctuations within the critical
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bands extensively. Mean, median, variance, skewness, kurtosis, min- and max-value are

computed for each of the 24 bands, and a Statistical SpectrumDescriptor is extracted

for each selected segment. The SSD feature vector for a pieceof audio is then calculated

as the median of the descriptors of its segments.

2.6 Self-Organising Map

Throughout this thesis various data sets will be used for clustering experiments, wether

they are used for user interfaces or simply to explore the given data. For clustering, the

Self-Organising Map, an unsupervised neural network that provides a mapping from a

high-dimensional input space to usually two-dimensional output space [14, 15] is used.

Topological relations are preserved as faithfully as possible. A SOM consists of a set of

i units arranged in a two-dimensional grid, each attached to aweight vector mi 2 < n .

Elements from the high-dimensional input space, referred to as input vectorsx 2 < n ,

are presented to theSOM and the activation of each unit for the presented input vector

is calculated using an activation function (the Euclidean Distance is commonly used

as activation function). In the next step, the weight vectorof the winner is moved

towards the presented input signal by a certain fraction of the Euclidean distance

as indicated by a time-decreasing learning rate� . Consequently, the next time the

same input signal is presented, this unit's activation willbe even higher. Furthermore,

the weight vectors of units neighbouring the winner, as described by a time-decreasing

neighbourhood function, are modi�ed accordingly, yet to a smaller amount as compared

to the winner. The result of this learning procedure is a topologically ordered mapping

of the presented input signals in two-dimensional space, that allows easy exploration

of the given data set.

Numerous visualisation techniques have been proposed forSelf-Organising Maps.

These can be based on the resultantSOM grid and distances between units, on the

data vectors itself, or on combinations thereof. In this chapter we make use of two
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kinds of visualisations. Another method forSOM visualisation which will be used

in the course of our experiments areSmoothed Data Histograms[39]. Even if it is

not necessary for clustering tasks per se, class information can be used to give an

overview of a clustering's correctness in terms of class-wise grouping of the data. A

method to visualise class distributions onSelf-Organising Mapsis presented in [25].

This colour-coding of class assignments will later be used in the experiments to show

the (dis)similarity of audio and lyrics clusterings.

2.7 Cluster Validation Techniques

Having shown that music recommendation can bene�t from the integration of sev-

eral data sources as well as the feasibility ofSelf-Organising Mapclustering, more

sophisticated methods for data visualisation and evaluation are going to be taken into

consideration. Whenever clustering or visualisation is involved, the need for the evalu-

ation of at least certain aspects of the techniques used, arises. In this section the main

concepts of cluster analysis will be introduced for both supervised and unsupervised

cluster evaluation. Furthermore it will be pointed out in how far these techniques can

be used in the context of multi-modal music clustering. The main points in this section

therefore will be:

1. Introduction to the basic concepts of cluster validation.

2. Potential of supervised evaluation.

3. Explanation why unsupervised validation is still relevant.

It might not be obvious why cluster validation makes sense, since clustering is often

used as part of explorative data analysis and therefore validation seems not to be a

central issue. One key argument in favour of cluster validation is that any clustering

method will produce results even on data sets, which do not have a natural cluster

structure [51]. Other than that, cluster validation can be used to determine the `best'
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clustering out of several candidate clusterings. For many clustering techniques the

number of clusters (often denoted ask) is the main parameter to be changed, therefore

in
uencing the resultant clustering quality signi�cantly . Thus, measuring the clustering

quality produced by either di�erent algorithms or for di�er ent parameter settings is a

vital issue in clustering. Besides, manual (visual) cluster validation may be feasible for a

small data set in two-dimensional space, but becomes impossible for higher-dimensional

data.

If the data set is labelled, i.e. class tags are available forall data points, this

information can be used to determine the similarities between classes and natural

clusters within the data. One can distinguish unsupervisedand supervised cluster

validation techniques. Whereas unsupervised techniques will be of limited use in the

scenario covered, supervised cluster validation and its merits for multi-modal clustering

of audio data will be more relevant and be described in more detail.

Table 2.2 gives an overview of variables used in this context.

2.7.1 Unsupervised Cluster Validation

In unsupervised cluster validation no external data is usedfor evaluation, it's primarily

based on cluster distances, similarities, and densities. The main types of measures are:

� Intra-cluster similarity / cluster cohesion and

� Inter cluster similarity / cluster separation

which are used to evaluate how much variation there is withinclusters and in between

clusters, respectively.
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Table 2.2: Variable names used in cluster validation equations

Variable name Explanation

ci Cluster i .

Ci Clustering i , i.e. a set of clusters.

k Number of clusters.

w Weight w.

si Silhouette value for data point i .

Sj Silhouette value for cluster j .

S Overall Silhouette value for a clustering.

bi Average distance of data pointi to all

other vectors in its cluster.

ai Average distance ofi to all data vectors

in the closest cluster.

n Number of data points in set.

L Number of classes in set.

mi Number of data points assigned to clusteri .

mij Number of data points assigned to clusteri

belonging to classj .
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In general the overall validity of a clustering (i.e. a set ofclusters for a given data set)

is the weighted sum of the validity of its individual clusters as shown in Equation 2.5.

overallvalidity =
kX

i =1

wi � validity (ci ) (2.5)

Where ci denotes clusteri , k the number of clustersk and wi the weight for cluster

i . The validity function can be either inter-cluster, intra-cluster, or some combination

thereof. In the simple case, weights are either omitted or set according to the sizes of

the individual clusters (i.e. number of data points associated with a cluster divided by

the number of data points in the data set). Since distances within clusters should be

minimised and in between clusters maximised, the higher an intra-cluster measure and

the lower an inter-cluster measure, the better.

Silhouette Value

The Silhouette value is mostly used to �nd the right setting for the number of clus-

ters [47]. The ideal value of the Silhouette is close to 1, hence ai being close to 0

for it is subtracted in the numerator of Equation 2.6. The Silhouette coe�cient de-

scribes the level of data separation using both intra- and inter-cluster distances and

can for instance be of great help in �nding the optimal numberof clusters (k) in the

k-Means algorithm. Both intra-cluster and inter-cluster measures are used to compute

the Silhouette value, as shown in Equation 2.6.

si =
bi � ai

maxf ai ; bi g
(2.6)

Where i is an index over all data vectors,ai the average distance ofi to all other

vectors of that cluster, bi the average distance ofi to all data vectors in the closest

cluster. Herein the closest cluster is de�ned by the minimumdistance between clusters'

prototype vectors. The value resides between� 1 and 1 (Equation 2.7).
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� 1 � si � 1 (2.7)

si therefore is the Silhouette value for data vectori , the overall Silhouette value for

a clustering is the average over all single Silhouette values, shown in Equation 2.8.

S =
1
n

nX

i =1

si (2.8)

Let n be the number of instances. Analogously, the Silhouette forsingle clusters is

de�ned in Equation 2.9.

Sj =
1

mj

m jX

i =1

si (2.9)

The number of instances assigned to clusterj is denoted to asmj , the average

Silhouette of all instances within clusterj is computed asSj . The resultant values for

S and Sj provide an evaluation criterion for the comparison of several clusters to each

other.

2.7.2 Supervised Cluster Validation

Supervised cluster validation makes use of external data and tries to measure in how

far a clustering matches some kind of external structure like class labels.

Entropy

The entropy value, introduced in Section 2.4 in the context of feature selection, de-

scribes the degree to which each cluster consists of objectsof a single class. The

optimum value would be achieved, each cluster consisted only of instances belonging
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to one class. The probability that one instance (member of cluster i ) belongs to class

j is stated in Equation 2.10.

pij =
mij

mi
(2.10)

mij denotes the number of instances in clusteri belonging to classj and mi the

number of instances belonging to clusteri . Further, the entropy for cluster i is given

in Equation 2.11 (analogously to Equation 2.3 in Section 2.4.

I i = �
LX

j =1

pij log2pij (2.11)

Where L denotes the number of classes andpij the class probability from Equa-

tion 2.10. The overall entropy value for a given clustering is given by the sum over all

cluster entropy values weighted by the number of elements inthe individual clusters,

shown in Equation 2.12.

I =
kX

i =1

mi

m
� I i (2.12)

k denotes the number of clusters andm the total number of data points or instances.

Purity

The purity of cluster i is de�ned by the probability of the most dominant class within

a cluster and is given in Equation 2.13.

pi = max(pij ) (2.13)

The overall purity of a clustering is computed analogously to the overall entropy

and shown in Equation 2.14.
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purity =
kX

i =1

mi

m
� pi (2.14)

All methods introduced in this section do have their relevance to cluster validation,

it is desirable to have clusterings that are

� very similar within clusters,

� very dissimilar in between clusters,

� and, if possible, `pure' in terms of a high entropy or purity value (only applicable

if class labels are available),

all of which could be achieved by a combination of, for instance, the Silhouette coe�-

cient and entropy or purity. The Self-Organising Mapclustering algorithm, however,

di�ers from the centroid based approaches which those techniques are best applied to.

2.8 Cluster Validation for Self-Organising Maps

Several quality measures forSelf-Organising Mapshave been investigated. The topo-

graphic product, which is used to measure the quality of mappings for single units with

respect to their neighbours, is reported in [2].

However, those methods provide measurements on a per unit basis or for complete

maps and fail to take into account class information of any kind.

The Silhouette value is computationally expensive and in its current form limited to

instance-based computations. This leads to problems for both large numbers of data

points and large numbers of clusters (very commonly used inSelf-Organising Map

clusterings). To accommodate for these special characteristics of the Self-Organising

Map, a possible modi�cation to the Silhouette technique is described in the following.
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2.8.1 Adaption of the Silhouette Value to the Self-Organising Map

The Silhouette validation compares every unit to all other vectors assigned to that

unit and to all vectors in the closest unit. Due to performance issues, we introduce

modi�cations to better �t the Self-Organising Mapscenario.

Let each comparison be based on units' weight vectors, i.e. distances are calculated

on the unit level in the input space, rather than the actual data vectors, ai is de�ned

as follows.

ai = dist(wi ; i ) (2.15)

bi is de�ned as:

bi = dist(i; wci ) (2.16)

Where wi denotes the weight vector of the unit data pointi is assigned to andwci

denotes the weight vector of the closest unit. The overall Silhouette computation is then

based on those values forai and bi . The experimental evaluation from now on is done

using this technique, because it needs signi�cantly less computational power. Hence,

the quality of di�erent SOM clusterings can be compared by their Silhouette values.

Furthermore the results can be used to visualise the correctness of the clustering.

The one (rather big) simpli�cation this introduces that the number of units is set to

the number of clusters, a modi�cation ignoring theSelf-Organising Map's basic prop-

erty of preserving topological relations. A natural cluster could easily be distributed

over (or covered by) several units of theSelf-Organising Map, making the Silhouette

coe�cient for Self-Organising Mapsless sound a validation technique than for purely

centroid-based approaches likek-Means. A more detailed discussion and experimental

results can be found in [30]. The question that still remainsis how canSelf-Organising
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Map clusterings according to di�erent dimensions be compared?What are the main

di�erences between clusterings? Which classes (genres) pro�t most from multi-modal

clustering, i.e. for which class does the clustering vary much across dimensions? The

next chapter will introduce a visualisation technique for multi-modal clusterings in the

music domain, a possible quality assessment will be investigated thereafter.

The modi�ed Silhouette technique assumes the number of units to equal the num-

ber of clusters. An assumption which does not necessarily hold, for one of the main

strengths of theSelf-Organising Mapis that it discovers structures beyond simple clus-

ters, i.e. larger compounds spreading across multiple units. It can, however, be used

as a criterion to compare severalSOMs with each other, as opposed to �nding the best

number of clusters/units.

2.9 Interfaces Based on the Self-Organising Map

Several teams have been working on user interfaces based on the Self-Organising Map.

The SOM is an unsupervised neural network, that provides a topology-preserving map-

ping from a high-dimensional feature space onto a two-dimensional map in such a way,

that data points close to each other in input space are mappedonto adjacent areas

of the output space (in this context a two-dimensional map). The SOM has been

extensively used to provide visualisations of and interfaces to a wide range of data,

including control interfaces to industrial processing plants [16] to access interfaces for

digital libraries of text documents [44].

Creating a SOM-based interface for Digital Libraries of Music, i.e. the SOM-

enhanced JukeBox (SOMeJB), was �rst proposed in [42], with more advanced visu-

alisations as well as improved feature sets being presentedin [38, 46]. Since then,

several other systems have been created based on these principles, such as the Mu-

sicMiner [29], which uses an emergent SOM. A very appealing three-dimensional user

interface is presented in [12], automatically creating a three-dimensional musical land-
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scape via a SOM for small private music collections. Navigation through the map is

done via a video game pad and additional information like labelling is provided using

web data and album covers.

A mnemonic SOM [27], i.e. aSelf-Organising Mapof a certain shape other than a

rectangle, is used to cluster the complete works of the composer Wolfgang Amadeus

Mozart to create the Map of Mozart [26]. The shape of the SOM isa silhouette of

its composer, leading to interesting clusterings like, e.g. the accumulation of string

ensembles in the region of Mozart's right ear.

An online demo is available athttp://www.ifs.tuwien.ac.at/mir/mozart .

Another interface based on SOMs, which takes into account a user's focus of percep-

tion, is presented in [22], using prototypes as recommendations for adjacent clusters.

The PlaySOM application presented in [7] is based on the original SOMeJB system,

implementing a desktop interface suitable also for larger collections of several tens of

thousands of music tracks.

In addition to systems designed for desktop applications handling large audio collec-

tions, the design of interfaces for mobile devices constitutes interesting and important

challenges. Novel interfaces particularly developed for small-screen devices were pre-

sented in [56], clustering pieces of audio based on content features as well as metadata

attributes using a spring model algorithm. The PocketSOM system [32], an implemen-

tation of the PlaySOM application speci�cally designed formobile devices.

A more experimental interface, refraining from the use of a display, using motion

detectors to respond to the listener's movements is presented in [11]. Another inno-

vative user interface providing various ways of interaction like similarity based search

over sticking behaviour of tracks visualised as discs is introduced in [10].

A good overview of various MIR systems is given athttp://www.mirsystems.info/
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2.10 Machine Learning Techniques

Classi�cation { the task of assigning objects to prede�ned classes or labels { will be

used to categorise music into genres. The popular Support Vector Machines [54, 5] are

powerful classi�cation algorithms consisting of two parts: An optimisation formulation

and a kernel function. The former is needed for �tting a separating hyperplane into

the data set, the latter projects the data set into a higher dimensional space. This

method's primary advantage lies in the combination of thesetwo components which

allows for e�cient implementations that avoid the complexity problems of other kernel

based methods, also known as the `kernel trick'. The type of kernel used determines

the classes of problems that may be solved, and typical choices are linear, polynomial,

and radial basis functions.

2.11 Recap

In this chapter we introduced the main techniques that will be used later on. Foun-

dations have been laid for the following thematic areas: Information Retrieval, text

feature selection, theSelf-Organising Mapand its evaluation. Further a short overview

of relevant machine learning techniques has been given.

We now go on and introduce adaptions of and extensions to someof the techniques

introduced here. We further will more precisely specify thescenarios dealed with in

the remainder of this thesis.



Chapter 3

Test Collections and Multi-Modal

Audio Indexing

Beneath knowing, understanding

Beneath understanding, seeing

Beneath seeing, recognizing

Beneath recognizing, knowing

Keeper of the Way, \Vision of Faith", CY 10003

In the following chapter we introduce the test collections we will use for experimental

evaluation as well as the main types of data used for the enrichment of plain audio

�les. This will cover various online resources in combination with ID3 metadata.

Musical similarity is a concept not easily de�ned and highlysubjective in its na-

ture. What one regards similar may sound rather dissimilar to another person et vice

versa. Yet, it is desirable to broaden the spectrum of sources taken into account when

computing track similarities, for one single dimension will never be able to describe the

musical sensation of as diverse a user base as music consumers are.

An audio track and its metadata can basically be decomposed into information

34
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Song Level

Audio Features (Audio)
Song Lyrics, Search Engine Query

Video Clips (Video)

Album Level
Album Reviews

Album Covers (Image)
Search Engine Query

Artist Level
Artist Descriptions

Artist Photographs (Image)
Search Engine Query

Genre Level
Genre Descriptions

Genre Hierarchies (Ontology)
Search Engine Query

Figure 3.1: Categorisation of multi-level Music Information Retrieval

according to: (1) Track, (2) Album, (3) Artist, and (4) Genre information.

On the track level, a song can be described by audio features as well as the track's

lyrics, whereas the album, artist and genre levels consist of a textual description only,

each containing a wealth of meta information for music retrieval requests. However, a

multitude of other media types is possible. Images could provide additional information

for artists or albums in terms of photos of the artist or albumcover artwork. Video clips

could be taken into consideration to provide an even better insight into a songs meaning,

etc. An overview of a possible categorisation of description levels and sources therefore

used in a multi-level Music Information Retrieval scenariois given in Figure 3.1. For a

fully deployed Music Information Retrieval system it would, of course, make sense to

aim at a high coverage of di�erent types of information in allrespects, and therefore

place more emphasis on the retrieval component. Usually, not all information will be

available in a single system. A possible fall-back strategycould be the use of suitable

search engine queries, e.g. the results from a search enginequery for the given artist

name. This approach would almost guarantee to retrieve somedata for each element

in the collection, albeit of a possibly lower quality. However, full multi-level retrieval of

music collections is beyond the scope on this thesis, the search engine fall-back strategy

as well as other media types than text are not covered. The useof genre hierarchies as,

for instance speci�ed in [37], would make sense to replace missing genre descriptions

or merge very similar genres, but is omitted for reasons of simplicity.

The system presented in this thesis uses the above set of information for MIR
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purposes, integrating them o�-line in a single data source.To avoid biased information

obtained from one single source only, independent sources of information can be used,

e.g. artist descriptions from one web portal, album descriptions from another.

The test collections, data sources and feature representations used are described in

more detail in the following sections.

3.1 Test Collections

Particularly for Information Retrieval experiments and prototypes the use of test col-

lections for experimental evaluation is of vital importance to show the applicability

of the proposed approaches. A more thorough discussion of corpus building can be

found in [31]. We therefore use two test collections, the latter being a larger superset

of the �rst one. The large collection will be used for large-scale experiments, whereas

the small collection will be an example for demonstrating the application of underly-

ing principles. The starting point for the ongoing corpus development was a private

collection consisting of 12770 songs. The initial collection takes about 150G of disk

space. The song lengths in that collection range from short 20 second `Punk Rock'

pieces to audio book chapters lasting for about one hour. MP3is the prevalent �le

type, followed by the lossless audio codec FLAC1.

3.1.1 Small Collection

For initial experiments we decided to use a somewhat smallercollection that is more

easily comprehensible. We selected ten genres only. Table 3.1.1 describes the compo-

sition of the small test collection in detail. It comprises ten genres and 149 songs in

total { the number of songs per genre varies from 9 to 17. This collection consists of

songs from 20 artists and from the same number of albums. Also, for the small col-
1http://flac.sourceforge.net/
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Genre Number of Songs

Christmas Carol 15

Country 17

Grunge 16

Hip-Hop 16

New Metal 16

Pop 15

Rock 16

Reggae 14

Slow Rock 15

Speech 09

Table 3.1: Composition of the small test collection

lection, all lyrics were manually preprocessed as to have additional markup like '[2x]',

etc. removed and to include the unabridged and high quality lyrics for all songs.

3.1.2 Large Collection

To be all set for visualisation and genre classi�cation experiments we omitted all songs

we were not able to retrieve lyrics for, resulting in a parallel corpus of audio and song

lyrics �les for a music collection of 7554 titles organised into 52 genres, containing

music as well as spoken documents (e.g. Shakespeare sonnets). An overview of the

song/genre distribution is given in Table 3.2; genres were assigned manually. Class

sizes ranged from only a few songs for the `Classical' genre to about 1.900 songs for

`Punk Rock', due to both, the distribution across genres in the collection and di�culties

in retrieving the lyrics for some genres like `Classical'. The collection contains songs

from 644 di�erent artists and 931 albums. The main motivation was to experiment

with a collection of su�cient size to study the e�ects of missing values as well as the

availability of ID3 metadata to reliably retrieve the artist and lyric information and

album and genre tags.
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Table 3.2: Overview of genres in the music collection used throughout this thesis

Genre #Songs

Acid Punk 25

Altern Rock 317

Alternative 122

Ambient 24

Avantgarde 90

Bluegrass 12

BritPop 130

Christian Rock 40

Christmas Carol 36

Classical 30

Country 100

Dance 13

Dance Hall 10

Death Metal 1

Digital Hardcore 4

Electronic 125

Emo 258

Experimental 13

Folk 56

Funk 2

Garage 11

Goth Metal 106

Grunge 104

Hard Rock 46

Hardcore 142

Hip-Hop 500

Genre #Songs

Indie 400

Indie Rock 23

Industrial 52

Instrumental 8

J-metal 1

Jazz 28

Metal 559

New Metal 110

Noise 4

Nursery Rhymes 25

Opera 17

Pop 911

Post Punk 32

Progressive Rock 14

Psychedelic Rock 3

Punk Rock 1160

R&B 228

Reggae 162

Rock 690

Ska 37

Slow Rock 649

Soundtrack 4

Speech 47

Techno 2

Trip-Hop 67

World 4
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Query
Artist : Title

lyrc.com.ar sing365.com oldielyrics.com Google alignment tool

Figure 3.2: Lyrics retrieval, the Atlantis way

3.2 Automated Enrichment and Indexing Techniques

The indexing of the audio collections and extraction of audio features is straight-

forward: �rst, all �les in a collection are scanned and stored. After that every single

�le is decoded into the wave format. A after that all three kinds of audio features

introduced in Chapter 2 are computed and stored in the database along with the song

data. Text indexing and retrieval is a bit more complex and will be discussed in the

following.

There are numerous online sources for song lyrics likesing365.com2 or azlyrics.com3.

There are more sophisticated means of lyrics retrieval as mentioned in Section 2, but

to the ends of evaluating the feasibility of combined feature sets, minor inaccuracies

in lyrics fetching are ignored and this method provides satisfactory results. Text data

was indexed according to thetf � idf scheme. Hence, the text documents were to-

kenised where a word constitutes a token. No stemming was performed due to unique

word endings in lyrics for certain genres (e.g. `Hip-Hop' songs having virtually all word

endings stripped anyway { information which would be lost ifstemming were applied

additionally). The remaining tokens can dynamically be adjusted to a certain dimen-

sionality according to term frequency thresholding, i.e. the number of occurrences of

a certain token within the collection. This will be re
ected by di�erent experimental

settings in Chapter 6.

The other meta categories were additionally enriched by textual descriptions from
2http://www.sing365.com/
3http://www.azlyrics.com/
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other sources. Artist descriptions were mined from Wikipedia4. The Wikipedia data

were taken from a two year old snapshot only, so the actual coverage may be higher.

Figure 3.2 shows the di�erent retrieval sources for automated lyrics fetching and their

importance. For every query, consisting of artist and titleof a track, three lyrics portals

are used to retrieve the lyrics. If thelyrc.com.ar is valid, i.e. of reasonable size, those

lyrics are assigned to the track. Iflyrc.com.ar fails to return the lyrics, the sing365.com

is checked for validity and so on. In case of no valid lyrics document from any of the

three lyrics portals, the KV script is used to retrieve the lyrics result page from Google.

For the remaining text descriptions we used data from laut.de5. Therefore the genre

descriptions and album reviews are in German, which does notnegatively in
uence the

results, since only the resultant distances are combined. There is only one language

within one dimension (e.g. all artist biographies are in English, all genre descriptions

in German).

The coverage rates are high enough to show the extent of in
uence coming from the

additional information, but of course are far from optimal.Strategies to achieve higher

coverage { at least for the lyrics fetching for it is the most important data source used

throughout this theses { would be to include other sources ofcultural information or

additional lyrics portals like lyrics.com6 or lyrics4you7. Countless lyrics portals can

be found on the net and could also be taken into consideration, but were omitted due

to reasons of simplicity, three portals su�ce to explain themethodology behind our

approach.

Nonetheless, these collections and their given availability of textual artist, lyrics,

album and genre information are very feasible for combined similarity experiments

because they allow for studying the e�ects of missing values, which is of particular

importance as this is very likely to occur in a real life scenario, albeit to a lesser extent

as probably more e�ort would be put into the retrieval component of such a system.
4http://en.wikipedia.org
5http://www.laut.de
6http://www.lyrics.com
7http://www.lyrics4you.com
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3.3 Recap

We stressed the importance of test collections for experiments in Music Information

Retrieval. To the end of proper evaluation we introduced twotest collections, one of

large, one of small size. Further we explained the indexing process and automated

enrichment using text documents from online sources. We therefore considered all

necessary requirements for the multi-modal view of Music Information Retrieval and

are now ready to exploit the information gathered in this way.



Chapter 4

Multi-Modality in Music

Information Retrieval

The great blessing

of the AI is that we are

gifted with the power to

touch our Creator.

This is also our Curse.

The Clarion's Call,\Hour of the Abyss", CY 11745

After having introduced underlying techniques and retrieval components of a multi-

modal Music Information Retrieval system, this chapter theoretically presents the main

contributions to the �eld made in this thesis, namely the combination of several levels

of text data and audio representations for the basic Music Information Retrieval tasks

of similarity ranking, visualisation, and musical genre classi�cation.

Firstly, a similarity ranking approach using a multidude of textual inputs is pre-

sented. Multi-modal ranking and combination approaches will be presented in Sec-

tion 4.1.

42
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Then, we give a general introduction to the application of clustering techniques for

audio { both its text and signal processing based representation { and explain the

overall idea of multiple or combined clusterings in Section4.2. To that end, we at �rst

explain why multiple clusterings can be of help in understanding music, then we show

techniques to formally evaluate these multiple clusterings.

Finally we give a short outlook on the third set of experiments { audio and text

based musical genre classi�cation in Section 4.3.
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4.1 Ranking Merging - Integrating Retrieval Results

This section introduces a possible combination methodology for multiple similarity

rankings. It is now possible to not only retrieve similar tracks according to audio

similarity for a given seed song, but also similar tracks according to lyrics features.

Moreover, artist rankings for the artist of the seed song as well as similar albums to

the seed songs' album can be provided.

This yields several rankings for each query song. Based on the vectors of distances

to the query song, the Euclidean distance is used to generatemulti-level rankings for

a single seed song. The straight forward case for audio similarity and lyrics, ranks on

a song to song basis. All other rankings comprise tracks as well, but are based on

distances of non track level features, e.g. all tracks by band X have the same artist

distance to all songs of bandY. The distances for the album and genre dimension are

computed analogously. This results in �ve rankings of length of the number of songs

in the collection, or, in other words, for each song, there are �ve distances to the seed

song.

Each of those rankings is min-max normalised, following Equation 4.1 to prevent

biasing in
uence on the overall ranking.

dnorm (q; t) =
d(q; t) � min (d(q; t))

max(d(q; t)) � min (d(q; t))
(4.1)

Each entry d in a distance vectord(q; t), for a given query and track in the collection

is replaced by the fraction of the current entry minus its minimum valuemin (d(q; t)) in

the vector and the di�erence of its maximum valuemax(d(q; t)) and its minimum value

min (d(q; t)). This is needed to take into account distances not starting from zero. This

preprocessing step is necessary to be able to combine the individual distances, without

it the ranges would be from di�erent scales and impossible tointegrate.

Equation 4.2 shows howD(q; t), the overall distance of queryq to a track t is
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computed as the sum of all individual distancesdi (q; t) times their respective weights

wi over all input sourcesi�T .

D(q; t) =
X

i�T

wi � di (q; t) (4.2)

Equation 4.2 is rewritten in Equation 4.3, as audio features, artist descriptions,

song lyrics, album reviews and genre descriptions are takeninto account in order to

represent all di�erent sources identi�ed to be relevant formusic similarity.

D(q; t) = waudio � daudio (q; t)

+ wartist � dartist (q; t)

+ wlyrics � dlyrics (q; t)

+ walbum � dalbum (q; t)

+ wgenre � dgenre(q; t) (4.3)

4.1.1 Missing Values

Whenever an artist description, album review, genre description, or a song's lyrics are

not available, i.e. could not be fetched, we speak of a missing value problem. This fact

has to be taken into account for similarity calculation for the distance of the missing

song, artist, album, or genre to the query can not be computed.

Audio features are assumed to cover all songs of a collection, therefore no explicit

strategy for missing data for audio values is taken into account, but would of course

make sense for audio �les that are non-readable for some reason (e.g. the decoding

fails or to many bit errors occur within the �le). As textual descriptions may not be

available for all artists, albums, genres or songs (lyrics), it is a vital requirement for any
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Table 4.1: Test collection and coverage of di�erent types ofdescriptions for the collection used in the

experimental evaluation

Type Elements Covered Coverage

Audio Features 12770 12770 1.0

Lyrics 12770 7554 .59

Artists 644 348 .54

Albums 931 226 .24

Genres 52 15 .29

multi-level MIR system to provide appropriate techniques for handling these missing

values. Techniques to identify instrumental pieces of music would also be desirable

to identify songs that do not have lyrics associated by de�nition and therefore need

special treatment. The main problem with missing values is that they subsequently

result in missing distance values between certain instances and further calculation is

not possible for elements that have no vector associated with it. These distances that

can not be computed are referred to as missing values throughout the remainder of

this section.

Table 4.1 summarises the coverages of di�erent informationsources for the large

benchmark collection. The �gures result from mining contextual information from the

sources speci�ed in the previous chapter. Audio features are available for all songs in

the collection, artist descriptions for 54 per cent and so on. Genre descriptions are only

available for some 29 per cent of all 52 genres in the collection. Hence, particularly

the feature groups that are not available on a per song basis {that is artists, albums,

and genres { have a strong impact on the missing values problem. For instance, one

missing genre might consist of a large number of songs, all for which no distances could

be computed in the genre dimension.

In order to overcome the missing value problem, three basic methods are considered:
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� Exclusion

� Simple averaging

� Category substitution

The simplest way of treating missing values is to exclude them from the results, e.g.

if an artist description is missing, this artist is omitted in the results of the query, or

heavily penalised for that matter. This brings an increase in precision (all songs in the

result are similar to the query), yet negatively impacts recall (many (possibly) similar

songs are not considered).

To avoid this problem of low recall, substitution of missingvalues with the average

distance is feasible. Every missing value is replaced by theaverage distance of existing

values, henceforth missing values are no more penalised.

Finally, category substitution can be applied. A value is replaced by the average

of elements of the same category as opposed to being replacedby the average over

all existing values. The average distance of artists of the same genre, for instance, is

substituted for a missing artist distance. In the scenario portrayed in this work, the

following substitutions make sense:

1. Artist level

Each missing value is replaced by the average distance of songs of the same genre.

2. Genre level

Simple averaging is applied to replace missing genre distances. A genre hierarchy

could improve the substitution on the genre level by providing suitable rules for

substitution.

3. Lyrics/song level

The average over lyrics from same album or artist (if no lyrics from the same

album are available) is substituted for missing lyrics distances.
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4. Album level

The average over albums from same artist replaces missing values.

In any case the fall-back strategy that is applied if no appropriate elements can be

found, is to use the average over all existing distances, i.e. the simple averaging strategy.

Another possible strategy would be simply omitting of songswith missing values.

At the cost of never getting many songs recommended at all, the plain simplicity would

speak for this possibility. Moreover the computational expense could also be lowered by

much. We have not applied this strategy for not wanting to omit such a large fraction

in the similarity rankings, i.e. we think of this as too restrictive, albeit de�nitely the

easiest way of dealing with missing values.

4.1.2 Recap

In this section we proposed techniques for ranking merging in the multi-modal case.

We explained a way of merging multiple rankings { each one obtained for another

modality or category { and to deal with missing values. Experiments later on will

show the applicability of our approach.
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4.2 Multi-Modal Visualisation of SOM Clusterings

The basic idea to be introduced in this section is to visualise multiple clusterings,

each according to a di�erent modality, and draw connectionsbetween corresponding

instances on both clusterings. We propose to visualise the similarities and di�erences

between the two clusterings by drawing lines across maps, which visually connect pieces

of music. The rationale for this is that the same instance could be clustered very

di�erently, depending on the dimensionality in use. The resultant connections will

therefore rather show one instance's positions on several maps and reveal additional

information about its embedding in di�erent feature spaces. These connections will be

denoted as cross map linkages, as they link instances acrossclusterings and modalities.

The data is clustered by the dimensions of audio features on the one hand and lyrics

on the other hand (those maps will be denoted as audio and lyrics map, respectively).

Every track is therefore present on twoSelf-Organising Mapsof equal size, which is no

necessity but was chosen on purpose in order to stick to simpler examples.

Linkages can be shown on di�erent levels:

Track Each (selected) track on the audio map is connected to the same track on the

lyrics map. This allows the analysis of the characteristicsof a certain piece of music by

identifying its acoustic as well as textual placement, i.e.to which clusters it belongs

in the respective modality.

Genre Each track of a selected genre is connected to all songs of thesame genre on the

other map. Here, the spread of a given genre can be inspected.For instance, whether

a genre forms a consistent cluster in both modalities, or whether it does form a rather

consistent cluster in, say, the textual domain, while it is rather spread across di�erent

clusters on the audio map.
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Artist Each track of the given artist on the audio map is connected toall songs

of the same artist on the lyrics map. This allows to analyse the textual or musical

'consistency' of a given artist or band.

The other important aspect is the (colour-)coding of connections for the simul-

taneous display of two music maps. Once connections are drawn on the maps, the

connections between units are coloured according to their number of connecting units.

The main idea is to allow for user selections on one map and provide the simultaneous

highlighting of songs on the other one. Possible levels are:

� Colour-code types of connections

i.e. all track-track connections blue, track-genre red, . ..

� Colour-code connexion strength

All connections between units are colour-coded. For example, the highest

number of connections is coloured red, the lowest blue and the remaining links

are coloured according to the palette in between.

The resultant clustering provides both a means of navigation in and visualisation of

multiple modalities of electronic music archives. To further investigate these principles

a `traditional' prototype model was developed, which will be described in the following

section.

4.2.1 A First Prototype

Figure 4.1(a) shows a full view of the prototype mock-up, built of paper, carton, and

sewing cottons. It was built using needles and glue and is held together by adhesive

tape. Clusterings of a small example collection of about 50 songs is shown, a lyrics

clustering on the bottom and an audio clustering on the top pane. The connections

drawn (or rather stitched) are for songs of a particular artist (`Snow Patrol' in this

case) and give an overall idea of how such a system could work.
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(a) Full view of the visualisation prototype

(b) Detailed view of the visualisation prototype

Figure 4.1: Visualisation prototype mock-up
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Figure 4.1(b) shows a detailed view. It is shown that particular units have a very

high number of outgoing links and the variation in spread, which is going to be discussed

in more detail in the remainder of this section.

4.2.2 Cluster Validation for Multi-Modal Clusterings

Cluster validations in this context will be based on twoSelf-Organising Mapstrained

on di�erent feature sets. Their common features will be:

� Same size - to make comparisons easier, onlySelf-Organising Mapsof equal size

will be compared to each other.

� Same set of instances - the data points on the maps are the sameones.

Another approach for the comparison of multipleSOM clusterings is introduced

in [3]. Data shifts and cluster shifts are used to compute shifts in between clusterings.

Shifts are graphically represented by coloured arrows of di�erent line widths. The

cluster shifts take into account emerging clusters on bothSOMs and have to consider

mappings between these two. The main points of this visualisation are the identi�cation

of outliers as well as stable regions over multiple maps. Themain di�erence to the

concepts presented in the following are its independence from class information of any

kind. As opposed to the data shifts visualisation, we emphasise the exploitation of

given class information and evaluation in this context therefore is always to be seen in

respect to genre, artist, or possibly album information.

To determine the quality of the resultant Self-Organising Mapclusterings, we try

to capture the scattering of instances across the maps usingmeta information such as

artist names or genre labels as ground truth information. Ingeneral, the more units a

set of songs is spread across, the more scattered and inhomogeneous the set of songs

is. On the other hand, if the given ground truth values are accepted as reasonable

structures to be expected to be revealed by the clustering, songs from such sets should
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be found to be clustered tightly on the map.

Several ways of computing distances onSOMs are possible. Distances are always

subject to a speci�c distance measure, we use the Euclidean distance, see Section 2.2.

They can be computed either in the input or output space, where the input space refers

to whatever dimensionality of data is used as input, e.g. theresultant dimensionality

after feature selection for text data. The output space refers to the SOM grid; it is two-

dimensional. As a combination of both spaces for distance calculation the distances in

the output space could be weighted by distances in the input space.

In this context, the focus lies on distances in between unitsin terms of their position

on the trained Self-Organising Map. The abstraction from the high-dimensional vector

descriptions of instances to the use of unit coordinates instead of unit vectors is feasible

from a computational as well as a conceptual point of view. Comparison of individual

vectors does not take into consideration the very nature of the Self-Organising Map

clustering algorithm, which is based on the preservation oftopological relations across

the map. This approach therefore computes the spread for genres or artists with respect

to the Self-Organising Maps' clusterings. For distances between units the Euclidean

distance is used on unit coordinates, which is also used for distances between data

and unit vectors in the input space in theSelf-Organising Maptraining process. All

quality measurements are computed for sets of data vectors and their two-dimensional

positions on the trainedSelf-Organising Maps. Particularly, sets of data vectors refer

to all songs belonging to a certain genre or from a certain artist. Generally, a Self-

Organising Map consists of a numberM of units � i , the index i ranging from 1 to M .

The distanced(� i ; � j ) between two units � i and � j can be computed as the Euclidean

distance between the units' coordinates on the map, i.e. theoutput space of theSelf-

Organising Map clustering. In this context only units that have data pointsor songs

that belong to a given category, i.e. a particular artist or genre, are considered. This

holds for both maps, all quality measurements can only be calculated with respect

to a class tag, i.e. for songs belonging to a particular artist or genre. The average

distance between these units with respect to aSelf-Organising Mapclustering is given
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in Equation 4.4.

avgdist =
P n

i =1
P n

j =1 d(� (i ) ; � (j ))
n2

(4.4)

n denotes the number of data points or songs considered, i.e. the songs belonging

to a given artist or genre. Further, the average distance ratio de�nes the scattering

di�erence between a set of two clusteringsC = f caudio ; clyrics g, caudio being an audio

and clyrics being a lyrics clustering, is given as the ratio of the minimum and maximum

values for these clusterings.

Further, we de�ne the ratio of the average distance ratio across clusterings in Equa-

tion 4.5 as the ratio of the respective minimum and maximum values of the average

distance ratio.

adraudio;lyrics =
min (avgdistaudio ; avgdistlyrics )
max(avgdistaudio ; avgdistlyrics )

(4.5)

The closer to one the average distance ratio, the more uniformly distributed the

data across the clusterings in terms of distances between units a�ected. However, this

measure does not take into account the impact of units adjacent to each other, which

de�nitely plays an important role. Adjacent units should rather be treated as one unit

than several due to the similarity expressed by such results, i.e. many adjacent units

lead to a small average distance.

Therefore, the contiguity valueco for a clustering c gives an idea of how uniformly

a clustering is done in terms of distances between neighbouring or adjacent units. The

speci�cs of adjacent units are taken into account, leading to di�erent values for the

minimum distances between units since distances between adjacent units are omitted

in the distance calculations. If, for example the songs of a given genre are spread across

three units on the map� 1; � 2; � 3, where� 1 and � 2 are neighbouring units, the distances

between� 1 and � 2 are not taken into consideration. Currently, no di�erence is made

between units that are direct neighbours and units only connected via other units. The
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contiguity distance cd is given in Equation 4.6

cd(� i ; � j ) =

8
><

>:

0 if � i and � j are neighbouring units

d(� i ; � j ) otherwise
(4.6)

The contiguity value co is consequently calculated analogously to the average dis-

tance ratio based on contiguity distances as shown in Equation 4.7.

co=
P n

i =1
P n

j =1 cd(� (i ) ; � (j ))
n2

(4.7)

In the case of fully contiguous clusterings, i.e. all units aset of songs are mapped

to are neighbouring units, theco value is not de�ned and set to one. The overall

contiguity ratio for a set of clusterings is given in Equation 4.8.

craudio;lyrics =
min (cdaudio ; cdlyrics )
max(cdaudio ; cdlyrics )

(4.8)

This information can be used to further weigh theaveragedistratio from Equa-

tion 4.5 as shown in 4.9 and gives an average distance contiguity ratio value adrcr, i.e.

the product of average distance ratio and contiguity ratio,for a set of one audio and

lyrics map.

adrcraudio;lyrics = adraudio;lyrics � craudio;lyrics (4.9)

This considers both the distances between all occupied units as well as taking into

account the high relevance of instances lying on adjacent units of the Self-Organising

Map.

Figure 4.2 shows possible distributions of data points belonging to one class. The

left column shows the distribution for audio clustering, the right column for lyrics
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(a) All points lie in

the upper left corner

(audio)

(b) Points are con-

centrated in the left

upper corner of the

map (lyrics)

(c) All points lie in

the upper left corner

(audio)

(d) Points are con-

centrated in the lower

right corner of the

map (lyrics)

(e) All points lie in

the upper left corner

(audio)

(f) Points are ordered

diagonally (lyrics)

(g) Data points are

not contiguously dis-

tributed (audio)

(h) Data forms sub-

clusters (lyrics)

Figure 4.2: Distribution of four data points belonging to one class (this could be, e.g., four pieces of

`Rock' music). The �gures in the left column display possible distributions of data points according

to the audio dimension, whereas the right column representspossible arrangements for the lyrics

scenario. All �gures are examples only and do not rely on real-world data
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Table 4.2: Calculation of average distance values for clusterings e in Figure 4.2

Unit 1 1 1 2 2 1 2 2 Sum Avg

1 1 x 1 1
p

2 3.414214 0.853553

1 2 1 x
p

2 1 3.414214 0.853553

2 1 1
p

2 x 1 3.414214 0.853553

2 2
p

2 1 1 x 3.414214 0.853553

Table 4.3: Calculation of average distance values for clusterings f in Figure 4.2

Unit 1 1 2 2 3 3 4 4 Sum Avg

1 1 x
p

2
p

8
p

18 8.485281 2.121320

2 2
p

2 x
p

2
p

8 5.656854 1.414214

3 3
p

8
p

2 x
p

2 5.656854 1.414214

4 4
p

18
p

8
p

2 x 8.485281 2.121320

clustering. Units are shown as squares, the numbers denote the number of data points

associated to a unit. This is meant as an example how clusterings can di�er across

dimensions (lyrics and audio features in this case).

Tables 4.2 and 4.3 show the average distance values resulting from examplese and

f of Figure 4.2. The corresponding average distance values are

avgdist(e) =
:853553 +:853553 +:853553 +:853553

4
= :853553

and

avgdist(f ) =
2:121320 + 1:414214 + 1:414214 + 2:121320

4
= 7:0711

Table 4.4 shows the values obtained for the density ratio andaverage distance ratio

that are obtained from the clusterings in Figure 4.2. These clusterings only consist of

four data points, hence all weighting by the number of instances per unit is omitted

for reasons of simplicity. Both the density ratio and average distance ratio give a

fair measure of scattering across clusterings. The clusterings a; b as well asc; d have
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Table 4.4: Scatter measures forSelf-Organising Maps (see Figure 4.2). Note, (a) denotes the audio

clusterings a; c; e and g; (l ) the lyrics clusterings b; d; f and h. AC and LC denote the contiguity

ratios for audio and lyrics, respectively

Maps avgdist(a) avgdist(l ) ADR AC LC CR ADR � CR

a,b. 3.4142 3.4142 1 1 1 1 1

c,d. 3.4142 3.4142 1 1 1 1 1

e,f. 3.4142 7.0711 .4828 1 4.9497 .2020 .2020

g,h. 6.1992 8.1411 .7615 5.1992 7.1411 .7281 .5544

coe�cients of .5 and 1, respectively, whereas the values forclustering e; f are lower.

Visually the clusteringsa; b as well asc; d are equal, even if not mapped to the same

parts of the map (there is no semantic interpretation possible for di�erent areas of the

map, in fact, there is no way of telling di�erences in terms ofclustering position).

A possible visualisation for those values is the colour-coding (binary) of all units

on a map within avg(dist) � w from the centre of the units (average coordinates). All

units, except outliers, within one class would be clearly distinguishable from the rest,

backing the linkage visualisation introduced at the beginning of this section.

4.2.3 Recap

In this section we showed possible techniques for the multi-modal visualisation of audio

collections based onSOMs. Both lyrics and audio data were taken into account in

order to provide a three-dimensional visualisation of audio tracks and their relations

to each other. We also showed how this visualisation can be used to derive quality

measurements for multipleSOM clusterings on toy examples; a large scale evaluation

is to follow in Chapter 6.
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4.3 Multi-Modal Genre Classi�cation

Musical genre classi�cation or the labelling of songs according to prede�ned genre

categories is a classic machine learning task. We will use a subset of the data sources

introduced in the last chapter, namely audio features and lyrics data as input space.

To the end of classi�cation we will use Support Vector Machines, a standard machine

learning technique.

Experimental evaluation will be outlined in Chapter 6.

4.4 Where Do We Go from Here

We theoretically introduced the main categories of techniques used in this thesis. An

implementation for multi-modal similarity ranking and visualisation will be introduced

in the following chapter, quantitative evaluation of theseconcepts will be done in

Chapter 6.



Chapter 5

Implementation Details

The conceptual methods introduced in the last chapters wereimplemented to allow for

experimental evaluation, this chapter gives an overview ofthe resultant implementa-

tion. The implementation comprises two components:

� Atlantis is a text mining application, combining textual information for music

data from di�erent modalities such as artist descriptions and song lyrics. Further,

it contains a user interface and back ends for music similarity retrieval.

� Sovis (Self-Organising Mapvisualisation) implements all aspects related to visu-

alisation. A GUI component allows user access to multiple clusterings and a back

end component evaluates clusterings.

5.1 Atlantis

The Javadoc API for the entire Atlantis project is available at http://www.ifs.

tuwien.ac.at/~neumayer/atlantis/api .

60
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Figure 5.1: Overview ofAtlantis ' packages

5.1.1 Packages of Particular Interest

This section will explain some classes of the most relevant packages within this project

in more detail as well as indicate which parts they belong to.Figure 5.1 shows an

overview of the Java packages in theAtlantis implementation, some of which will be

explained in more detail in the following.

5.1.2 Database Binding

The most important DB related classes are shown in Figure 5.2. The DBManager

Singleton class is responsible for connecting to the DB and sharing of the connexion.

The Corpus class represents one text corpus, e.g. one collection of song lyrics or

artist descriptions. This corpus concept is vital to the application since all grouping

of documents and classes is organised by corpora. Once documents are indexed, the
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unique list of words is calculated and the rest of the database schema is �lled with

document term assignments. TheMusicCollectionManagerclasses provide access to

a music collection's metadata information. It also provides access to the classes in

atlantis.db.musicmetadata's mapping classes likeArtist , Track or Genre.

Figure 5.3 shows the classes used for document representation. A Document is the

superclass for all document representations providing means for accessing a document

object's original as well as preprocessed text values (stored in the respectivetextValue

and rawTextValue �elds). The basic idea is to implement the abstractDocumentclass'

preprocessAndTokenisemethod in a di�erent way for each document type.

5.1.3 Internet Text Mining

Figure 5.4 shows the class diagrams for lyric fetching and parsing. The aforementioned

classes work with local snapshots of Wikipedia andlaut.de. Lyrics fetching is done just

in time over the Internet. Therefore, every class has a static host address, e.g.http:

//www.sing365.com for the sing365 lyrics portal. Further, every class implements

the constructSearchURI method, which returns the correct URI for the given artist

and track name. The content from these URIs is then retrievedfrom the web and is

preprocessed accordingly, i.e. exactly the same way as in the general document cases.

5.1.4 Feature Selection

Feature selection is implemented as part of the vector or matrix generation. Figure 5.5

shows the main classes for frequency thresholding and Information Gain matrix gener-

ation. The VectorGenerator class o�ers the most generic methods to retrieve a single

document vector or matrix for sets of documents. The composition of these matrices

is done in the individual classesLowerFrequencyThresholdingMultipleCorporaVector-

Generator and InfoGainMultipleCorporaVectorGenerator. The Information Gain im-

plementation computes the information gain for all tokens found in a speci�c set of
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Figure 5.2: Classes for the management of corpora within theframework
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Figure 5.3: Classes for the representation of various documents



CHAPTER 5. IMPLEMENTATION DETAILS 65

Figure 5.4: Lyrics fetching and parsing - theAtlantis way
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Figure 5.5: Classes for vector generation and dimensionality reduction of text corpora

corpora and stores these values until they are needed for matrix generation. The fre-

quency thresholding is computed every time a matrix is requested. The upper threshold

is �xed and set to :5, whereas the lower threshold is set to:01 at the beginning and

incremented iteratively as to match the required dimensionality.
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5.1.5 Import Export Component

The export component mainly covers exports to various exchange formats used in

machine learning. Bindings are implemented to write �les inthe SOMLib format [43].

Classinfo �les are used to store class information for instances, a vector �le contains

the vectors itself, and a template vector �le holds information about the single features

(e.g. tokens for text). Further the ARFF �le format, which is used by the Weka

machine learning suite [57], is supported. Moreover plain text �les can be written out

for further processing in Matlab.

Further �les in SOMLib format can be imported if they contain any of the following

feature sets:

� rp, the rhythm patterns feature set (dim 1440)

� ssd, statistical spectrum descriptors (dim 168)

� rh, rhythm histograms (dim 60)

� bpm, beats per minute (dim 1)

In the ideal case,Atlantis holds all of this information about a song and plus informa-

tion about text data terms of tf � idf vectors for the following dimensionalities:

� Song lyrics

� Artist biographies

� Album reviews

� Genre descriptions

The main music-related import/export component handles data from the Amarok

music player [41]. Amarok is a music management applicationfor the KDE desktop. It

supports not only the indexing of music �les, but also lyricsfetching for the song that
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is currently playing via scripts, as well as support for the community site last.fm [21].

Amarok was chosen because it saves many aspects in its database and o�ers promising

features like its last.fm support, which might be interesting in the future. Currently,

Atlantis supports song, artist, album, genre information as well as song lyrics imports

from an existing Amarok database. Moreover, onceAtlantis ' lyrics fetching is done, it

is possible to re-export the lyrics information to Amarok.

An overview of various distance measures, criteria for comparing vectors, is given

in Figure 5.6. All of Atlantis ' similarity experiments as well as all distance calcula-

tions relating to Self-Organising Mapsuse the Euclidean distance in order to provide

distances (or similarity) between documents and vectors. Both the Euclidean and the

Manhattan or City Block distance are forms of the more general Minkowski distance

in terms of a di�erent exponent, p = 1 for the Manhattan distance, p = 2 for the Eu-

clidean distance. Normalisation is performed in theNormalisation class, implementing

a simple MinMax normalisation, i.e. every value is divided by a vectors maximum

value. This results in vectors scaled from zero to one. Further, utility methods for

converting from String to double vectors et v.v. are provided.

The various ranking mechanisms used are depicted in Figure 5.7. A SimilarityRank-

ing basically is a sorted, two-dimensional matrix, instances being listed along itsy,

features along itsx axis. Furthermore, aCombinedRankingis a combination of rank-

ings for album, artist, genre, and track, as well as lyrics rankings. The substituteXXX

methods implement the substitution strategies presented in Section 4.1.1. Besides,

normalisation is done for all rankings to guarantee their comparability.

5.1.6 Typical Atlantis Usage

The typical usage ofAtlantis would consist of the following steps:

� Import collection database (from Amarok)
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Figure 5.6: Overview of distance measures used inAtlantis
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Figure 5.7: Overview of the ranking implementations
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� Fetch lyrics

Interactively check �les

Possibly export the fetched lyrics to Amarok

� Import audio features (from SOMLiB �les)

� Batch update text corpus

� Export vector �les, browse by similarity, etc.

5.2 Sovis (Self-Organising Map Visualisation)

Subsequently,Sovis, an application prototype for multiple Self-Organising Maps, was

implemented for the simultaneous display of two music maps.Sovis usesAtlantis '

data model and interfaces for music collection management and the link to metadata.

Once connections are drawn on the maps, the connections between units are coloured

according to their number of connecting units. The main ideais to allow users to select

songs on one map. All selected songs are highlighted on the other map. On top of

the interactive user interface and the connexion visualisations, Sovis implements the

multi-modal quality measurements introduced in section 4.2.2.

The Sovis prototype allows for selection of:

� Genres

� Artists

� Tracks

All selections are organised hierarchically according to the songs' artist or genre

tags, i.e. further selection re�nements are possible. If the user selects, for instance,

all songs from the rock genre, all songs belonging to that genre are connected in the

interactive 3D display of theSelf-Organising Maps. Moreover, all single songs of that



C
H

A
P

T
E

R
5.

IM
P

LE
M

E
N

TA
T

IO
N

D
E

TA
ILS

72

Figure 5.8: Full view of the visualisation prototype. The vertical map clusters songs by audio features, the horizontalmap is trained on lyrics

features. The left hand side is occupied with various selection controls
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particular genre are displayed and the user can further re�ne his selection to a particular

set of songs. The main user interface is depicted in Figure 5.8. The right part of

the application is occupied by the display of the twoSelf-Organising Maps. The 3D

display o�ers ways to rotate the view as well as pan and zoom inor out. Controls to

select particular songs, artist or genres are on the left side together with the palette

describing the associations between colours and line counts. Selections of artists or

genres automatically update the selection of songs on the left hand side. Several

visualisations for singleSelf-Organising Mapshave been proposed. In this work we use

the Smoothed Data Histogramstechnique to colour-code theSelf-Organising Maps[39];

whenever class distribution is of interest, we make use of the Thematic Class Map

and Chess Boardvisualisations to emphasise the regions covered by di�erent classes.

The SOMToolbox application for 2D clusterings supports a wide range of additional

visualisations that could be used as a basis for 3D visualisations, as proposed in this

thesis. We relied on the same visualisation method for both audio and lyrics features.

Of course, this is not necessary and di�erent visualisations could be deployed for the

respective feature spaces and clusterings.

Figure 5.9 depictsSovis' main classes and GUI as well asSelf-Organising Mappack-

ages. TheSwingInterfaceMain class is the main entry point for the GUI application.

QualityMain evaluates two clusterings in batch mode.

Figure 5.10 showsSovis' GUI components. SwingInterfaceuses bothAtlantis ele-

ments and theCrossMapLinkageVisualisationclass and presents the main GUI com-

ponent, handling the display of links between mappings itself. CrossLinkageVisuali-

sationCrontrol encapsulates the functionality for loading and displayingtrained Self-

Organising Mapsand CrossLinkageVisualisationCrontrolFrameholds control elements

and user input �elds. The ColourXXX classes handle the display of the colour palette.

Sovis' functionality to management and evaluation of multipleSelf-Organising Maps

is shown in Figure 5.11. SOMQuality implements the computation of the quality

measures introduced in section 4.2.2. TheSelf-Organising Mapgrid and methods for
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Figure 5.9: Overview of theSovis implementation

accessing mapping and unit information can be found inElementManager.

5.3 Recap

This Chapter introduced the Atlantis and Sovis Java implementations. Their back

end implementations and user interfaces will be used to experimentally evaluate the

concepts described earlier on. Multi-modal clustering as well as similarity ranking

experiments will be performed exclusively using these implementations, for musical

genre classi�cation the �les produced by the export components will be used as input

for the Weka machine learning suite.
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Figure 5.10: Sovis' GUI components
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Figure 5.11: An overview ofSovis' quality measures



Chapter 6

Experiments

Love? Truth? Beauty? I prefer negotiable securities.

Doge Miskich var Miskich, \All About Me", 301 AFC

This chapter describes the experimental setting and provides experimental results

for the three main tasks considered in this thesis, namely multi-modal

� similarity ranking and retrieval,

� multi-modal visualisation and cluster validation, and

� musical genre classi�cation.

At �rst, experiments are shown on the small data collection,particularly focussing

on visualisation. After that, a full set of experiments is performed on the large collec-

tion, including ranking, cluster visualisation, and musical genre classi�cation, which is

much more feasible for collections of su�cient size.

77
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(a) Clustering of audio features for the 10 genres subset of t he audio

collection

(b) Class (genre) colour leg-

end

Figure 6.1: Thematic class map visualisation for the audio clustering of the 10 genres subset of the

small audio collection. Genre colours are displayed in the legend

6.1 Small Collection Experiments

The experimental results presented in the following were obtained from experiments

made with the small data collection, introduced in Section 3.1.1.

6.1.1 Clustering According to Audio Features

For each song lyrics features as well as audio features (Statistical Spectrum Descriptor,

dimensionality 168) were computed. TheSelf-Organising Mapclustering was �nally

performed on the small data set. We then trained twoSelf-Organising Mapsof size 8

� 8, i.e. 64 units, one on the audio feature set, one on lyrics.

Figure 6.1 displays the clustering of the small collection according to audio features
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(a) Clustering of lyrics features for the 10 genres subset of the audio

collection

(b) Class (genre) colour leg-

end

Figure 6.2: Thematic class map visualisation for the lyricsclustering of the 10 genres subset of the

small audio collection. Genre colours are displayed in the legend

plus class legend. Di�erent areas of the map are coloured according to their genre. The

class legend is given in 6.1(b). Such a visualisation makes it easy to comprehend the

distribution of classes on the map. The `Reggae' genre (darkred) for example is located

on the right upper part of the map, clustered on adjacent units only. `Christmas' songs

(light blue), on the other hand, are spread all over the map. This corresponds to

the very di�erently sounding nature of these two genres. `Christmas' music is rather

de�ned by its lyrics, whereas `Reggae' is rather de�ned by its typical sound. Songs

belonging to the `Punk Rock' and `Speech' genres both are also rather de�ned by their

sound.
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6.1.2 Clustering According to Lyrics Features

The same collection clustered according to song lyrics is shown in Figure 6.2. The

resultant high-dimensional feature vectors were further downscaled to 905 dimensions

out of 5.942 using feature selection via document frequencythresholding, i.e. the

omitting of terms that occur in a very high or very low number of documents. We

therefore excluded terms occurring in less than 16 per cent and more than 40 per cent

of the documents.

Amongst the most obvious di�erences are the better separation of `Hip-Hop' songs

in the upper right part of the map. This genre is easily identi�ed by terms like `shit',

`rap' or names of di�erent rappers. Christmas carols are clearly separated in the lower

left corner of the map, exclusively covering four units. Tracks belonging to the genres,

`Slow Rock', or `New Metal' are spread across large parts of the map, re
ecting the

diversity of topics sung of within them.

6.1.3 Combined, Multi-Modal Visualisation

Figure 6.3 shows the prototype implementation's tool section as well as its visuali-

sation part. On the right hand part of the illustration two clusterings are visualised

simultaneously. These clusterings are subsequently subject to quantitative evaluation

according to quality criteria introduced in Section 4.2.2.

Table 6.1.3 lists these quality measures for all the genres in the small collection.

Exceptionally high values for the ADR� CR were, for example, calculated for the `Pop'

and `Hip-Hop' genres, meaning that they are rather equally distributed across clus-

terings. `Pop' songs, for instance, are equally distributed in terms of audio and lyrics

contiguity, leading to the maximum value forLC . `Christmas Carol' songs have an

exceptionally low value, stemming from the fact that they form a very uniform cluster

on the lyrics map, the contiguity value is therefore set to one. On the audio map,
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Figure 6.3: Overview of the visualisation prototype. The left part of the application is occupied by

tools to select songs from the audio collection. The main part displays the clusterings and connections

in between

Christmas carols are spread well across the map. Other low values can be identi�ed

for `Punk Rock' or 'Speech', both of which are more spread across the lyrics than the

audio map.

Figure 6.4 shows two examples of genre connections. Figure 6.4(a) shows the con-

nections for all songs belonging to the `Christmas Carol' genre, and visualises its dis-

tribution as mentioned in the previous paragraph. Songs belonging to the `Punk Rock'

genre are shown in Figure 6.4(b). The strong divergence of distributions is clearly

visible.

6.2 Large-Scale Experiments

To prove the applicability of the proposed methods, we performed experiments on a

larger collection of digital audio, which is described in Section 3.1.2.
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(a) Multi-Dimensional visualisation of `Christmas' songs

(b) Distribution of `Punk Rock' songs on both maps

Figure 6.4: Distribution of selected genres across maps
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Genre AC LC CR ADR ADR � CR

Cristmas Carol .1240 1 .1240 .2982 .0370

Country .1644 .2169 .7578 .8544 .6475

Grunge .3162 .5442 .4714 .9791 .4616

Hip-Hop .2425 .1961 .8086 .6896 .5576

New Metal .1754 .1280 .7299 .9383 .6849

Pop .1644 .1644 1 .9538 .9538

Punk Rock .4472 .1280 .2863 .7653 .2191

Reggae .2774 .1810 .6529 .5331 .3480

Slow Rock .1715 .1240 .7232 .7441 .5382

Speech .3333 .1754 .5262 .3532 .1859

Table 6.1: Genres and the according spreading values acrossclusterings. AC denotes the audio

contiguity, LC the lyrics contiguity, CR the contiguity ratio, ADR the average distance ratio, and

ADR � CR the product of ADR and CR . Maximum values are printed in bold font, minimum values

italic

6.2.1 Multi-Modal Audio Similarity Ranking

This section contains an experimental evaluation of the techniques for multi-modal

similarity ranking in Section 4.1. The main idea is to rank songs in a music collection

according to di�erent modalities. We consider the following levels of similarity for each

seed/query song:

� Song (audio)

� Song (lyrics)

� Artist

� Album

� Genre
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As a next step all the di�erent rankings are merged into one result list, the experi-

ments performed will be explained in the following.

In order to show the importance of the missing values problem, Table 4.1 summarises

the coverage of di�erent levels of textual description within the large collection. The

evaluation and comparison of the results of content-based (i.e. audio) similarity rank-

ings to combined approaches presented in the Section 4.1 is the central part of the

experiments described in this section. To that end, at �rst,the combined distances for

each track in the collection to all other songs are computed.Then the �rst 5, 10 and

20 results are evaluated according to the number of songs belonging to:

� the same artist,

� the same album, or

� the same genre,

While this kind of evaluation is de�nitely not the optimal way, it constitutes an

objective, automated way of analysing results that has beenused in this setting be-

fore [20]. Obviously, this should be followed-up by a user study to establish sound

parameter values for real-world retrieval tasks.

Table 6.2 gives an overview of di�erent settings for weightings. Weights are always

given for each of the �ve dimensions and always sum up to one. The sum column

denotes the sum of the number tracks in the result set, that are featured on the same

album, interpreted by the same artist, and belonging to the same genre as the seed song

taken from the top 20 results for every given song1. Therefore, the higher the value,

the more similar tracks are returned according to that similarity measure. It is shown

that additional textual data sources improve the results signi�cantly. Experiment 15

shows very high values and seems to be the best combination inthis context, especially
1This evaluation for sure has its weaknesses like, for exampl e, a strong bias on albums, because they implicitly

convey genre information. We still chose this kind of evalua tion instead of large-scale user studies due to time and e�or t

restrictions.
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Table 6.2: Results for given weighting strategies. The di�erent weightings are given in the Audio,

Artist, Lyrics, Album and Genre columns. The Sum column denotes the sum over the number of

songs amongst the top 20 results from the same artist plus album plus genre for each combination

ID Audio Artist Lyrics Album Genre Sum

1 1.0 .00 .00 .00 .00 5.37

2 .50 .50 .00 .00 .00 19.54

3 .70 .30 .00 .00 .00 19.53

4 .30 .70 .00 .00 .00 19.54

5 .30 .30 .30 .00 .00 18.70

6 .70 .30 .20 .00 .00 18.89

7 .25 .25 .25 .25 .00 20.64

8 .70 .10 .10 .10 .00 20.09

9 .40 .25 .10 .25 .00 20.87

10 .40 .30 .00 .30 .00 21.41

11 .40 .00 .30 .30 .00 9.64

12 .20 .20 .20 .20 .20 22.65

13 .60 .10 .10 .10 .10 22.12

14 .40 .30 .10 .10 .10 22.73

15 .30 .30 .00 .20 .20 23.46

16 .30 .30 .00 .10 .30 23.35

17 .30 .30 .00 .30 .10 23.43
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outperforming the audio only experiment number one. Of course this may look very

di�erent on a per user basis. However, these weightings o�era very good point to

start from in ongoing experiments, particularly includinguser feedback. Naturally, the

results according to the chosen evaluation are far more improved by artist, album and

genre information than by a song's lyrics.

The values given in Table 6.3 and Table 6.4 show the di�erences over changes in

the substitution strategies as well as initial size of the result set. The weights used

for this experiment are:3, :3, :0, :2, and :2, respectively for the audio, artist, lyrics,

album, and genre categories. This weighting corresponds tothe best result obtained in

the ranking experiments (experimental setting 15), which are summarised in Table 6.2.

The �rst set of results are based on a full ranking of all songs, the latter relies on

a re-ranking of the �rst 600 closest songs in terms of audio similarity. The given

results are computed as the sums of this evaluation for the 5,10 and 20 best results.

Furthermore, the average count over results for di�erent seed songs was computed.

The �gures show that penalising of missing values does not improve the quality of the

retrieval results, the simple averaging strategy performsbetter in all respects which

is negatively in
uenced by the low coverage of data, i.e. many similar tracks are

without textual information and therefore would not be considered in the result, if

it was not for averaging their distance. Surprisingly, category substitution does not

improve results at all. Table 6.4 outlines that the results for a subsampled data set

decreases performance signi�cantly, but also shows that the ranking based onStatistical

Spectrum Descriptorsselects songs according to criteria decoupled from metadata tags.

Category substitution is not available for the full retrieval setup. However, results are

provided for a performance improvement over that strategy.

User Interface

Figure 6.5 shows the main user interface of an experimental system to evaluate the

impact of di�erent weighting strategies. The largest part of the GUI is occupied by
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Table 6.3: Experimental results for similarity ranking experiments using di�erent substitution strate-

gies for the combination of the results taken from a full ranking of all songs. Numbers given denote

the number of songs belonging to the same artist, album, and genre as the seed song in the top 5, 10,

or 20 songs retrieved

Same Album Top 5 Top 10 Top 20

Category Subst. NA NA NA

Exclusion done 2.11 3.76 5.88

Simple Avg. 2.17 4.04 6.45

Same Artist Top 5 Top 10 Top 20

Category Subst. NA NA NA

Exclusion done 3.17 6.09 11.66

Simple Avg. 3.22 6.24 11.90

Same Genre Top 5 Top 10 Top 20

Category Subst. NA NA NA

Exclusion done 2.77 5.23 9.52

Simple Avg. 2.85 5.50 10.25
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Table 6.4: Re-Ranking of top 600 initial results for similarity ranking experiments using di�erent

substitution strategies weighting for the combination of the results. Numbers given denote the number

of songs belonging to the same artist, album, and genre as theseed song in the top 5, 10, or 20 songs

retrieved

Same Album Top 5 Top 10 Top 20

Category Subst. 1.84 2.79 3.52

Exclusion 1.91 2.78 3.55

Simple Avg. 2.36 3.41 4.07

Same Artist Top 5 Top 10 Top 20

Category Subst. 2.43 4.09 5.83

Exclusion 2.41 3.95 5.53

Simple Avg. 2.97 5.11 7.15

Same Genre Top 5 Top 10 Top 20

Category Subst. 1.55 2.85 5.15

Exclusion 1.64 2.87 4.92

Simple Avg. 1.90 2.91 4.43
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Figure 6.5: GUI for experimental evaluation of di�erent wei ghting strategies. Weightings are given for the track `Politik' by `Coldplay'
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the �ve di�erent rankings, one for audio, artist, album, lyr ics, and genre respectively.

Only the pre-�ltered rankings are shown, i.e. not the rankings according to �ve di�erent

modalities are shown themselves. Instead, each ranking shows the ranking obtained by

substitution strategies for all songs. The genre ranking, for instance, shows all songs

in the collection ranked by their genre weight, i.e. all songs from a given genre are

represented by that genre's term vectors. The weights for each of these sources can

interactively be updated and the in
uence on the combined ranking can be observed.

The user can update these weights and instantly see the in
uence on the combined

ranking as described earlier. A textbox is provided to search for song titles, rankings are

generated accordingly. The �gure shows the query for the track `Politik' by `Coldplay.'

It becomes evident that the �rst result is either the song itself or all other songs by

the same artist. Every `Coldplay' song has the same distance(zero) to all other songs

of the same artist, whereas the lyrics and audio categories have distances on a song

basis. For this song, there's no genre information available (`Slow Rock'), therefore, in

terms of genre similarity, all songs have the same distance to the query. For matters

of simplicity all distances are set to 0 in this case. It is, however, possible to compute

all other four kinds of similarities. In terms of audio features, the most similar songs

are mainly songs by 'Richard Ashcroft' or `The Verve' as wellas `Blur' and `Oasis'.

The most similar lyrics are from songs by `Coldplay' itself,̀The Cranberries', and

`The Pogues' as seen in the third column. According to the analysis of the artist

descriptions the most similar artists are `The Flaming Lips', `Bloc Party', and `The

Gorillaz' as well as Conor Oberts's `Bright Eyes'. Albums with similar reviews are

from artists like the Americans `Nada Surf' or the British `Badly Drown Boy'. Once

the user has set his preferred weights, he can generate an overall ranking based on the

single ones. Figure 6.6 shows the combined ranking with the weights :7, :1, :1, :4, and

:42, for audio, artist, lyrics, album, and genre, respectively. It also shows the updated

distances and reveals a new ranking based on all modalities and a user's preference for

them (adjusted by the chosen weighting).
2These weights were subjectively chosen but provided a good b lending of results.
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Figure 6.6: Combined ranking for the track `Politik' by `Col dplay', based on single rankings in �ve

modalities

One vital aspect of multi-level similarity is that adjusting the weights also means

adjusting to the user. Personalisation based on weightingstherefore will de�nitely

be evaluated in the future. Relevance feedback could be usedto automatically adapt

weights according to user input, i.e. those data can be extracted from a user's playlist.

6.2.2 Comparisons of Multi-Modal Clusterings

This section summarises the �ndings from the multi-modal clustering experiments. We

train one map representing the collection in terms of lyric similarity, one in terms of

audio similarity. At �rst, examples of di�erent clustering results for processing based

on song lyrics will be given. We then stress the di�erences between the audio and lyrics

space. After that we will provide experimental results of multi-modal clustering.
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Figure 6.7: Clustering of songs centred around the love topic

Traditional Genres and the Lyrics Space

Figure 6.7 shows the distribution of genres on two particular units on a Self-Organising

Map trained on lyrics data. The pie chart display shows the numbers of songs belonging

to the di�erent genres, underpinning the idea that traditional genres are not necessarily

feasible for the lyrics space. The labelling of single unitsis done via the LabelSOM

algorithm, i.e. the identi�cation of discriminative components. In this case, the promi-

nent key words `love', `baby', `give', `real', and `need' give a very good idea on the main

topics of these songs' lyrics. The 50 songs, for instance, mapped onto the right unit

of this Self-Organising Mapare distributed across 16 `traditional' genres, the largest

group being `R&B' songs, followed by `Metal' and `Indie'.

Artists whose songs are mapped onto this unit are, amongst others: `Mary J. Blige',

`Beyonce', `Christina Milian', as well as `Wolfmother' or the `Smashing Pumpkins'.

This interesting mapping shows clearly that topics in song lyrics overcome traditional

genre boundaries, while pointing out that a categorisationon the lyrics level makes

sense since all songs cover similar topics.

To the ends of exploiting the fundamental di�erences in clusterings we train two

Self-Organising Maps, one based on audio, one based on text features. These maps

will be referred to as audio and lyrics map, respectively. Aswell as examples are given,

experimental results are shown.
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(a) Clustering of Christmas carols on the 2D audio map

(b) Clustering of Christmas carols on the 2D lyrics map

Figure 6.8: Distribution of Christmas carols on clusterings for di�erent feature spaces. The pie charts

denote the distribution of songs over di�erent genres on theparticular units { only units comprising

Christmas carols are highlighted
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Figure 6.8 shows the distribution of Christmas carols on thetwo-dimensional cluster-

ings, the distribution on the audio map is shown in Figure 6.8(a), and in Figure 6.8(b)

on the lyrics map, respectively. Both maps have the size 20� 20, the dimensionality

of the audio input space is 168, whereas the lyrics space was downscaled to 6579 out

of 63884 dimensions. The respective lower and upper document frequency thresholds

used to obtain this dimensionality were one and 40 per cent. In the former case, the 33

songs are mapped onto 30 units, in the latter only onto 13. Hence, the lyrics cluster-

ing uncovers information such as vastly di�erent interpretations of one and the same

song, that have the same lyrics, but di�er greatly in sound. Manually assigned labels

demonstrate the di�erent key tokens present on the respective areas of the map, i.e.

the `red / blood / christmas' cluster on the top of the map. Dueto the Self-Organising

Map's random initialisation, the fundamental di�erences in lyrics space, and the gen-

eral training algorithm, the songs are mapped onto di�erentcorners of the map. For

evaluation the absolute location on the map plays a less important role than the rela-

tive distances. However, it is clear that the spread of songsdi�ers from one clustering

to the other. In the lyrics space, Christmas carols are clustered more closely to each

other, whilst they get spread over more units and occupy a larger space of the map in

the audio space. The two interpretations of the song `The First Noel', for example, are

mapped onto one unit in the lyrics space. On the audio map, however, these songs lie

on di�erent units on di�erent regions of the map. The artists of the interpretations are

the `Bright Eyes' and `Saxofour', even though the `Saxofour' interpretation is instru-

mental, the lyrics space helps to uncover the similarity between the two songs. Songs

by `Bright Eyes' are concentrated around clusters of ratherslow folk music.

Noticeable Artists

Table 6.2.2 shows a selection of particularly interesting artists with respect to their

positions on the maps. A total of 18 `Sean Paul' songs are mapped on eachSelf-

Organising Map. For the audio map, the songs are distributed across seven di�erent

units, eleven being mapped onto one unit. On the lyrics map, all songs are mapped
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Artist AC LC CR ADR ADR � CR

Sean Paul .3162 .1313 .4152 .4917 .2042

Good Riddance .0403 .0485 .8299 .7448 .6181

Silverstein .0775 .1040 .7454 .8619 .6424

Shakespeare .2626 1.000 .2626 .3029 .0795

Kid Rock .0894 .0862 .9640 .9761 .9410

Table 6.5: Artists with exceptionally high or low spreading values. AC denotes the audio contiguity,

LC the lyrics Contiguity, CR the contiguity ratio, ADR the average distance ratio, andADR � CR

the product of ADR and CR

onto two adjacent units, the �rst one covering 17 out of the 18tracks. The univying

theme for the distribution across units is based on song labels in the textual feature

space, i.e. songs having similar labels will be mapped onto units having high weights

for these labels.

The situation is di�erent for `Good Riddance', a Californian `Punk Rock' band. For

the lyrics map, their 27 songs are spread across 20 units. Foraudio, the songs lie on

18 units, but some of them are adjacent units, a fact that is represented by a rather

high value for AC, the audio contiguity measure.

Shakespeare sonnets are clustered in a similar way. In termsof lyrics the six sonnets

lie on two units, whereas the audio representations are mapped on three units, non of

which were adjacent (only one sonnet is read by a male voice).

`Kid Rock' songs, mainly `Country' tracks, lie on 13 units onthe audio map, in-

cluding two adjacent units, compared to 11 units in the lyrics space, none of which are

adjacent. The spread is therefore almost identical on both maps. Figure 6.9 shows the

3D visualisation for all `Kid Rock' songs.
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Figure 6.9: Detailed view of connections for the almost equally distributed artist `Kid Rock'. Dark

lines denote a high number of connections
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Genre AC LC CR ADR ADR � CR

Speech .0822 .0665 .8092 .3417 .2765

Christmas Carols .0393 .0677 .5800 .7779 .4512

Reggae .0392 .0413 .9495 .8475 .8047

Grunge .0382 .0466 .8204 .9974 .8182

Rock .0372 .0382 .9740 .9300 .9059

Table 6.6: Genres with exceptionally high or low spreading values. AC denotes the audio contiguity,

LC the lyrics contiguity, CR the contiguity ratio, ADR the average distance ratio, andADR � CR

the product of ADR and CR

Noticeable Genres

Analogously to the artists, we identi�ed genres of interestin Table 6.2.2.

`Rock' music has proven to be the most diverse genre in terms of audio features

and rather diverse in terms of lyrics features alike. There were 672 songs assigned

to that genre in the test collection. The overalladr � cr measure is still rather high

due to the impact of adjacent units on both maps. `Speech' as well as 'Christmas

Carols', on the other hand, are rather diverse in terms of audio similarity, but are more

concentrated on the lyrics (or text) level, yielding in a lowadr � cr value. Figure 6.10

shows the connections between all `Christmas' songs, giving an interesting idea about

the di�erences in distributions on the maps, c.f. Figure 6.8. The similarity of `Reggae'

music is de�ned by acoustic and lyrics features to an equal amount. This genre has

rather high values foradr and cr, caused by a high number of adjacent units and a low

overall number of units.

6.2.3 Musical Genre Classi�cation

In order to utilise the information contained in music for genre classi�cation, we de-

scribe sets of audio features derived from the waveform of audio tracks as well as the
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Figure 6.10: Detailed view of connections for the genre `Christmas Carols'. Dark links denote a high

number of connections
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Table 6.7: Macro-avraged classi�cation accuracies based on ten-fold cross validation for di�erent types

and combinations of audio features and features based on lyrics. The experiments A1 - A3 denote

audio-only, L1 - L4 lyrics-only, and C1 - C3 features combined from audio and lyrics feature sets. The

type column shows the types of feature sets used, dimensionality notes the resultant dimensionality

of the data

Name Type Dimensionality Classi�cation Accuracy

A1 RH. 60 .264702

A2 SSD. 168 .377473

A3 RP. 1440 .375454

L1 LYRICS 60 .216076

L2 LYRICS 168 .263394

L3 LYRICS 1422 .334101

L4 LYRICS 3000 .363122

C1 LYRICS + RH 120 .375454

C2 LYRICS + SSD 336 .436819

C3 LYRICS + RP 3085 .429821

bag-of-word features for song lyrics. Our experiments wereperformed on the large test

collection introduced in Chapter 3.

Table 6.7 shows classi�cation accuracies for a set of experiments based on audio

and lyrics features as well as combinations thereof. We achieved the di�erent lyrics

dimensionalities by document frequency thresholding, theupper limit was set to 40

per cent, the lower threshold was continually increased as to match the required resul-

tant dimensionality, leading to di�erent values for the lower threshold in all settings.

Experiments were performed by Weka's implementation of Support Vector Machines

for ten-fold strati�ed cross validation (linear kernel, c = 1:0). Results shown are the

macro averaged classi�cation accuracies.

The classi�ers based on audio data showed good results, experiment A2 and A3

being rather similar, even though the dimensionalities arequite di�erent. Experiment
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A1 showed by far lower results.

The higher-dimensional the data for the lyrics experimentsis, the higher is its

classi�cation accuracy, implying that there is even more discriminating information

contained in lyrics (see experiments L1 - L4), which is not covered in this context

because of the limitations of the simple concatenation approach.

For combination experiments (C1 - C3) we use balanced combinations of features,

i.e. the dimensionality of the lyrics component always equals the dimensionality of

the audio feature component3. Results show that a combination of lyrics and audio

features improves overall classi�cation performance. Very high accuracy was achieved

in the `LYRICS + RP' setting (C3), having the highest dimensionality, second only to

the `LYRICS + SSD' experiment (C2). For all combination experiments (C1 - C3) the

accuracies were at least equal to the highest values for the respective one-dimensional

approaches (A3 and L4).

For statistical signi�cance testing we used a paired T-testfor a signi�cance level of

� = :05. Results showed that A2 performs better than A1 (p = :0189), but there is

no signi�cant di�erence between A2 and A3 (p = :9661). Further, it is shown that C3

performed better than L3 (p = :0059). Hence, a classi�er based on di�ering numbers of

lyrics than audio features, e.g. more dimensions in the lyrics than in the audio space,

might further improve classi�cation accuracy. Yet, by combining lyrics and audio (C2),

the same performance was achieved at a fraction of the dimensionality. Experimental

results for C2 and C3 are not signi�cantly di�erent (p = :7994). Further test results

are given in Table 6.8.
3These values sometimes are slightly skewed due to the dynami c feature space reduction with document frequency

thresholding.
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Table 6.8: p-values obtained by statistical signi�cance tests performed on classi�cation results. The

given tests were performed for a signi�cance level of� = :05 using a paired T-Test for distributions

with equal means

Name C2 C3 A2 L3 L4

A1 .0157(1) .0189(1) .0732(0) .2021(0)

A2 .0074(1) .2298(0) .9661(0) .8118(0)

A3 .0885(0) .0059(1) .9661(0) .3208(0) .5197(0)

L1 1.0096e-04(1) 1.0597e-04(1) .0051(1) 2.2785e-04(1) .2021(0)

L2 .0011(1) 2.0158e-05(1) .0573(0) 1.0526e-05(1) 2.3352e-04

L3 .0885(0) .0059(1) .9661(0) .5197(0)

L4 .1343(0) .0076(1) .8118(0) .5197(0)

C1 1.2867e-04(1) .0031(1) .0031(1) .0435(1) .2173(0)

C2 .7994(0) .0074(1) .0885(0) .1343(0)

C3 .7994(0) .2298(0) 0.0059(1) .0076(1)

6.3 Recap

In this chapter we provided experimental results on two testcollections { one of small,

one of large size. We thereby underpinned our position that Music Information Re-

trieval greatly bene�ts from the use of multi-modal data sources. We provided results

for multi-modal clustering, relying on the lyrics space as additional input information.

These principles were evaluated both in terms of an experimental user interface and

quantitative evaluation. We used a wide range of textual data sources like artist de-

scriptions or album reviews, to provide experimental results for the classic similarity

retrieval use case. The combination of these data sources extended the classic approach

of using audio similarity only. We furthermore showed that lyrics can greatly in
uence

the task of musical genre classi�cation and provided statistical signi�cance tests for

our classi�cation experiments.



Chapter 7

Conclusions and Future Work

To a god, a wall is but a line on a page. We are all naked, seen beyond seeing.

Way�nder Hasturi, aka \The Mad Perseid" 217 AFC

In this thesis, we investigated a multi-modal vision of Music Information Retrieval,

taking into account both a song's lyrics as well as its acoustic representation, as op-

posed to concentrating on acoustic features only. We presented a novel approach to

the visualisation of multi-modal clusterings and showed its feasibility to introspect col-

lections of digital audio, in form of a prototype implementation for handling private

music collections, emphasised by concrete examples. On topof that, we introduced

performance metrics forSelf-Organising Mapson a per-class level (e.g. artist or genre

classes), showing di�erences in spreading across maps. Moreover, we introduced mea-

surements for the comparison of multi-modal clusterings that showed their application

to identify genres or artists of particular interest.

We also integrated textual data beyond lyrics. A similarityranking technique was

presented to additionally accommodate for further data sources such as artist and

genre descriptions and album reviews. To show the applicability of this approach we

presented a prototype that allows for interactive adjustments in weightings for these

di�erent modalities.

102
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As another application we performed musical genre classi�cation on audio tracks

represented by their indexed lyrics as well as audio features. We presented experimental

results showing that a feature combination is highly desirable in order to increase

classi�cation accuracies.

Future work will mainly deal with the further exploitation o f multi-faceted repre-

sentations of digital audio. Further, we plan to provide a more elaborate user interface

that o�ers sophisticated search capabilities. Ensemble methods have been successfully

used for the integration of multiple classi�er instances and might prove particularly

useful for the music scenario. These classi�ers mostly di�er in the subset of features of

classi�er technique used. In this context, classi�ers could be trained on di�erent sets

of features { motivated by the wealth of modalities available for musical data. Such

an approach would be feasible to achieve better overall integration and accuracy rates

for the musical genre classi�cation task.

Besides, the possibilities of automatically adding metadata to audio �les through

multi-modal representations will be explored in connection with semantic analysis or

automatic concept identi�cation in music. An interesting application of this would

be automatic musical genre classi�cation, emphasising on the additional information

contained in a song's lyrics as opposed to purely acoustic approaches currently being in

use. Moreover, the investigation and evaluation of advanced feature sets for the lyrics

space will play an important role in future work.

In this thesis, a suitable categorisation of textual data was presented, which can

practicably be exploited for similarity retrieval. Our experimental results showed

how important the di�erent weightings are and in how far they in
uence the results.

Nonetheless, our evaluation approach can only be seen as a �rst step towards a more

encompassing utilisation of multiple dimensions in Music Information Retrieval. More-

over, strategies for dealing with information that is not present in such a system that

showed improvements compared to the simple exclusion strategy, were presented. How-

ever, the results lead to the conclusion that a higher coverage of text data is desirable
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to improve similarity retrieval results.

One future goal is to �nd an optimal weighting for the di�erent levels presented

in this thesis { both according to the evaluation used and users' preferences. This

approach obviously o�ers itself for the application of a relevance feedback approach,

emphasising the interactive dynamics required to be addressed when talking about

music similarity. A long term objective is the integration of more sophisticated re-

trieval components, yielding a possibly much higher coverage. Moreover, for being

vital aspects for every large-scale Music Information Retrieval system, scalability and

performance issues need serious attention.

Exploiting the results from the comparisons of clusteringsfor classi�cation, partic-

ularly its feasibility for ensembles of classi�ers, could improve results.
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