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Zusammenfassung

Versierte Verfahren zur Organisation von Musikkollektioan bilden die Grundlage fur
eine Vielzahl von Anwendungen. Hier wird besonders auf vahdene Probleme einge-
gangen, es werden bestehende Techniken und deren Unzulssihdkeiten beschrieben,
aber auch alternative Benutzerschnittstellen fuer Musikehive und darauf aufbauend
neue Moeglichkeiten zur Interaktion erklaert. Dabei wird bsonders auSelf-Organising
Maps, selbstorganisierende Neuronale Netzwerke zum Clustegimon hochdimension-
alen Daten, und ihre Verwendbarkeit far Musikorganisatio diskutiert. Um der viel-
seitigen, oft zu komplexen Information, die in Musikdaten tecken kann, gerecht zu
werden, werden Datenbeschreibungen, die uber traditiole Reprasentationen hinaus-
gehen, untersucht. Traditionell verwendet die Music Infanation Retrieval Community
auf Signalverarbeitung aufbauende Merkmalssets far Auddaten. In dieser Arbeit
wird vor allem auf textbasierte Features und deren Informabnsgehalt in Bezug auf
Diskriminanz zwischen Genres eingegangen. Au erdem wenddie Meglichkeiten un-
tersucht, die sich fur kombinierte Empfehlung vonahnlibien Songs ergeben. Dabei wird
der Ein uss von Genre-, Artist- und Albenbeschreibungen dudie Musikempfehlun-
gen untersucht. Weiters wird ein neuer Ansatz zur Visualisrung von multimodalen
Reprasentationen far Audio beschrieben. Eine Audiokodlktion kann demnach nach
verschiedenen Reprasentationen geclustert werden: Awdeatures und Textfeatures
auf Basis von Song Lyrics. Die entstehenden Clusterings \en graphisch aufbereitet

und mittels eines Sets von Kennzahlen verglichen.



Abstract

Various aspects of the organisation of media archives andlleations have produced
eager interest in recent years. The Music Information Re&val community has been
gaining many insights into the area of abstract representains of music by means of
audio signal processing. On top of that, recommendation engs are built to provide
novel ways of creating playlists based on users' prefereaceAnother important ap-
plication of audio representation is automatic genre categisation, i.e. the automatic
assignment of genre tags to untagged audio les. Howevery fmany applications rep-
resentation based on audio features only do not contain ergituinformation. A song's
lyrics often describe its genre better than what it soundsKe, e.g. "Christmas carols'
or “love songs'. Therefore, approaches for the combinatiof additional data like song
lyrics, artist biographies, or album reviews for music recomendation are examined.
Further, the application of the Self-Organising Mapfor clustering, i.e. the mapping
from the resultant high-dimensional feature spaces onto twdimensional maps, for
explorative analysis of audio collections with respect to uiti-modal feature sets is
investigated (audio / text). Additionally, a new visualisation for simultaneous display
of multi-modal clusterings as well as cluster validation nmecs are presented. Finally,

a short overview and outlook on future work is given.



The universe is perfect.
You cannot improve it.
If you try to change it,
you will ruin it.
If you try to hold it,

you will lose it.

Notes to Odo Chan, CY 9191

Credits go to Andromeda { for brilliant quotes like this oné?2.

Lhttp://ww.andromedatv.com/
2http://en.wikiquote.org/wiki/Andromeda
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Chapter 1

Introduction

The true quarry of any great adventurer is the undiscoverecetritory of their
own soul.
Lady Aenea Makros, \The Metaphysics of Motion" CY 6416

Text Information Retrieval deals with the automatic retrieval of (text) documents.
Its main task is to automatically extract machine-readablerepresentations, so-called
features from all kinds of text documents. These features maubsequently be used
for key word as well as content-based and similarity searchy ka transformation to
a vector or matrix representation. Music Information Retreval (MIR) is an area of
Information Retrieval which is concerned with the applicabn of its methods to musical
data sources. In this context it does not only mean the sole dio signal of a piece of
music but also its associated metadata as well as additionaformation, which could,

for instance, be fetched or mined from the Internet.

The large-scale adaption of new business models for digitaintent including audio
material is already happening. Online music stores are gamg market shares, driving
the need for online music retailers to provide adequate meaf access to their cat-
alogues. Their ways of advertising and making accessibleeth collections are often

limited, be it by the sheer size of their collections, by the yhamics with which new

8



CHAPTER 1. INTRODUCTION 9

titles are being added and need to be led into the collectionrganisation, or by inap-
propriate means of searching and browsing it. What many coait providers and online
music vendors are still missing are appropriate means of ganting their media to their
users. Amazoh or last.fm? have shown the potential of recommendation engines based
on data mining in transactional data. Those recommendatioangines have impressively
shown the potential and merits of suggesting users new iteimsnumerous online shop-
ping and other community centred applications. Private ugs' requirements coincide
because their collections are growing signi cantly as wellThe steadily increasing suc-
cess of online stores like iTunésor Magnatunée* brings digital audio closer to end users,
creating a new application eld for Music Information Retrieval. Many private users
have a strong interest in managing their collections e cietly and being able to access
their music in diverse ways. Musical genre categorisatiorabed on e.g. meta tags in
audio les often restricts users to the type of music they aralready listening to, i.e.
browsing genre categories makes it di cult to discover "neWypes of music. The mood
a user is in often does not follow genre categories; persohstiening behaviours often
di er from prede ned genre tags. Thus, recommending usersmsilar songs to ones they
are currently listening to or like is one of Music Informatio Retrieval's main tasks.
Technologies related to similarity retrieval, however, hze to be adapted to be used in
the music context. The online shops of music retailers aredreasingly popular places
for buying music, creating a big market for music recommentlan engines. Suggest-
ing customers similar songs is a key factor in being a sucdaksusic retailer and new
ways of presenting one's collection to customers is a vitas@ect of entering or staying
in the market.

Furthermore, it is an intrinsic need for every Music Inform#éon Retrieval system to
include not only recommendation or playlist generation eniges, but also possibilities
to search and browse a music repository. Content-based aggdo music has proven

to be an e cient means of overcoming traditional metadata ctegories, as shown by

Lhttp://www.amazon.com
2http://mww.last.fm
Shttp://www.apple.com/au/itunes/store/
4http://www.magnatune.com
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benchmarking initiatives like the Music Information Retrieval Evaluation eXchange
(MIREX) [28]. To achieve this, signal processing techniqgeare used to extract fea-
tures from audio les capturing characteristics such as rhiam, melodic sequences,
instrumentation, timbre. These are feasible input both forautomatic genre classi -
cation of music as well as for alternative organisations ofudio collections like their

display via map based, two-dimensional interfaces [32].

Similarity, however, is not only de ned by individual hearng sensation but also, to
a large degree, by cultural or community information which @rs a far richer and more
diverse source of information. Particularly song lyrics ahother cultural information
are feasible means for searching these collections. Rattiean searching for songs that
sound similar to a given query song, users often are more irgsted in songs that cover
similar topics, such as ‘love songs', or 'Christmas carglsvhich are not acoustic genres
per se, i.e. songs about these particular topics might covarbroad range of musical
styles. Similarly, the language of the lyrics often plays aettisive role in perceived
similarity of two songs as well as their inclusion in a givenlaylist. Even advances in
audio feature extraction will not be able to overcome fundaantal limitations of this
kind. Song lyrics therefore play an important role in musicimilarity. This textual
information o ers a wealth of additional information to be included in music retrieval
tasks that may be used to complement both acoustic as well aetadata information

for pieces of music.

Sometimes, nding a similar Alboum is more important than nding songs that
sound similar. Many users may rather be interested in songbkat cover similar topics
than sound alike. Artist similarity may be of great help whenusers try not only to
nd new songs, but are interested in new bands or concerts dfi¢se bands. Textual
artist descriptions de ne similarity by a whole new range ofaspects too. There are
dimensions of artist similarity that can never be covered byudio features only, for
instance the fact that split-up bands and their successorsaw play very di erent kinds
of music, yet they may still be similar to each other (they one belonged to the same

band after all). Another aspect very particular to artist descriptions is its property
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of taking into account geographical information, e.g. barglfrom the same city or
country may be grouped together. Therefore, a text mining ecoponent is very suitable
to provide additional data and thereby achieve di erent leels of audio description. To
the ends of a more comprehensive model of musical similaritpethods to gather and
aggregate multiple levels of text descriptions are invegtted and similarity retrieval

is based on these data in this thesis.

Browsing metadata hierarchies by tags like "Artist' and "Gare' might be feasible for
a limited number of songs, but gets increasingly complex armbnfusing for collections
of larger sizes that have to be tendered for manually. Hence, more comprehen-
sive approach for the organisation and presentation of audicollections is required.
Therefore, the visualisation of high-dimensional data itdf and, more importantly, its
internal structure, poses a big challenge too. Aggregatiaechniques for very large
music collections being described by an even higher-dimemsal vector representation
are needed. To address this issue, visualisation techniguaill be introduced based on

the Self-Organising Map

Having all of these points in mind, the main topics covered ithis thesis are:

Musical Similarity Recommendation based on multi-modal Music Information Re-
trieval, i.e. the integration of artist, aloum, and genre dscriptions as well as song

lyrics and audio features in similarity ranking methods.

Multi-Modal Clusterings and Their Evaluation will be explained in greater detail. The
importance and relevance of lyrics to the visual organisatn of songs in large audio col-
lections is going to be identi ed as well. Itis rstly suggeted to cluster complex audio
data on two-dimensional maps, using th&elf-Organising Mapclustering algorithm.
Clustering will be done according to audio as well as lyricedtures. Furthermore,
quality measures for the two resultant clusterings are pragsed and experimentally

evaluated on two parallel corpora of both audio and text (lyics) les.
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Musical Genre Classi cation using both song lyrics and audio features. The combi-
nation of both textual as well as audio information for musigenre classi cation, i.e.
automatically assigning musical genres to tracks based omdio features as well as
content words in song lyrics, is chosen due to feasible resuin similarity recommen-
dation. Experimental results will evince the impact on clas cation accuracy. Parts
of the work presented and relied on in this thesis have beengsented at or published
in the context of international conferences. Particularljthe automatic processing and

exploitation of song lyrics has been a pressing research itop

First prototypes for map based applications on mobile devés were presented as a
poster at the 6th International Conference on Music Informigon Retrieval (ISMIR'05)
in London, United Kingdom [32]. An overview paper on map badeuser interfaces was
presented at the 1st Workshop on Visual and Multimedia Digdl Libraries (VMDL'07),

a workshop organised in the course of the International Cagrence on Image Analysis
and Processing (ICIAP'07) in Modena, Italy [33]. The summar paper on the exper-
iments on musical genre classi cation were accepted for agier presentation at the
29th European Conference on Information Retrieval (ECIRD) in Rome, Italy [34].
Further, the multi-modal cluster evaluation and visualiséion was accepted for a pre-
sentation at the tri-annual Recherche d'Information Assise par Ordinateur (RIAO'07)
conference in Pittsburgh, Pennsylvania, United States ofAerica [35]. Finally, a book
chapter contribution about multi-modal audio analysis wasiccepted for the forthcom-
ing "Multimodal Processing and Interaction' book to be pulihed in the context of the
EU's FP6 project "Multimedia Understanding through Semarts, Computation and
Learning' (MUSCLE).

The remainder of this thesis is organised as follows. Secti@ gives an overview of
previous work in the eld and relevant basics as well as it imbduces feature sets used

in subsequent experiments.

In Chapter 3, we then describe audio test collections and datsources, i.e. the

automated indexing and textual enrichment of the songs in #se collections.
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Then, Chapter 4 theoretically presents the main contributins to the eld made in
this thesis, namely the combination of several levels of tedata and audio representa-
tions for the basic Music Information Retrieval tasks of sintarity ranking, visualisation,
and musical genre classi cation. Furthermore, a quantitave evaluation of multi-modal

clusterings is proposed.

Then, Chapter 5 presents théAtlantis and Sovis application which implement pro-

totypes for both multi-modal similarity ranking and visualisation in greater detail.

Further, Chapter 6 the visualisation method is experimenti#y validated. Finally, in

Chapter 7 conclusions are drawn as well as a short outlook isen.



Chapter 2

Main Principles and Underlying

Technologies

Those who fail to learn history are doomed to repeat it. Thoseho fail to
learn history correctly { why they are simply doomed"
Achem Dro'hm, \The lllusion of Historical Fact, CY 4971

This chapter gives an overview about relevant (sub-)disdipes and the techniques
used later on. This work incorporates methods from severateas, the most important
ones being Information Retrieval, more speci cally Musicriformation Retrieval and

Self-Organising Mapsfor clustering and visualisation.

2.1 Music Information Retrieval

The area of Music Information Retrieval has been heavily rearched, particularly fo-
cussing on audio feature extraction. Comprehensive oveews of Music Information
Retrieval are given in [8, 36], rst experiments based on andn overview of content-

based Music Information Retrieval were reported in [9] as Weas [52, 53], the focus

14



CHAPTER 2. MAIN PRINCIPLES AND UNDERLYING TECHNOLOGIES 15

being on automatic genre classi cation of music. In this wéra modi ed version of
the Rhythm Patterns features is considered, previously used within the SOMeJ§ss
tem [45]. Based on that feature set, it is shown that th&tatistical Spectrum Descriptors
yield relatively good results at a manageable dimensiongliof 168 as compared to the
original Rhythm Patterns that comprise 1440 feature values [18]. In the remainder of
this thesis Statistical Spectrum Descriptorsare used as audio feature set and improve-
ments in similarity ranking are based thereon. Another exapie of a set of feasible

audio features is implemented in the Marsyas system [52].

In addition to features extracted from audio, several reseeghers have started to
utilise textual information for music IR. A sophisticated £mantic and structural anal-
ysis including language identi cation of songs based on Igs is conducted in [23].
Artist similarity is de ned based on song lyrics in [19]. It B also pointed out that
similarity retrieval using lyrics is inferior to acoustic $milarity, but a combination of
lyrics and acoustic similarity could improve results. A powrful approach targeted at
large-scale recommendation engines is lyrics alignment sButomatic retrieval as pre-
sented in [13]. Therein, lyrics are fetched via the automatialignment of the results

obtained by Google queries.

A comprehensive evaluation of additional features is undeken in [40]. This work
takes into account rhyme and style features and shows theimpact on classi cation

accuracy for the genre categorisation task in addition to ctent-based methods.

Artist similarity based on co-occurrences in Google resslis studied in [50], creating

prototypicality artist/genre rankings, again, showing the importance of text data.

A combined similarity metric for multi-level combination o artist and lyrics retrieval
results is presented in [4], which the approach presented @hapter 3 combination will
be based on. It is also outlined in how far the perception of rsic can be regarded a
socio-cultural product. Di erent aspects like year, genreor tempo of a song are taken
into account in [55]. Those results are then combined and aarsevaluation of di erent

weightings is presented and shows that user control over thweightings can lead to
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easier and more satisfying playlist generation.

The importance of browsing and searching as well as their cbmation is outlined
in [6]. This work tries to improve those aspects, a combinath approach can improve
both of them by satisfying users' information needs througlo ering advanced search

capabilities and improving the the recommendations’ qudy.

2.2 Introduction to Text Information Retrieval

In classic text categorisation low-level features are comfed from a labelled training
set of su cient size. New documents can be assigned to the skarepresented by the

most “similar' documents in terms of word co-occurrences.

An introduction to Information Retrieval as such is given in[49]. The basic idea is
to treat text as a bag of words or tokens. This form of IR abstrets from any kind of
linguistic information and is often referred to as statisttal natural language processing
(NLP). Documents are represented as term vectors. A docunterollection containing

the following two documents:
This is a text document.

and
And so is this document a text document.

would represent its documents by a vector of length 7, the nurer of distinct tokens
over all documents. Of course, the tokenisation process negka di erence here, if, e.g.,
spaces were counted as separate tokens, the vector would beize 8. Models for text

representation range from lists of whole words to vectors ofgrams (i. e., tokens of

size n). Tokenisation may include stemming, i.e., stripptpno a xes of words leaving
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Table 2.1: Text indexing by example. Tokens are displayed hozontally, di erent documents are

shown row-wise. The token's occurrences make out the numbsrin the table

Document/Token this | is | a | text | document | and | so
1 1 1111 1

2 1 1111 2 1 1
Document frequency | 2 2 12|2 2 1

only word stems. It is very common to use lists of stop words,&., static, prede ned
lists of words that are removed from the documents before thwer processing (see [24]
or ranks.nl! for a sample list of English stop words). The vectors are shavin detail
in Table 2.1.

This representation is subsequently used to calculate desices between or similari-
ties of documents in the vector space; throughout this thesiwe rely on the Euclidean
distance, given for the distance between two vectorss and x; of dimensionality D in
Equation 2.1:

X (xr  x9) (2.1)
k=1

o<

de (Xi; %) = kx;  xjk=

It is de ned by the length of the straight line connecting ponts x; and x;. For a
discussion of this problem and general limitations of the Elidean Distance, see for
instance [17, 1].

2.3 Term Weighting in Information Retrieval

Once a text is represented by tokens, more sophisticated kedques can be applied. In
the context of a vector space model a document is denoted tya term (token) by t,

and the number of documents in a corpus biX .

Lhttp://www.ranks.nl/tools/stopwords.html
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The number of times termt appears in document is denoted as thaerm frequency
tf (t;d), the number of documents in the collection that termt occurs in is denoted
as document frequencyd (t), as shown in Table 2.1. The process of assigning weights
to terms according to their importance or signi cance for tle classi cation is called
\term-weighting". The basic assumptions are that terms th& occur very often in a
document are more important for classi cation, whereas tens that occur in a high
fraction of all documents are less important. The most comnmoweighting is referred
to asterm frequency inverse document frequency48], where the weightf idf of

a term in a document is given in Equation 2.2:

thid (td) = tf (td) In(N=df (1)) (2.2)

This results in vectors of weight values for each documedtin the collection. Based on
such vector representations of documents, classi cationathods can be applied. This

favours higher weights to less frequent terms.

2.4 Feature Selection and Dimensionality Reduction

When tokenising text documents, one often faces very highrdéensional data. Tens of
thousands of dimensions are not easy to handle, thereforati#re selection plays a sig-
ni cant role. Document frequency thresholding achieves deictions in dimensionality
by excluding terms having very high or very low document fragencies. Terms that
occur in almost all documents in a collection do not providery discriminating infor-
mation. It is similar for terms that have a very low document fequencies, although
those features might be helpful if they are not distributed wenly across classes. If a
term has a low document frequency it can still help to discrimate genres if it only

occurs in for example "Rock’' song lyrics.

Several methods ranging from simple ones relying solely omeduency counts of

terms to more sophisticated ones estimating the entropy oetms for specic class
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distributions may be employed, which are brie y described &low.

2.4.1 Document Frequency Thresholding

Document frequency thresholding is a feasible feature saien for unlabelled data
for not taking into account a priori class information. The lasic assumption here is
that very frequent terms are less discriminative to distingish between classes (a term
occurring in every single instance of all classes would nabdrdribute to di erentiate
between them and therefore can safely be omitted in furtherpcessing). The largest
number of tokens, however, occurs only in a very small numbef documents. The
biggest advantages of document frequency thresholding ikat there is no need for
class information and it is therefore mainly used for clusteng applications. Besides,
document frequency thresholding is far less expensive inres of computational power.
In this context that technique is used for dimensionality rduction for clustering and
to compare the classi cation results obtained by the more ghisticated approaches.

The document frequency thresholding is followed as follows

At rst the upper threshold is xed around .5 - .8, hence all tems that occur in

more than 50 to 80 per cent of the documents are omitted

The lower boundary is dynamically changed as to achieve theesired number of
features, removing, e.g., terms that appear in less than ®HXocuments, i.e. have

a document frequency lower than 5 or 10

2.4.2 Information Gain

Information Gain (IG) is a technique originally used to compte splitting criteria for
decision trees. Di erent feature selection models includg Information Gain are de-
scribed in [58]. The basic idea behind IG is to nd out how weleach single feature

separates the given data set. Information Gain makes use ¢dgs information to iden-
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tify the most discriminant features.

The overall entropy| for a given datasetS is computed in Equation 2.3.
x
I = pilogp; (2.3)
i=1
whereC denotes the available classes amgl the proportion of instances that belong to
one of thei classes. Now the reduction in entropy or gain in informatiors computed

for each attribute or token.

CAY - X jS)
IG(S;A) = 1(S) —1(S)) (2.4)

vA JSJ
wherev is a value of attribute A and S, the number of instances wheré\ has that
value. For instance, if the attribute in question is a tokeny could either comprise all
occurring values for that term'stf  idf weighting or simply whether it is present in
a document or not, i.e. it can be assumed to be a binary valu&,-o therefore is the

number of instances where attributeA has the value 0 or the number of documents

that do not include that token.

This results in an Information Gain value for each token exticted from a given
document collection. Hence, documents are represented bygiaen number of tokens

having the highest Information Gain values for the contenbased experiments.

Other methods similar in spirit are 2, based on statistical testing, Odds Ratio using

probabilities, or the Gain Ratio.

2.5 Audio Features

For feature extraction from audio Statistical Spectrum Descriptorswere used (SSDs,
[18]). The approach for computing SSD features is based oretlrst part of the al-
gorithm for computing Rhythm Pattern features [45], namelythe computation of a

psycho-acoustically transformed spectrogram, i.e. a Badcale Sonogram. Compared
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to the Rhythm Patterns feature set, the dimensionality of tlke feature space is much
lower (168 instead of 1440 dimensions), at a comparable perhance in genre classi -
cation approaches [18]. Therefore, SSD audio features am®ed in the context of this
work, which were computed from audio tracks in standard PCMoirmat with 44.1 kHz

sampling frequency (i.e. decoded MP3 les).

Statistical Spectrum Descriptors are composed of statis@l characteristics are com-
puted from several critical frequency bands of a psycho-agiically transformed spec-
trogram. They describe uctuations on the critical frequey bands in a more compact
representation than Rhythm Pattern features. In a pre-proessing step the audio signal
is converted to a mono signal and segmented into chunks of appimately 6 seconds.
Usually, not every segment is used for audio feature extrash. For pieces of music
with a typical duration of about 4 minutes, frequently the rst and last one to four

segments are skipped and out of the remaining segments evériyd one is processed.

For each segment the spectrogram of the audio is computed ngithe short time
Fast Fourier Transform (STFT). The window size is set to 23 m§1024 samples) and a
Hanning window is applied using 50 % overlap between the wiods. The Bark scale,
a perceptual scale which groups frequencies to critical bds according to perceptive
pitch regions [59], is applied to the spectrogram, aggregag it to 24 frequency bands.

The Bark scale spectrogram is then transformed into the ddx@l scale. Further
psycho-acoustic transformations are applied: Computatioof the Phon scale incorpo-
rates equal loudness curves, which account for the di ereqterception of loudness at
di erent frequencies [59]. Subsequently, the values areaimmsformed into the unit Sone.
The Sone scale relates to the Phon scale in the way that a doing on the Sone scale
sounds to the human ear like a doubling of the loudness. Thigssults in a Bark-scale
Sonogram { a representation that re ects the speci ¢ loudngs sensation of the human

auditory system.

From this representation of perceived loudness a number diasstical moments

is computed per critical band, in order to describe uctuatons within the critical
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bands extensively. Mean, median, variance, skewness, lagis, min- and max-value are
computed for each of the 24 bands, and a Statistical SpectruBescriptor is extracted
for each selected segment. The SSD feature vector for a pietaudio is then calculated

as the median of the descriptors of its segments.

2.6 Self-Organising Map

Throughout this thesis various data sets will be used for citering experiments, wether
they are used for user interfaces or simply to explore the @i data. For clustering, the
Self-Organising Map an unsupervised neural network that provides a mapping fro a

high-dimensional input space to usually two-dimensionalubput space [14, 15] is used.
Topological relations are preserved as faithfully as pobte. A SOM consists of a set of
i units arranged in a two-dimensional grid, each attached to aeight vectorm; 2 <",

Elements from the high-dimensional input space, referreatas input vectorsx 2 <",

are presented to theSOM and the activation of each unit for the presented input vecto

is calculated using an activation function (the Euclidean Btance is commonly used
as activation function). In the next step, the weight vectorof the winner is moved
towards the presented input signal by a certain fraction ofite Euclidean distance
as indicated by a time-decreasing learning rate. Consequently, the next time the
same input signal is presented, this unit's activation wilbe even higher. Furthermore,
the weight vectors of units neighbouring the winner, as desised by a time-decreasing
neighbourhood function, are modi ed accordingly, yet to arsaller amount as compared
to the winner. The result of this learning procedure is a todogically ordered mapping
of the presented input signals in two-dimensional space, dhallows easy exploration

of the given data set.

Numerous visualisation techniques have been proposed feelf-Organising Maps
These can be based on the resultar8OM grid and distances between units, on the

data vectors itself, or on combinations thereof. In this chaer we make use of two
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kinds of visualisations. Another method forSOM visualisation which will be used
in the course of our experiments ar&moothed Data Histogramg39]. Even if it is

not necessary for clustering tasks per se, class informatican be used to give an
overview of a clustering's correctness in terms of classseigrouping of the data. A
method to visualise class distributions orSelf-Organising Mapsis presented in [25].
This colour-coding of class assignments will later be used the experiments to show

the (dis)similarity of audio and lyrics clusterings.

2.7 Cluster Validation Techniques

Having shown that music recommendation can benet from thentegration of sev-
eral data sources as well as the feasibility delf-Organising Map clustering, more
sophisticated methods for data visualisation and evaluain are going to be taken into
consideration. Whenever clustering or visualisation is wolved, the need for the evalu-
ation of at least certain aspects of the techniques used, ses. In this section the main
concepts of cluster analysis will be introduced for both s@pvised and unsupervised
cluster evaluation. Furthermore it will be pointed out in hav far these techniques can
be used in the context of multi-modal music clustering. The ain points in this section

therefore will be:

1. Introduction to the basic concepts of cluster validation
2. Potential of supervised evaluation.

3. Explanation why unsupervised validation is still relevat.

It might not be obvious why cluster validation makes sensejree clustering is often
used as part of explorative data analysis and therefore vdétion seems not to be a
central issue. One key argument in favour of cluster validemn is that any clustering
method will produce results even on data sets, which do not & a natural cluster

structure [51]. Other than that, cluster validation can be $ed to determine the "best'
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clustering out of several candidate clusterings. For manylustering techniques the
number of clusters (often denoted ak) is the main parameter to be changed, therefore
in uencing the resultant clustering quality signi cantly . Thus, measuring the clustering
quality produced by either di erent algorithms or for di er ent parameter settings is a
vital issue in clustering. Besides, manual (visual) clusteralidation may be feasible for a
small data set in two-dimensional space, but becomes impiis for higher-dimensional

data.

If the data set is labelled, i.e. class tags are available fadl data points, this
information can be used to determine the similarities betvem classes and natural
clusters within the data. One can distinguish unsupervisednd supervised cluster
validation techniques. Whereas unsupervised techniqueslivbe of limited use in the
scenario covered, supervised cluster validation and its nits for multi-modal clustering

of audio data will be more relevant and be described in more tad.

Table 2.2 gives an overview of variables used in this context

2.7.1 Unsupervised Cluster Validation

In unsupervised cluster validation no external data is usefdr evaluation, it's primarily

based on cluster distances, similarities, and densitiesh& main types of measures are:

Intra-cluster similarity / cluster cohesion and

Inter cluster similarity / cluster separation

which are used to evaluate how much variation there is withiglusters and in between

clusters, respectively.
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Table 2.2: Variable names used in cluster validation equatins

Variable name Explanation

G Cluster i.

Ci Clustering i, i.e. a set of clusters.

k Number of clusters.

w Weight w.

Si Silhouette value for data point i.

Si Silhouette value for clusterj.

S Overall Silhouette value for a clustering.

b Average distance of data pointi to all
other vectors in its cluster.

a; Average distance ofi to all data vectors
in the closest cluster.

n Number of data points in set.

L Number of classes in set.

m; Number of data points assigned to clusteri.

mij Number of data points assigned to clusteri

belonging to classj .

25
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In general the overall validity of a clustering (i.e. a set oflusters for a given data set)
is the weighted sum of the validity of its individual clustes as shown in Equation 2.5.

overallvalidity = X w; validity (c) (2.5)

i=1

Where ¢ denotes clusteri, k the number of clustersk and w; the weight for cluster
i. The validity function can be either inter-cluster, intra-cluster, or sme combination
thereof. In the simple case, weights are either omitted or tsaccording to the sizes of
the individual clusters (i.e. number of data points assodiad with a cluster divided by
the number of data points in the data set). Since distances thin clusters should be
minimised and in between clusters maximised, the higher antia-cluster measure and

the lower an inter-cluster measure, the better.

Silhouette Value

The Silhouette value is mostly used to nd the right setting br the number of clus-
ters [47]. The ideal value of the Silhouette is close to 1, hena being close to 0
for it is subtracted in the numerator of Equation 2.6. The Shouette coe cient de-
scribes the level of data separation using both intra- and ter-cluster distances and
can for instance be of great help in nding the optimal numbeof clusters k) in the
k-Means algorithm. Both intra-cluster and inter-cluster masures are used to compute

the Silhouette value, as shown in Equation 2.6.

h &

%~ maxfa:hg

(2.6)
Where i is an index over all data vectorsa, the average distance of to all other

vectors of that cluster, b the average distance of to all data vectors in the closest

cluster. Herein the closest cluster is de ned by the minimurdistance between clusters'

prototype vectors. The value resides betweenl and 1 (Equation 2.7).
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1 s 1 2.7)

s; therefore is the Silhouette value for data vector, the overall Silhouette value for

a clustering is the average over all single Silhouette vakieshown in Equation 2.8.

S= S (2.8)

Let n be the number of instances. Analogously, the Silhouette fgingle clusters is
de ned in Equation 2.9.

Sj = — Si (29)
mj iz
The number of instances assigned to clustgr is denoted to asm;, the average
Silhouette of all instances within clusterj is computed asS;. The resultant values for
S and S; provide an evaluation criterion for the comparison of seval clusters to each
other.

2.7.2 Supervised Cluster Validation

Supervised cluster validation makes use of external data @iries to measure in how

far a clustering matches some kind of external structure kkclass labels.

Entropy

The entropy value, introduced in Section 2.4 in the context fofeature selection, de-
scribes the degree to which each cluster consists of objecfsa single class. The

optimum value would be achieved, each cluster consisted prdf instances belonging
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to one class. The probability that one instance (member of wster i) belongs to class

| is stated in Equation 2.10.

mij

- (2.10)

Pj =

mj denotes the number of instances in cluster belonging to clas§ and m; the

number of instances belonging to cluster. Further, the entropy for clusteri is given
in Equation 2.11 (analogously to Equation 2.3 in Section 2.4

®
li = Pij l0G; (2.11)

i=1

Where L denotes the number of classes ang the class probability from Equa-
tion 2.10. The overall entropy value for a given clusteringsigiven by the sum over all
cluster entropy values weighted by the number of elements the individual clusters,

shown in Equation 2.12.

I =" — (2.12)

k denotes the number of clusters andh the total number of data points or instances.

Purity

The purity of cluster i is de ned by the probability of the most dominant class withn

a cluster and is given in Equation 2.13.

P = max(p; ) (2.13)

The overall purity of a clustering is computed analogouslyat the overall entropy

and shown in Equation 2.14.
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XK .
purity = % pi (2.14)
i=1

All methods introduced in this section do have their relevatce to cluster validation,

it is desirable to have clusterings that are

very similar within clusters,
very dissimilar in between clusters,

and, if possible, "pure' in terms of a high entropy or purity &lue (only applicable
if class labels are available),

all of which could be achieved by a combination of, for instae, the Silhouette coe -
cient and entropy or purity. The Self-Organising Mapclustering algorithm, however,

di ers from the centroid based approaches which those teclyues are best applied to.

2.8 Cluster Validation for  Self-Organising Maps

Several quality measures foelf-Organising Mapshave been investigated. The topo-
graphic product, which is used to measure the quality of majpmys for single units with

respect to their neighbours, is reported in [2].

However, those methods provide measurements on a per unitsigor for complete

maps and fail to take into account class information of any kd.

The Silhouette value is computationally expensive and instcurrent form limited to
instance-based computations. This leads to problems for tholarge numbers of data
points and large numbers of clusters (very commonly used faelf-Organising Map
clusterings). To accommodate for these special charactits of the Self-Organising

Map, a possible modi cation to the Silhouette technique is desbed in the following.
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2.8.1 Adaption of the Silhouette Value to the Self-Organising Map

The Silhouette validation compares every unit to all other gctors assigned to that
unit and to all vectors in the closest unit. Due to performane issues, we introduce

modi cations to better tthe Self-Organising Mapscenario.

Let each comparison be based on units' weight vectors, i.eisthnces are calculated
on the unit level in the input space, rather than the actual déa vectors, g is de ned

as follows.

g = dist(w;; i) (2.15)

b is de ned as:

b = dist(i; wc;) (2.16)

Where w; denotes the weight vector of the unit data point is assigned to andvg
denotes the weight vector of the closest unit. The overalllBouette computation is then
based on those values fax and . The experimental evaluation from now on is done
using this technique, because it needs signi cantly lessmoputational power. Hence,
the quality of di erent SOM clusterings can be compared by their Silhouette values.

Furthermore the results can be used to visualise the corredss of the clustering.

The one (rather big) simpli cation this introduces that the number of units is set to
the number of clusters, a modi cation ignoring theSelf-Organising Maps basic prop-
erty of preserving topological relations. A natural clustecould easily be distributed
over (or covered by) several units of th&elf-Organising Map making the Silhouette
coe cient for Self-Organising Mapsless sound a validation technique than for purely
centroid-based approaches like-Means. A more detailed discussion and experimental

results can be found in [30]. The question that still remains how canSelf-Organising
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Map clusterings according to di erent dimensions be comparedWhat are the main
di erences between clusterings? Which classes (genresp pmost from multi-modal
clustering, i.e. for which class does the clustering vary roln across dimensions? The
next chapter will introduce a visualisation technique for mlti-modal clusterings in the

music domain, a possible quality assessment will be invegdted thereafter.

The modi ed Silhouette technique assumes the number of usitto equal the num-
ber of clusters. An assumption which does not necessarilyltiofor one of the main
strengths of theSelf-Organising Mapis that it discovers structures beyond simple clus-
ters, i.e. larger compounds spreading across multiple usit It can, however, be used
as a criterion to compare severégsOMs with each other, as opposed to nding the best

number of clusters/units.

2.9 Interfaces Based on the Self-Organising Map

Several teams have been working on user interfaces based loemS3elf-Organising Map
The SOM is an unsupervised neural network, that provides a pmlogy-preserving map-
ping from a high-dimensional feature space onto a two-dimsional map in such a way,
that data points close to each other in input space are mappeshto adjacent areas
of the output space (in this context a two-dimensional map). The SOM has been
extensively used to provide visualisations of and interfas to a wide range of data,
including control interfaces to industrial processing plats [16] to access interfaces for

digital libraries of text documents [44].

Creating a SOM-based interface for Digital Libraries of Mus, i.e. the SOM-
enhanced JukeBox (SOMeJB), was rst proposed in [42], with are advanced visu-
alisations as well as improved feature sets being presented[38, 46]. Since then,
several other systems have been created based on these pplas, such as the Mu-
sicMiner [29], which uses an emergent SOM. A very appealingrée-dimensional user

interface is presented in [12], automatically creating a tiee-dimensional musical land-
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scape via a SOM for small private music collections. Navigah through the map is
done via a video game pad and additional information like ladling is provided using

web data and album covers.

A mnemonic SOM [27], i.e. &elf-Organising Mapof a certain shape other than a
rectangle, is used to cluster the complete works of the congey Wolfgang Amadeus
Mozart to create the Map of Mozart [26]. The shape of the SOM ia silhouette of
its composer, leading to interesting clusterings like, e.gthe accumulation of string

ensembles in the region of Mozart's right ear.
An online demo is available athttp://www.ifs.tuwien.ac.at/mir/mozart

Another interface based on SOMs, which takes into account &er's focus of percep-

tion, is presented in [22], using prototypes as recommendats for adjacent clusters.

The PlaySOM application presented in [7] is based on the ongal SOMeJB system,
implementing a desktop interface suitable also for largemwotiections of several tens of

thousands of music tracks.

In addition to systems designed for desktop applications hdling large audio collec-
tions, the design of interfaces for mobile devices constiéis interesting and important
challenges. Novel interfaces particularly developed fomsll-screen devices were pre-
sented in [56], clustering pieces of audio based on conteaatures as well as metadata
attributes using a spring model algorithm. The PocketSOM stem [32], an implemen-

tation of the PlaySOM application speci cally designed formobile devices.

A more experimental interface, refraining from the use of aisplay, using motion
detectors to respond to the listener's movements is presedtin [11]. Another inno-
vative user interface providing various ways of interactio like similarity based search

over sticking behaviour of tracks visualised as discs is roduced in [10].

A good overview of various MIR systems is given duttp://www.mirsystems.info/
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2.10 Machine Learning Techniques

Classi cation { the task of assigning objects to prede ned lasses or labels { will be
used to categorise music into genres. The popular Supportdfer Machines [54, 5] are
powerful classi cation algorithms consisting of two parts An optimisation formulation

and a kernel function. The former is needed for tting a sepating hyperplane into

the data set, the latter projects the data set into a higher dnensional space. This
method's primary advantage lies in the combination of thesavo components which
allows for e cient implementations that avoid the complexity problems of other kernel
based methods, also known as the “kernel trick'. The type o€knel used determines
the classes of problems that may be solved, and typical chegcare linear, polynomial,

and radial basis functions.

2.11 Recap

In this chapter we introduced the main techniques that will ke used later on. Foun-
dations have been laid for the following thematic areas: lafmation Retrieval, text
feature selection, theSelf-Organising Mapand its evaluation. Further a short overview

of relevant machine learning techniques has been given.

We now go on and introduce adaptions of and extensions to somwiethe techniques
introduced here. We further will more precisely specify thecenarios dealed with in

the remainder of this thesis.



Chapter 3

Test Collections and Multi-Modal

Audio Indexing

Beneath knowing, understanding

Beneath understanding, seeing

Beneath seeing, recognizing

Beneath recognizing, knowing

Keeper of the Way, \Vision of Faith”, CY 10003

In the following chapter we introduce the test collections & will use for experimental
evaluation as well as the main types of data used for the erfniment of plain audio

les. This will cover various online resources in combinatn with ID3 metadata.

Musical similarity is a concept not easily de ned and highlysubjective in its na-
ture. What one regards similar may sound rather dissimilara another person et vice
versa. Yet, it is desirable to broaden the spectrum of sourg¢aken into account when
computing track similarities, for one single dimension wihever be able to describe the

musical sensation of as diverse a user base as musiC COnSsrase.

An audio track and its metadata can basically be decomposedto information

34
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Song Level
Audio Features (Audio)
Song Lyrics, Search Engine Query
Video Clips (Video)

Album Level Artist Level Genre Level
Album Reviews Artist Descriptions Genre Descriptions
Album Covers (Image) Artist Photographs (Image) Genre Hierarchies (Ontology)
Search Engine Query Search Engine Query Search Engine Query

Figure 3.1: Categorisation of multi-level Music Information Retrieval

according to: (1) Track, (2) Album, (3) Artist, and (4) Genre information.

On the track level, a song can be described by audio features &ell as the track's
lyrics, whereas the album, artist and genre levels consist @ textual description only,
each containing a wealth of meta information for music reteval requests. However, a
multitude of other media types is possible. Images could priole additional information
for artists or albums in terms of photos of the artist or albuntover artwork. Video clips
could be taken into consideration to provide an even bettensight into a songs meaning,
etc. An overview of a possible categorisation of descriptidevels and sources therefore
used in a multi-level Music Information Retrieval scenarigs given in Figure 3.1. For a
fully deployed Music Information Retrieval system it would of course, make sense to
aim at a high coverage of di erent types of information in allrespects, and therefore
place more emphasis on the retrieval component. Usually, tnall information will be
available in a single system. A possible fall-back strategyould be the use of suitable
search engine queries, e.g. the results from a search engjoery for the given artist
name. This approach would almost guarantee to retrieve sonaata for each element
in the collection, albeit of a possibly lower quality. Howeesr, full multi-level retrieval of
music collections is beyond the scope on this thesis, the saengine fall-back strategy
as well as other media types than text are not covered. The uségenre hierarchies as,
for instance specied in [37], would make sense to replacessing genre descriptions

or merge very similar genres, but is omitted for reasons ohgplicity.

The system presented in this thesis uses the above set of mfiation for MIR
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purposes, integrating them o -line in a single data sourceTo avoid biased information
obtained from one single source only, independent sourcdsnformation can be used,

e.g. artist descriptions from one web portal, album desctipns from another.

The test collections, data sources and feature represeritats used are described in

more detail in the following sections.

3.1 Test Collections

Particularly for Information Retrieval experiments and prototypes the use of test col-
lections for experimental evaluation is of vital importane to show the applicability
of the proposed approaches. A more thorough discussion ofpies building can be
found in [31]. We therefore use two test collections, the kar being a larger superset
of the rst one. The large collection will be used for largeesle experiments, whereas
the small collection will be an example for demonstrating # application of underly-
ing principles. The starting point for the ongoing corpus deelopment was a private
collection consisting of 12770 songs. The initial colleoti takes about 150G of disk
space. The song lengths in that collection range from shorD2econd "Punk Rock'
pieces to audio book chapters lasting for about one hour. MHS8 the prevalent le

type, followed by the lossless audio codec FLAC

3.1.1 Small Collection

For initial experiments we decided to use a somewhat smalleollection that is more
easily comprehensible. We selected ten genres only. Tablé.B describes the compo-
sition of the small test collection in detail. It comprises ¢n genres and 149 songs in
total { the number of songs per genre varies from 9 to 17. Thisbection consists of

songs from 20 artists and from the same number of alboums. Alsor the small col-

Lhttp://flac.sourceforge.net/
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Genre Number of Songs
Christmas Carol 15
Country 17
Grunge 16
Hip-Hop 16
New Metal 16
Pop 15
Rock 16
Reggae 14
Slow Rock 15
Speech 09

Table 3.1: Composition of the small test collection

lection, all lyrics were manually preprocessed as to haveditional markup like [2x]’,

etc. removed and to include the unabridged and high qualityytics for all songs.

3.1.2 Large Collection

To be all set for visualisation and genre classi cation expenents we omitted all songs
we were not able to retrieve lyrics for, resulting in a paradl corpus of audio and song
lyrics les for a music collection of 7554 titles organisednio 52 genres, containing
music as well as spoken documents (e.g. Shakespeare sohnéis overview of the

song/genre distribution is given in Table 3.2; genres weressigned manually. Class
sizes ranged from only a few songs for the "Classical’ genceabout 1.900 songs for
"Punk Rock', due to both, the distribution across genres irhie collection and di culties

in retrieving the lyrics for some genres like "Classical'. e collection contains songs
from 644 dierent artists and 931 albums. The main motivatim was to experiment
with a collection of su cient size to study the e ects of missng values as well as the
availability of ID3 metadata to reliably retrieve the artist and lyric information and

album and genre tags.



Table 3.2: Overview of genres in the music collection used tloughout this thesis
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Genre #Songs

Acid Punk 25
Altern Rock 317
Alternative 122
Ambient 24
Avantgarde 90
Bluegrass 12
BritPop 130
Christian Rock 40
Christmas Carol 36
Classical 30
Country 100
Dance 13
Dance Hall 10
Death Metal 1
Digital Hardcore 4
Electronic 125
Emo 258
Experimental 13
Folk 56
Funk 2
Garage 11
Goth Metal 106
Grunge 104
Hard Rock 46
Hardcore 142
Hip-Hop 500

Genre #Songs
Indie 400
Indie Rock 23
Industrial 52
Instrumental 8
J-metal 1
Jazz 28
Metal 559
New Metal 110
Noise 4
Nursery Rhymes 25
Opera 17
Pop 911
Post Punk 32
Progressive Rock 14
Psychedelic Rock 3
Punk Rock 1160
R&B 228
Reggae 162
Rock 690
Ska 37
Slow Rock 649
Soundtrack 4
Speech 47
Techno 2
Trip-Hop 67
World 4

38
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Query
Artist : Title

\

lyrc.com.ar sing365.com oldielyrics.com Google alignment tool

Figure 3.2: Lyrics retrieval, the Atlantis way

3.2 Automated Enrichment and Indexing Techniques

The indexing of the audio collections and extraction of audi features is straight-
forward: rst, all les in a collection are scanned and stord. After that every single
le is decoded into the wave format. A after that all three kirds of audio features
introduced in Chapter 2 are computed and stored in the datals@ along with the song
data. Text indexing and retrieval is a bit more complex and Wi be discussed in the

following.

There are numerous online sources for song lyrics liggg365.cont or azlyrics.cony.
There are more sophisticated means of lyrics retrieval as nimned in Section 2, but
to the ends of evaluating the feasibility of combined featar sets, minor inaccuracies
in lyrics fetching are ignored and this method provides safactory results. Text data
was indexed according to thef idf scheme. Hence, the text documents were to-
kenised where a word constitutes a token. No stemming was feemed due to unique
word endings in lyrics for certain genres (e.g. "Hip-Hop' sgs having virtually all word
endings stripped anyway { information which would be lost istemming were applied
additionally). The remaining tokens can dynamically be adjsted to a certain dimen-
sionality according to term frequency thresholding, i.e. te number of occurrences of
a certain token within the collection. This will be re ected by di erent experimental

settings in Chapter 6.

The other meta categories were additionally enriched by téxal descriptions from

2http://www.sing365.com/
Shttp://www.azlyrics.com/
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other sources. Artist descriptions were mined from Wikipad*. The Wikipedia data
were taken from a two year old snapshot only, so the actual cenage may be higher.
Figure 3.2 shows the di erent retrieval sources for automat lyrics fetching and their
importance. For every query, consisting of artist and titleof a track, three lyrics portals
are used to retrieve the lyrics. If thelyrc.com.ar is valid, i.e. of reasonable size, those
lyrics are assigned to the track. Ifyrc.com.ar fails to return the lyrics, the sing365.com
is checked for validity and so on. In case of no valid lyrics dament from any of the
three lyrics portals, the KV script is used to retrieve the lyics result page from Google.
For the remaining text descriptions we used data from lautet. Therefore the genre
descriptions and album reviews are in German, which does nmgatively in uence the
results, since only the resultant distances are combined. h&re is only one language
within one dimension (e.g. all artist biographies are in Efgh, all genre descriptions

in German).

The coverage rates are high enough to show the extent of in mee coming from the
additional information, but of course are far from optimal. Strategies to achieve higher
coverage { at least for the lyrics fetching for it is the mostmportant data source used
throughout this theses { would be to include other sources @iultural information or
additional lyrics portals like lyrics.con? or lyrics4you’. Countless lyrics portals can
be found on the net and could also be taken into consideratiphut were omitted due
to reasons of simplicity, three portals su ce to explain themethodology behind our

approach.

Nonetheless, these collections and their given availabjliof textual artist, lyrics,
album and genre information are very feasible for combinednslarity experiments
because they allow for studying the e ects of missing valugsvhich is of particular
importance as this is very likely to occur in a real life scemi®, albeit to a lesser extent

as probably more e ort would be put into the retrieval compomnt of such a system.

4http://en.wikipedia.org
Shttp://www.laut.de
Bhttp://www.lyrics.com

7 http://ww.lyricsdyou.com
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3.3 Recap

We stressed the importance of test collections for experimts in Music Information
Retrieval. To the end of proper evaluation we introduced twdest collections, one of
large, one of small size. Further we explained the indexingqress and automated
enrichment using text documents from online sources. We tledore considered all
necessary requirements for the multi-modal view of Music formation Retrieval and

are now ready to exploit the information gathered in this way



Chapter 4

Multi-Modality in Music

Information Retrieval

The great blessing
of the Al is that we are
gifted with the power to
touch our Creator.
This is also our Curse.

The Clarion's Call,\Hour of the Abyss", CY 11745

After having introduced underlying techniques and retrieal components of a multi-
modal Music Information Retrieval system, this chapter theretically presents the main
contributions to the eld made in this thesis, namely the corbination of several levels
of text data and audio representations for the basic Music farmation Retrieval tasks

of similarity ranking, visualisation, and musical genre @lssi cation.

Firstly, a similarity ranking approach using a multidude oftextual inputs is pre-
sented. Multi-modal ranking and combination approaches Wibe presented in Sec-
tion 4.1.
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Then, we give a general introduction to the application of cistering techniques for
audio { both its text and signal processing based represemi@n { and explain the
overall idea of multiple or combined clusterings in Sectioa.2. To that end, we at rst
explain why multiple clusterings can be of help in understating music, then we show

techniques to formally evaluate these multiple clusterirgy

Finally we give a short outlook on the third set of experimerst { audio and text

based musical genre classi cation in Section 4.3.



CHAPTER 4. MULTI-MODALITY IN MUSIC INFORMATION RETRIEVAL 44

4.1 Ranking Merging - Integrating Retrieval Results

This section introduces a possible combination methodolpdor multiple similarity

rankings. It is now possible to not only retrieve similar traks according to audio
similarity for a given seed song, but also similar tracks acoding to lyrics features.
Moreover, artist rankings for the artist of the seed song asel as similar albums to

the seed songs' album can be provided.

This yields several rankings for each query song. Based orethectors of distances
to the query song, the Euclidean distance is used to generatailti-level rankings for
a single seed song. The straight forward case for audio sianity and lyrics, ranks on
a song to song basis. All other rankings comprise tracks aslwdut are based on
distances of non track level features, e.g. all tracks by bdnX have the same artist
distance to all songs of band/. The distances for the album and genre dimension are
computed analogously. This results in ve rankings of lengt of the number of songs
in the collection, or, in other words, for each song, there arve distances to the seed

song.

Each of those rankings is min-max normalised, following Eqtion 4.1 to prevent

biasing in uence on the overall ranking.

d(q;9 min(d(q;1)

horm (03 1) = max(d(q;t) min(d(q;t))

(4.1)

Each entryd in a distance vectord(q; t), for a given query and track in the collection
is replaced by the fraction of the current entry minus its mirmum value min (d(q; t)) in
the vector and the di erence of its maximum valuemax(d(q; t)) and its minimum value
min (d(q; t)). This is needed to take into account distances not startignfrom zero. This
preprocessing step is necessary to be able to combine thevidual distances, without

it the ranges would be from di erent scales and impossible timtegrate.

Equation 4.2 shows howD(q;t), the overall distance of queryq to a track t is
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computed as the sum of all individual distances(q;t) times their respective weights

w; over all input sourcesi T .

X
D(@;9=w di(q;t) (4.2)

iT
Equation 4.2 is rewritten in Equation 4.3, as audio featuresartist descriptions,
song lyrics, album reviews and genre descriptions are takemno account in order to

represent all di erent sources identi ed to be relevant formusic similarity.

D(a; 1) Waudio  Gaudio (0; 1)
+ Warist  Garist (95 9)
Wiyrics  Qiyrics (03 1)
+  Wabum  Gaibum (0 ©)

Wgenre dgenre(q; t) (43)

4.1.1 Missing Values

Whenever an artist description, album review, genre desption, or a song's lyrics are
not available, i.e. could not be fetched, we speak of a misgimalue problem. This fact
has to be taken into account for similarity calculation for he distance of the missing

song, artist, alboum, or genre to the query can not be computed

Audio features are assumed to cover all songs of a collectidherefore no explicit
strategy for missing data for audio values is taken into acaat, but would of course
make sense for audio les that are non-readable for some reas(e.g. the decoding
fails or to many bit errors occur within the le). As textual descriptions may not be

available for all artists, albums, genres or songs (lyricsi}t is a vital requirement for any
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Table 4.1: Test collection and coverage of di erent types ofdescriptions for the collection used in the

experimental evaluation

Type Elements | Covered | Coverage
Audio Features | 12770 12770 1.0
Lyrics 12770 7554 .59
Artists 644 348 .54
Albums 931 226 .24
Genres 52 15 .29

multi-level MIR system to provide appropriate techniquesdr handling these missing
values. Techniques to identify instrumental pieces of musiwould also be desirable
to identify songs that do not have lyrics associated by de tion and therefore need
special treatment. The main problem with missing values ishat they subsequently
result in missing distance values between certain instarecand further calculation is
not possible for elements that have no vector associated wiit. These distances that
can not be computed are referred to as missing values through the remainder of

this section.

Table 4.1 summarises the coverages of di erent informatiosources for the large
benchmark collection. The gures result from mining contetual information from the
sources speci ed in the previous chapter. Audio featureseaavailable for all songs in
the collection, artist descriptions for 54 per cent and so orGenre descriptions are only
available for some 29 per cent of all 52 genres in the collecti Hence, particularly
the feature groups that are not available on a per song basisHat is artists, albums,
and genres { have a strong impact on the missing values probile For instance, one
missing genre might consist of a large number of songs, all fehich no distances could

be computed in the genre dimension.

In order to overcome the missing value problem, three basicetihods are considered:
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Exclusion
Simple averaging

Category substitution

The simplest way of treating missing values is to exclude thefrom the results, e.g.
if an artist description is missing, this artist is omitted n the results of the query, or
heavily penalised for that matter. This brings an increaseniprecision (all songs in the
result are similar to the query), yet negatively impacts reall (many (possibly) similar

songs are not considered).

To avoid this problem of low recall, substitution of missingvalues with the average
distance is feasible. Every missing value is replaced by theerage distance of existing

values, henceforth missing values are no more penalised.

Finally, category substitution can be applied. A value is rmelaced by the average
of elements of the same category as opposed to being replabgdthe average over
all existing values. The average distance of artists of theme genre, for instance, is
substituted for a missing artist distance. In the scenario grtrayed in this work, the

following substitutions make sense:

1. Artist level

Each missing value is replaced by the average distance of gsmf the same genre.

2. Genre level

Simple averaging is applied to replace missing genre distas. A genre hierarchy
could improve the substitution on the genre level by providig suitable rules for
substitution.

3. Lyrics/song level

The average over lyrics from same album or artist (if no lyri from the same

album are available) is substituted for missing lyrics distnces.
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4. Album level

The average over albums from same artist replaces missindues.

In any case the fall-back strategy that is applied if no appiuriate elements can be

found, is to use the average over all existing distances,.ithe simple averaging strategy.

Another possible strategy would be simply omitting of songwith missing values.
At the cost of never getting many songs recommended at all,étplain simplicity would
speak for this possibility. Moreover the computational expnse could also be lowered by
much. We have not applied this strategy for not wanting to ontisuch a large fraction
in the similarity rankings, i.e. we think of this as too restictive, albeit de nitely the

easiest way of dealing with missing values.

4.1.2 Recap

In this section we proposed techniques for ranking merging the multi-modal case.
We explained a way of merging multiple rankings { each one cdihed for another
modality or category { and to deal with missing values. Expements later on will

show the applicability of our approach.
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4.2 Multi-Modal Visualisation of SOM Clusterings

The basic idea to be introduced in this section is to visuaksmultiple clusterings,

each according to a di erent modality, and draw connection®etween corresponding
instances on both clusterings. We propose to visualise thendarities and di erences

between the two clusterings by drawing lines across maps, i visually connect pieces
of music. The rationale for this is that the same instance cddi be clustered very
di erently, depending on the dimensionality in use. The regltant connections will

therefore rather show one instance's positions on severabps and reveal additional
information about its embedding in di erent feature spacesThese connections will be
denoted as cross map linkages, as they link instances acrdssterings and modalities.
The data is clustered by the dimensions of audio features ohe one hand and lyrics
on the other hand (those maps will be denoted as audio and lgs map, respectively).
Every track is therefore present on twdself-Organising Mapsof equal size, which is no

necessity but was chosen on purpose in order to stick to simplexamples.

Linkages can be shown on di erent levels:

Track Each (selected) track on the audio map is connected to the santrack on the

lyrics map. This allows the analysis of the characteristicsf a certain piece of music by
identifying its acoustic as well as textual placement, i.eto which clusters it belongs
in the respective modality.

Genre Each track of a selected genre is connected to all songs of #ane genre on the
other map. Here, the spread of a given genre can be inspect&dr instance, whether
a genre forms a consistent cluster in both modalities, or wtireer it does form a rather
consistent cluster in, say, the textual domain, while it is ather spread across di erent

clusters on the audio map.
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Artist ~ Each track of the given artist on the audio map is connected tall songs
of the same artist on the lyrics map. This allows to analyse thtextual or musical

‘consistency' of a given artist or band.

The other important aspect is the (colour-)coding of connéons for the simul-
taneous display of two music maps. Once connections are drawn the maps, the
connections between units are coloured according to theiumber of connecting units.
The main idea is to allow for user selections on one map and pige the simultaneous

highlighting of songs on the other one. Possible levels are:

Colour-code types of connections

i.e. all track-track connections blue, track-genre red, ..

Colour-code connexion strength

All connections between units are colour-coded. For exanaplthe highest
number of connections is coloured red, the lowest blue andethremaining links

are coloured according to the palette in between.

The resultant clustering provides both a means of navigatioin and visualisation of
multiple modalities of electronic music archives. To furthr investigate these principles
a “traditional' prototype model was developed, which will b described in the following

section.

4.2.1 A First Prototype

Figure 4.1(a) shows a full view of the prototype mock-up, bliiof paper, carton, and
sewing cottons. It was built using needles and glue and is Helogether by adhesive
tape. Clusterings of a small example collection of about 5@rsys is shown, a lyrics
clustering on the bottom and an audio clustering on the top p@e. The connections
drawn (or rather stitched) are for songs of a particular art (‘Snow Patrol' in this

case) and give an overall idea of how such a system could work.
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(a) Full view of the visualisation prototype

ra

(b) Detailed view of the visualisation prototype

Figure 4.1: Visualisation prototype mock-up
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Figure 4.1(b) shows a detailed view. It is shown that particar units have a very
high number of outgoing links and the variation in spread, wikh is going to be discussed

in more detail in the remainder of this section.

4.2.2 Cluster Validation for Multi-Modal Clusterings

Cluster validations in this context will be based on twoSelf-Organising Mapstrained

on di erent feature sets. Their common features will be:

Same size - to make comparisons easier, oidglf-Organising Mapsof equal size

will be compared to each other.

Same set of instances - the data points on the maps are the saomes.

Another approach for the comparison of multipleSOM clusterings is introduced
in [3]. Data shifts and cluster shifts are used to compute dt8 in between clusterings.
Shifts are graphically represented by coloured arrows of elient line widths. The
cluster shifts take into account emerging clusters on bot8OMs and have to consider
mappings between these two. The main points of this visuadiBon are the identi cation
of outliers as well as stable regions over multiple maps. Thwain di erence to the
concepts presented in the following are its independencern class information of any
kind. As opposed to the data shifts visualisation, we emphig the exploitation of
given class information and evaluation in this context thesfore is always to be seen in

respect to genre, artist, or possibly album information.

To determine the quality of the resultant Self-Organising Mapclusterings, we try
to capture the scattering of instances across the maps usingeta information such as
artist names or genre labels as ground truth information. lgeneral, the more units a
set of songs is spread across, the more scattered and inhoemapus the set of songs
is. On the other hand, if the given ground truth values are a@pted as reasonable

structures to be expected to be revealed by the clusteringyrsgs from such sets should
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be found to be clustered tightly on the map.

Several ways of computing distances 08OMs are possible. Distances are always
subject to a speci ¢ distance measure, we use the Euclideaistdnce, see Section 2.2.
They can be computed either in the input or output space, wherthe input space refers
to whatever dimensionality of data is used as input, e.g. theesultant dimensionality
after feature selection for text data. The output space refe to the SOM grid; it is two-
dimensional. As a combination of both spaces for distancelcalation the distances in

the output space could be weighted by distances in the inpupace.

In this context, the focus lies on distances in between units terms of their position
on the trained Self-Organising Map The abstraction from the high-dimensional vector
descriptions of instances to the use of unit coordinates tead of unit vectors is feasible
from a computational as well as a conceptual point of view. @gparison of individual
vectors does not take into consideration the very nature ohe Self-Organising Map
clustering algorithm, which is based on the preservation @bpological relations across
the map. This approach therefore computes the spread for ges or artists with respect
to the Self-Organising Maps clusterings. For distances between units the Euclidean
distance is used on unit coordinates, which is also used foistdnces between data
and unit vectors in the input space in theSelf-Organising Maptraining process. All
guality measurements are computed for sets of data vectoradatheir two-dimensional
positions on the trainedSelf-Organising Maps Particularly, sets of data vectors refer
to all songs belonging to a certain genre or from a certain @t. Generally, a Self-
Organising Map consists of a numbeM of units ;, the indexi ranging from 1 toM.
The distanced( i; ;) between two units ; and ; can be computed as the Euclidean
distance between the units' coordinates on the map, i.e. theutput space of theSelf-
Organising Map clustering. In this context only units that have data pointsor songs
that belong to a given category, i.e. a particular artist or gnre, are considered. This
holds for both maps, all quality measurements can only be cailated with respect
to a class tag, i.e. for songs belonging to a particular arti®r genre. The average

distance between these units with respect to Self-Organising Mapclustering is given
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in Equation 4.4.

P P
it =1 dC @y gy
n2

avgdist = (4.4)

n denotes the number of data points or songs considered, i.ehetsongs belonging
to a given artist or genre. Further, the average distance rat de nes the scattering
di erence between a set of two clustering€ = f Caudio; Cyrics 9: Caudio D€ING an audio
and cyrics being a lyrics clustering, is given as the ratio of the minimm and maximum

values for these clusterings.

Further, we de ne the ratio of the average distance ratio aass clusterings in Equa-
tion 4.5 as the ratio of the respective minimum and maximum \aes of the average

distance ratio.

min (avgdiStaydio ; Vg diStyrics )
max(avgdistaygio ; aVgdiStyrics )

ad raudio;lyrics -

(4.5)

The closer to one the average distance ratio, the more unifoly distributed the
data across the clusterings in terms of distances betweenitsra ected. However, this
measure does not take into account the impact of units adjageto each other, which
de nitely plays an important role. Adjacent units should rather be treated as one unit
than several due to the similarity expressed by such resultse. many adjacent units
lead to a small average distance.

Therefore, the contiguity valueco for a clustering c gives an idea of how uniformly
a clustering is done in terms of distances between neighbog or adjacent units. The
speci cs of adjacent units are taken into account, leadingot di erent values for the
minimum distances between units since distances betweenjaxnt units are omitted
in the distance calculations. If, for example the songs of a/gn genre are spread across
three units on the map ; »; 3, where ; and , are neighbouring units, the distances
between ; and , are not taken into consideration. Currently, no di erence $ made

between units that are direct neighbours and units only coretted via other units. The
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contiguity distance cd is given in Equation 4.6

8
20 if ; and ; are neighbouring units

cd(i; )= (4.6)

z d( i; ) otherwise
The contiguity value cois consequently calculated analogously to the average dis-

tance ratio based on contiguity distances as shown in Equati 4.7.

P
s =1 cd (); Gy)

Co= n?

4.7)

In the case of fully contiguous clusterings, i.e. all units aet of songs are mapped
to are neighbouring units, theco value is not de ned and set to one. The overall

contiguity ratio for a set of clusterings is given in Equatia 4.8.

min (Chydio ; Clyrics )
max (Chaydio ; Cllyrics )

Craudio;lyrics -

(4.8)

This information can be used to further weigh theaveragedistratio from Equa-
tion 4.5 as shown in 4.9 and gives an average distance coniiguatio value adrcr, i.e.
the product of average distance ratio and contiguity ratiofor a set of one audio and

lyrics map.

adrcraudio;lyrics = a-draudio;lyrics Craudio;lyrics (4-9)

This considers both the distances between all occupied uias well as taking into
account the high relevance of instances lying on adjacentits1of the Self-Organising
Map.

Figure 4.2 shows possible distributions of data points belging to one class. The

left column shows the distribution for audio clustering, tle right column for lyrics
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(@) All points lie in (b) Points are con-
the upper left corner centrated in the left
(audio) upper corner of the

map (lyrics)

(c) All points lie in (d) Points are con-
the upper left corner centrated in the lower
(audio) right corner of the

map (lyrics)

(e) All points lie in (f) Points are ordered
the upper left corner diagonally (lyrics)

(audio)

(g) Data points are (h) Data forms sub-
not contiguously dis- clusters (lyrics)
tributed (audio)

Figure 4.2: Distribution of four data points belonging to one class (this could be, e.g., four pieces of
"Rock' music). The gures in the left column display possible distributions of data points according
to the audio dimension, whereas the right column representpossible arrangements for the lyrics

scenario. All gures are examples only and do not rely on realworld data
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Table 4.2: Calculation of average distance values for clustings e in Figure 4.2

Unit {11(12|21|22]| Sum Avg

11 |[x |1 |1 |2 3414214 0.853553
12 |1 |x |P2|1 |s3414214] 0.853553
21 |1 |P2|x |1 |3414214| 0.853553
22 (P21 |1 |x |3414214| 0.853553

Table 4.3: Calculation of average distance values for clustings f in Figure 4.2

Unit |11 (22|33 |44 |Sum Avg

11 |x ["2|"8|"18] 8485281 2.121320
22 |P3 |x |P3|Ps | 5656854 1.414214
33 | g |P2 |« P35 | 5.656854| 1.414214
aa |P18(P8 | P32 |x | 8485281 2.121320

clustering. Units are shown as squares, the numbers denokethumber of data points
associated to a unit. This is meant as an example how clustegs can di er across

dimensions (lyrics and audio features in this case).

Tables 4.2 and 4.3 show the average distance values resgtinom examplese and
f of Figure 4.2. The corresponding average distance value ar

. :853553 +:853553 +:853553 +:853553
avgdist(e) = 7 = :853553

and
: +1 +1 +
avgdist(f ) = 2:121320 14142144 1414214 2121320: 7-0711

Table 4.4 shows the values obtained for the density ratio aralrerage distance ratio
that are obtained from the clusterings in Figure 4.2. Theselusterings only consist of
four data points, hence all weighting by the number of instazes per unit is omitted
for reasons of simplicity. Both the density ratio and averag distance ratio give a

fair measure of scattering across clusterings. The clustags a; b as well asc;d have
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Table 4.4: Scatter measures forSelf-Organising Maps (see Figure 4.2). Note, &) denotes the audio
clusterings a;c;e and g; (I) the lyrics clusterings b;d;f and h. AC and LC denote the contiguity

ratios for audio and lyrics, respectively

Maps | avgdist(a) | avgdist(l) | ADR AC LC CR | ADR CR
a,b. 3.4142 3.4142 1 1 1 1 1

c,d. 3.4142 3.4142 1 1 1 1 1

e,f. 3.4142 7.0711 .4828 1 4.9497| .2020 .2020
g;h. 6.1992 8.1411 7615 | 5.1992| 7.1411| .7281 .5544

coe cients of .5 and 1, respectively, whereas the values falustering e;f are lower.
Visually the clusteringsa; b as well asc; d are equal, even if not mapped to the same
parts of the map (there is ho semantic interpretation possie for di erent areas of the

map, in fact, there is no way of telling di erences in terms o€lustering position).

A possible visualisation for those values is the colour-ciog (binary) of all units
on a map within avg(dist) w from the centre of the units (average coordinates). All
units, except outliers, within one class would be clearly stinguishable from the rest,

backing the linkage visualisation introduced at the beginng of this section.

4.2.3 Recap

In this section we showed possible techniques for the muftiodal visualisation of audio
collections based orSOMs. Both lyrics and audio data were taken into account in
order to provide a three-dimensional visualisation of auditracks and their relations
to each other. We also showed how this visualisation can beedsto derive quality
measurements for multipleSOM clusterings on toy examples; a large scale evaluation

is to follow in Chapter 6.
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4.3 Multi-Modal Genre Classi cation

Musical genre classi cation or the labelling of songs acating to prede ned genre
categories is a classic machine learning task. We will useubset of the data sources
introduced in the last chapter, namely audio features and hcs data as input space.
To the end of classi cation we will use Support Vector Machies, a standard machine

learning technique.

Experimental evaluation will be outlined in Chapter 6.

4.4 Where Do We Go from Here

We theoretically introduced the main categories of techniges used in this thesis. An
implementation for multi-modal similarity ranking and visualisation will be introduced
in the following chapter, quantitative evaluation of theseconcepts will be done in
Chapter 6.



Chapter 5

Implementation Details

The conceptual methods introduced in the last chapters weimplemented to allow for
experimental evaluation, this chapter gives an overview dhe resultant implementa-

tion. The implementation comprises two components:

Atlantis is a text mining application, combining textual information for music
data from di erent modalities such as artist descriptions ad song lyrics. Further,

it contains a user interface and back ends for music similéyiretrieval.

Sovis (Self-Organising Mapvisualisation) implements all aspects related to visu-
alisation. A GUI component allows user access to multipleudterings and a back

end component evaluates clusterings.

5.1 Atlantis

The Javadoc API for the entire Atlantis project is available at http://www.ifs.

tuwien.ac.at/~neumayer/atlantis/api
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Figure 5.1: Overview of Atlantis ' packages

5.1.1 Packages of Particular Interest

This section will explain some classes of the most relevartigkages within this project
in more detail as well as indicate which parts they belong toFigure 5.1 shows an
overview of the Java packages in thétlantis implementation, some of which will be

explained in more detail in the following.

5.1.2 Database Binding

The most important DB related classes are shown in Figure 5.2The DBManager
Singleton class is responsible for connecting to the DB antasing of the connexion.
The Corpus class represents one text corpus, e.g. one coitet of song lyrics or
artist descriptions. This corpus concept is vital to the aplication since all grouping

of documents and classes is organised by corpora. Once doents are indexed, the
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unique list of words is calculated and the rest of the databasschema is lled with
document term assignments. TheMusicCollectionManager classes provide access to
a music collection's metadata information. It also provide access to the classes in

atlantis.db.musicmetadatss mapping classes likértist, Track or Genre

Figure 5.3 shows the classes used for document represeotatiA Documentis the
superclass for all document representations providing nesafor accessing a document
object's original as well as preprocessed text values (stokrin the respectivetextValue
and rawTextValue elds). The basic idea is to implement the abstracDocument class'

preprocessAndTokenisenethod in a di erent way for each document type.

5.1.3 Internet Text Mining

Figure 5.4 shows the class diagrams for lyric fetching andgéng. The aforementioned
classes work with local snapshots of Wikipedia arldut.de. Lyrics fetching is done just
in time over the Internet. Therefore, every class has a statihost address, e.ghttp:

IlIwww.sing365.com for the sing365 lyrics portal. Further, every class implenms
the constructSearchURI method, which returns the correct URI for the given artist
and track name. The content from these URIs is then retrieveftom the web and is

preprocessed accordingly, i.e. exactly the same way as iretheneral document cases.

5.1.4 Feature Selection

Feature selection is implemented as part of the vector or mat generation. Figure 5.5
shows the main classes for frequency thresholding and Infaation Gain matrix gener-
ation. The VectorGenerator class o ers the most generic miedds to retrieve a single
document vector or matrix for sets of documents. The compadisin of these matrices
is done in the individual classed.owerFrequencyThresholdingMultipleCorporaVector-
Generator and InfoGainMultipleCorporaVectorGenerator. The Information Gain im-

plementation computes the information gain for all tokensdund in a specic set of
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Figure 5.2: Classes for the management of corpora within théramework
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Figure 5.3: Classes for the representation of various docuemts
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Figure 5.4: Lyrics fetching and parsing - the Atlantis way
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Figure 5.5: Classes for vector generation and dimensionai reduction of text corpora

corpora and stores these values until they are needed for matgeneration. The fre-
guency thresholding is computed every time a matrix is reqeted. The upper threshold
is xed and set to :5, whereas the lower threshold is set t®1 at the beginning and

incremented iteratively as to match the required dimensiality.
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5.1.5 Import Export Component

The export component mainly covers exports to various exchge formats used in
machine learning. Bindings are implemented to write les irthe SOMLIib format [43].
Classinfo les are used to store class information for ingt@es, a vector le contains
the vectors itself, and a template vector le holds informabn about the single features
(e.g. tokens for text). Further the ARFF le format, which is used by the Weka
machine learning suite [57], is supported. Moreover plaiext les can be written out

for further processing in Matlab.

Further les in SOMLIib format can be imported if they contain any of the following

feature sets:

rp, the rhythm patterns feature set (dim 1440)
ssd, statistical spectrum descriptors (dim 168)
rh, rhythm histograms (dim 60)

bpm, beats per minute (dim 1)

In the ideal case Atlantis holds all of this information about a song and plus informa-

tion about text data terms of tf  idf vectors for the following dimensionalities:

Song lyrics
Artist biographies
Album reviews

Genre descriptions

The main music-related import/export component handles da from the Amarok
music player [41]. Amarok is a music management applicatidar the KDE desktop. It

supports not only the indexing of music les, but also lyricdetching for the song that
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is currently playing via scripts, as well as support for the @anmunity site last.fm [21].
Amarok was chosen because it saves many aspects in its das#dand o ers promising
features like its last.fm support, which might be interestig in the future. Currently,

Atlantis supports song, artist, aloum, genre information as well a®sg lyrics imports
from an existing Amarok database. Moreover, oncitlantis' lyrics fetching is done, it

is possible to re-export the lyrics information to Amarok.

An overview of various distance measures, criteria for compng vectors, is given
in Figure 5.6. All of Atlantis' similarity experiments as well as all distance calcula-
tions relating to Self-Organising Mapsuse the Euclidean distance in order to provide
distances (or similarity) between documents and vectors. dh the Euclidean and the
Manhattan or City Block distance are forms of the more generainkowski distance
in terms of a di erent exponent, p = 1 for the Manhattan distance, p = 2 for the Eu-
clidean distance. Normalisation is performed in th&lormalisation class, implementing
a simple MinMax normalisation, i.e. every value is divided yoa vectors maximum
value. This results in vectors scaled from zero to one. Furh, utility methods for

converting from String to double vectors et v.v. are provide

The various ranking mechanisms used are depicted in Figurer5 A SimilarityRank-
ing basically is a sorted, two-dimensional matrix, instancesding listed along itsy,
features along itsx axis. Furthermore, aCombinedRankingis a combination of rank-
ings for album, artist, genre, and track, as well as lyrics rikings. The substitute XXX
methods implement the substitution strategies presentechiSection 4.1.1. Besides,

normalisation is done for all rankings to guarantee their coparability.

5.1.6 Typical Atlantis Usage

The typical usage ofAtlantis would consist of the following steps:

Import collection database (from Amarok)



CHAPTER 5.

IMPLEMENTATION DETAILS

Figure 5.6: Overview of distance measures used iAtlantis
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Figure 5.7: Overview of the ranking implementations
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Fetch lyrics

Interactively check les

Possibly export the fetched lyrics to Amarok
Import audio features (from SOMLIB les)
Batch update text corpus

Export vector les, browse by similarity, etc.

5.2 Sovis (Self-Organising Map  Visualisation)

Subsequently,Sovis, an application prototype for multiple Self-Organising Maps was
implemented for the simultaneous display of two music mapsSovis usesAtlantis’

data model and interfaces for music collection managementcthe link to metadata.

Once connections are drawn on the maps, the connections beém units are coloured
according to their number of connecting units. The main ides to allow users to select
songs on one map. All selected songs are highlighted on thdéet map. On top of
the interactive user interface and the connexion visualifans, Sovis implements the

multi-modal quality measurements introduced in section 2.2.

The Sovis prototype allows for selection of:

Genres
Artists

Tracks

All selections are organised hierarchically according tdhé songs' artist or genre
tags, i.e. further selection re nements are possible. If thuser selects, for instance,
all songs from the rock genre, all songs belonging to that genare connected in the

interactive 3D display of the Self-Organising Maps Moreover, all single songs of that
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Figure 5.8: Full view of the visualisation prototype. The vertical map clusters songs by audio features, the horizontamap is trained on lyrics

features. The left hand side is occupied with various selean controls
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particular genre are displayed and the user can further re@his selection to a particular
set of songs. The main user interface is depicted in Figure85. The right part of
the application is occupied by the display of the twdSelf-Organising Maps The 3D
display o ers ways to rotate the view as well as pan and zoom ior out. Controls to
select particular songs, artist or genres are on the left dogether with the palette
describing the associations between colours and line cosintSelections of artists or
genres automatically update the selection of songs on theftidhhand side. Several
visualisations for singleSelf-Organising Mapshave been proposed. In this work we use
the Smoothed Data Histogramsechnique to colour-code the&self-Organising Mapgq39];
whenever class distribution is of interest, we make use ofdllhematic Class Map
and Chess Boardvisualisations to emphasise the regions covered by di erealasses.
The SOMToolbox application for 2D clusterings supports a wlie range of additional
visualisations that could be used as a basis for 3D visualigms, as proposed in this
thesis. We relied on the same visualisation method for bothudio and lyrics features.
Of course, this is not necessary and di erent visualisatiancould be deployed for the
respective feature spaces and clusterings.

Figure 5.9 depictsSovis main classes and GUI as well aSelf-Organising Mappack-
ages. TheSwinginterfaceMain class is the main entry point for the GUI application.

QualityMain evaluates two clusterings in batch mode.

Figure 5.10 showsSovis GUI components. Swinglnterface uses bothAtlantis ele-
ments and the CrossMapLinkageVisualisationclass and presents the main GUI com-
ponent, handling the display of links between mappings itfe CrossLinkageVisuali-
sationCrontrol encapsulates the functionality for loading and displayingrained Self-
Organising Mapsand CrossLinkageVisualisationCrontrolFrameholds control elements

and user input elds. The ColourXXX classes handle the display of the colour palette.

Sovis functionality to management and evaluation of multipleSelf-Organising Maps
is shown in Figure 5.11. SOMQuality implements the computation of the quality

measures introduced in section 4.2.2. Thgelf-Organising Mapgrid and methods for
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Figure 5.9: Overview of the Sovis implementation

accessing mapping and unit information can be found iBlementManager

5.3 Recap

This Chapter introduced the Atlantis and Sovis Java implementations. Their back
end implementations and user interfaces will be used to expeentally evaluate the
concepts described earlier on. Multi-modal clustering asell as similarity ranking
experiments will be performed exclusively using these ingshentations, for musical
genre classi cation the les produced by the export compomgs will be used as input

for the Weka machine learning suite.
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Figure 5.10: Sovis GUI components
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Figure 5.11: An overview ofSovis quality measures
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Chapter 6

Experiments

Love? Truth? Beauty? | prefer negotiable securities.
Doge Miskich var Miskich, \All About Me", 301 AFC

This chapter describes the experimental setting and provd experimental results

for the three main tasks considered in this thesis, namely rtiumodal

similarity ranking and retrieval,
multi-modal visualisation and cluster validation, and

musical genre classi cation.

At rst, experiments are shown on the small data collectionparticularly focussing
on visualisation. After that, a full set of experiments is pdormed on the large collec-
tion, including ranking, cluster visualisation, and musial genre classi cation, which is

much more feasible for collections of su cient size.
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(a) Clustering of audio features for the 10 genres subset of t he audio (b) Class (genre) colour leg-

collection end

Figure 6.1: Thematic class map visualisation for the audio tustering of the 10 genres subset of the

small audio collection. Genre colours are displayed in thedgend

6.1 Small Collection Experiments

The experimental results presented in the following were t#bned from experiments

made with the small data collection, introduced in Section.3.1.

6.1.1 Clustering According to Audio Features

For each song lyrics features as well as audio featuré&dtistical Spectrum Descriptor
dimensionality 168) were computed. TheSelf-Organising Mapclustering was nally
performed on the small data set. We then trained twéelf-Organising Mapsof size 8

8, i.e. 64 units, one on the audio feature set, one on lyrics.

Figure 6.1 displays the clustering of the small collectioncaording to audio features
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(a) Clustering of lyrics features for the 10 genres subset of the audio (b) Class (genre) colour leg-

collection end

Figure 6.2: Thematic class map visualisation for the lyricsclustering of the 10 genres subset of the

small audio collection. Genre colours are displayed in thedgend

plus class legend. Di erent areas of the map are coloured acding to their genre. The
class legend is given in 6.1(b). Such a visualisation makésasy to comprehend the
distribution of classes on the map. The "Reggae’ genre (daed) for example is located
on the right upper part of the map, clustered on adjacent un& only. "Christmas' songs
(light blue), on the other hand, are spread all over the map. His corresponds to
the very di erently sounding nature of these two genres. "Gistmas' music is rather
de ned by its lyrics, whereas "Reggae’ is rather de ned by §t typical sound. Songs
belonging to the "Punk Rock' and "Speech' genres both arealsther de ned by their

sound.
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6.1.2 Clustering According to Lyrics Features

The same collection clustered according to song lyrics isastn in Figure 6.2. The
resultant high-dimensional feature vectors were furtheralvnscaled to 905 dimensions
out of 5.942 using feature selection via document frequentgresholding, i.e. the
omitting of terms that occur in a very high or very low number & documents. We
therefore excluded terms occurring in less than 16 per cemicamore than 40 per cent

of the documents.

Amongst the most obvious di erences are the better separatn of "Hip-Hop' songs
in the upper right part of the map. This genre is easily idented by terms like “shit’,
‘rap' or names of di erent rappers. Christmas carols are @dey separated in the lower
left corner of the map, exclusively covering four units. Treks belonging to the genres,
“Slow Rock', or ‘'New Metal' are spread across large parts dfet map, re ecting the

diversity of topics sung of within them.

6.1.3 Combined, Multi-Modal Visualisation

Figure 6.3 shows the prototype implementation's tool sean as well as its visuali-
sation part. On the right hand part of the illustration two clusterings are visualised
simultaneously. These clusterings are subsequently suttj¢éo quantitative evaluation

according to quality criteria introduced in Section 4.2.2.

Table 6.1.3 lists these quality measures for all the genres the small collection.
Exceptionally high values for the ADR CR were, for example, calculated for the "Pop’
and "Hip-Hop' genres, meaning that they are rather equallyistributed across clus-
terings. "Pop' songs, for instance, are equally distributiein terms of audio and lyrics
contiguity, leading to the maximum value forLC. "Christmas Carol' songs have an
exceptionally low value, stemming from the fact that they fon a very uniform cluster

on the lyrics map, the contiguity value is therefore set to am On the audio map,
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Figure 6.3: Overview of the visualisation prototype. The left part of the application is occupied by
tools to select songs from the audio collection. The main pardisplays the clusterings and connections

in between

Christmas carols are spread well across the map. Other lowlwas can be identi ed
for "Punk Rock' or 'Speech’, both of which are more spread ags the lyrics than the

audio map.

Figure 6.4 shows two examples of genre connections. Figuré(&) shows the con-
nections for all songs belonging to the "Christmas Carol' gee, and visualises its dis-
tribution as mentioned in the previous paragraph. Songs baiging to the "Punk Rock’
genre are shown in Figure 6.4(b). The strong divergence ofsttibutions is clearly

visible.

6.2 Large-Scale Experiments

To prove the applicability of the proposed methods, we penfmed experiments on a

larger collection of digital audio, which is described in $&on 3.1.2.
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(a) Multi-Dimensional visualisation of “Christmas' songs

(b) Distribution of "Punk Rock' songs on both maps

Figure 6.4: Distribution of selected genres across maps
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Genre AC LC CR ADR | ADR CR
Cristmas Carol | .1240 1 1240 | .2982 .0370
Country .1644 | .2169 | .7578 | .8544 .6475
Grunge 3162 | 5442 | 4714 | 9791 4616
Hip-Hop .2425 | .1961 | .8086 | .6896 5576
New Metal 1754 | .1280 | .7299 | .9383 .6849
Pop .1644 | 1644 1 .9538 .9538
Punk Rock 4472 | 1280 | .2863 | .7653 2191
Reggae 2774 | 1810 | .6529 | .5331 .3480
Slow Rock 1715 | 1240 | 7232 | .7441 .5382
Speech .3333 | .1754 | .5262 | .3532 .1859

Table 6.1: Genres and the according spreading values acrostusterings. AC denotes the audio
contiguity, LC the lyrics contiguity, CR the contiguity ratio, ADR the average distance ratio, and

ADR CR the product of ADR and CR . Maximum values are printed in bold font, minimum values

italic

6.2.1 Multi-Modal Audio Similarity Ranking

This section contains an experimental evaluation of the tbaiques for multi-modal
similarity ranking in Section 4.1. The main idea is to rank sogs in a music collection
according to di erent modalities. We consider the followig levels of similarity for each

seed/query song:

Song (audio)
Song (lyrics)
Artist

Album

Genre
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As a next step all the di erent rankings are merged into one mallt list, the experi-

ments performed will be explained in the following.

In order to show the importance of the missing values problerfiable 4.1 summarises
the coverage of di erent levels of textual description witn the large collection. The
evaluation and comparison of the results of content-basedd. audio) similarity rank-
ings to combined approaches presented in the Section 4.1 e tcentral part of the
experiments described in this section. To that end, at rstthe combined distances for
each track in the collection to all other songs are computedihen the rst 5, 10 and

20 results are evaluated according to the number of songs drjing to:

the same artist,
the same album, or

the same genre,

While this kind of evaluation is de nitely not the optimal way, it constitutes an
objective, automated way of analysing results that has beemsed in this setting be-
fore [20]. Obviously, this should be followed-up by a userwsty to establish sound

parameter values for real-world retrieval tasks.

Table 6.2 gives an overview of di erent settings for weightigs. Weights are always
given for each of the ve dimensions and always sum up to one. h& sum column
denotes the sum of the number tracks in the result set, that arfeatured on the same
album, interpreted by the same artist, and belonging to theame genre as the seed song
taken from the top 20 results for every given soig Therefore, the higher the value,
the more similar tracks are returned according to that simdrity measure. It is shown
that additional textual data sources improve the results gini cantly. Experiment 15

shows very high values and seems to be the best combinatiorthis context, especially

1This evaluation for sure has its weaknesses like, for exampl e, a strong bias on albums, because they implicitly
convey genre information. We still chose this kind of evalua tion instead of large-scale user studies due to time and e or t

restrictions.
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Table 6.2: Results for given weighting strategies. The di @ent weightings are given in the Audio,
Artist, Lyrics, Album and Genre columns. The Sum column dendes the sum over the number of

songs amongst the top 20 results from the same artist plus alim plus genre for each combination

ID | Audio | Artist Lyrics | Album Genre | Sum
1 1.0 .00 .00 .00 .00 | 5.37
2 .50 .50 .00 .00 .00 | 19.54
3 .70 .30 .00 .00 .00 | 19.53
4 .30 .70 .00 .00 .00 | 19.54
5 .30 .30 .30 .00 .00 | 18.70
6 .70 .30 .20 .00 .00 | 18.89
7 .25 .25 .25 .25 .00 | 20.64
8 .70 .10 .10 .10 .00 | 20.09
9 40 .25 .10 .25 .00 | 20.87

10 40 .30 .00 .30 .00 | 2141

11 .40 .00 .30 .30 .00| 9.64

12 .20 .20 .20 .20 .20 | 22.65

13 .60 .10 .10 .10 10 | 22.12

14 .40 .30 .10 .10 10 | 22.73

15 .30 .30 .00 .20 .20 | 23.46

16 .30 .30 .00 .10 .30 | 23.35

17 .30 .30 .00 .30 .10 | 23.43
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outperforming the audio only experiment number one. Of cose this may look very
di erent on a per user basis. However, these weightings o ea very good point to
start from in ongoing experiments, particularly includinguser feedback. Naturally, the
results according to the chosen evaluation are far more ingued by artist, aloum and

genre information than by a song's lyrics.

The values given in Table 6.3 and Table 6.4 show the di erenseover changes in
the substitution strategies as well as initial size of the salt set. The weights used
for this experiment are:3, :3, :0, :2, and :2, respectively for the audio, artist, lyrics,
album, and genre categories. This weighting correspondsttee best result obtained in
the ranking experiments (experimental setting 15), whichr@ summarised in Table 6.2.
The rst set of results are based on a full ranking of all songghe latter relies on
a re-ranking of the rst 600 closest songs in terms of audionsilarity. The given
results are computed as the sums of this evaluation for the 50 and 20 best results.
Furthermore, the average count over results for di erent s songs was computed.
The gures show that penalising of missing values does not prove the quality of the
retrieval results, the simple averaging strategy performbetter in all respects which
is negatively in uenced by the low coverage of data, i.e. mgnsimilar tracks are
without textual information and therefore would not be conglered in the result, if
it was not for averaging their distance. Surprisingly, catgory substitution does not
improve results at all. Table 6.4 outlines that the resultsdr a subsampled data set
decreases performance signi cantly, but also shows thatefranking based orStatistical
Spectrum Descriptorsselects songs according to criteria decoupled from metaddags.
Category substitution is not available for the full retrie\al setup. However, results are

provided for a performance improvement over that strategy.

User Interface

Figure 6.5 shows the main user interface of an experimentalssem to evaluate the

impact of di erent weighting strategies. The largest part & the GUI is occupied by
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Table 6.3: Experimental results for similarity ranking experiments using di erent substitution strate-

gies for the combination of the results taken from a full rankng of all songs. Numbers given denote

the number of songs belonging to the same artist, album, and gnre as the seed song in the top 5, 10,

or 20 songs retrieved

Same Album Top 5 | Top 10 | Top 20
Category Subst. | NA NA NA

Exclusion done 2.11 3.76 5.88
Simple Avg. 2.17 4.04 6.45
Same Artist Top 5 | Top 10 | Top 20
Category Subst. | NA NA NA

Exclusion done 3.17 6.09 11.66
Simple Avg. 3.22 6.24 11.90
Same Genre Top 5 | Top 10 | Top 20
Category Subst. | NA NA NA

Exclusion done 2.77 5.23 9.52
Simple Avg. 2.85 5.50 10.25
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Table 6.4: Re-Ranking of top 600 initial results for similarity ranking experiments using di erent
substitution strategies weighting for the combination of the results. Numbers given denote the number
of songs belonging to the same artist, album, and genre as th&eed song in the top 5, 10, or 20 songs

retrieved

Same Album Top 5 | Top 10 | Top 20
Category Subst. | 1.84 2.79 3.52

Exclusion 191 2.78 3.55
Simple Avg. 2.36 3.41 4.07
Same Artist Top 5 | Top 10 | Top 20
Category Subst. | 2.43 4.09 5.83
Exclusion 241 3.95 5.53
Simple Avg. 2.97 5.11 7.15

Same Genre Top 5 | Top 10 | Top 20
Category Subst. | 1.55 2.85 5.15
Exclusion 1.64 2.87 4.92
Simple Avg. 1.90 291 4.43




Figure 6.5: GUI for experimental evaluation of di erent weighting strategies. Weightings are given for the track "Poltik' by “Coldplay’
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the ve di erent rankings, one for audio, artist, aloum, lyrics, and genre respectively.
Only the pre- Itered rankings are shown, i.e. not the rankigs according to ve di erent
modalities are shown themselves. Instead, each ranking sfsathe ranking obtained by
substitution strategies for all songs. The genre rankingpf instance, shows all songs
in the collection ranked by their genre weight, i.e. all sorgyfrom a given genre are
represented by that genre's term vectors. The weights for ea of these sources can
interactively be updated and the in uence on the combined naking can be observed.
The user can update these weights and instantly see the in nee on the combined
ranking as described earlier. A textbox is provided to sedrdor song titles, rankings are
generated accordingly. The gure shows the query for the tck "Politik' by "Coldplay.’

It becomes evident that the rst result is either the song itelf or all other songs by
the same artist. Every "Coldplay' song has the same distan¢zeero) to all other songs
of the same artist, whereas the lyrics and audio categoriese distances on a song
basis. For this song, there's no genre information availabl Slow Rock’), therefore, in
terms of genre similarity, all songs have the same distance the query. For matters
of simplicity all distances are set to O in this case. It is, lweever, possible to compute
all other four kinds of similarities. In terms of audio featues, the most similar songs
are mainly songs by 'Richard Ashcroft' or "The Verve' as welhs Blur' and "Oasis'.
The most similar lyrics are from songs by "Coldplay' itself, The Cranberries', and
"The Pogues' as seen in the third column. According to the alyais of the artist
descriptions the most similar artists are "The Flaming Ligs 'Bloc Party', and "The
Gorillaz' as well as Conor Oberts's 'Bright Eyes'. Albums wh similar reviews are
from artists like the Americans "Nada Surf' or the British "Eadly Drown Boy'. Once
the user has set his preferred weights, he can generate anralteanking based on the
single ones. Figure 6.6 shows the combined ranking with theeights :7, :1, :1, :4, and
:42, for audio, artist, lyrics, album, and genre, respectivelylt also shows the updated
distances and reveals a new ranking based on all modalitiesdea user's preference for
them (adjusted by the chosen weighting).

2These weights were subjectively chosen but provided a good b lending of results.



CHAPTER 6. EXPERIMENTS 91

Figure 6.6: Combined ranking for the track "Politik' by “Col dplay', based on single rankings in ve

modalities

One vital aspect of multi-level similarity is that adjusting the weights also means
adjusting to the user. Personalisation based on weightingberefore will de nitely
be evaluated in the future. Relevance feedback could be ugedautomatically adapt

weights according to user input, i.e. those data can be extrted from a user's playlist.

6.2.2 Comparisons of Multi-Modal Clusterings

This section summarises the ndings from the multi-modal clstering experiments. We
train one map representing the collection in terms of lyricisnilarity, one in terms of
audio similarity. At rst, examples of di erent clustering results for processing based
on song lyrics will be given. We then stress the di erences treeen the audio and lyrics

space. After that we will provide experimental results of miti-modal clustering.
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Figure 6.7: Clustering of songs centred around the love topi

Traditional Genres and the Lyrics Space

Figure 6.7 shows the distribution of genres on two particutaunits on a Self-Organising
Map trained on lyrics data. The pie chart display shows the numbye of songs belonging
to the di erent genres, underpinning the idea that traditional genres are not necessarily
feasible for the lyrics space. The labelling of single uniis done via the LabelSOM
algorithm, i.e. the identi cation of discriminative components. In this case, the promi-
nent key words “love', "baby', "give', ‘real', and ‘'need'\@ a very good idea on the main
topics of these songs' lyrics. The 50 songs, for instance, ppad onto the right unit
of this Self-Organising Mapare distributed across 16 “traditional' genres, the larges

group being 'R&B' songs, followed by "Metal' and "Indie’.

Artists whose songs are mapped onto this unit are, amongsthars: "Mary J. Blige',
‘Beyonce’, "Christina Milian', as well as "Wolfmother' or he "Smashing Pumpkins'.
This interesting mapping shows clearly that topics in songyfics overcome traditional
genre boundaries, while pointing out that a categorisatiomn the lyrics level makes

sense since all songs cover similar topics.

To the ends of exploiting the fundamental di erences in clusrings we train two
Self-Organising Maps one based on audio, one based on text features. These maps
will be referred to as audio and lyrics map, respectively. Asell as examples are given,

experimental results are shown.
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(a) Clustering of Christmas carols on the 2D audio map

(b) Clustering of Christmas carols on the 2D lyrics map

Figure 6.8: Distribution of Christmas carols on clusterings for di erent feature spaces. The pie charts
denote the distribution of songs over di erent genres on theparticular units { only units comprising

Christmas carols are highlighted



CHAPTER 6. EXPERIMENTS 94

Figure 6.8 shows the distribution of Christmas carols on thievo-dimensional cluster-
ings, the distribution on the audio map is shown in Figure 6(&), and in Figure 6.8(b)
on the lyrics map, respectively. Both maps have the size 2020, the dimensionality
of the audio input space is 168, whereas the lyrics space wasvdscaled to 6579 out
of 63884 dimensions. The respective lower and upper documé&equency thresholds
used to obtain this dimensionality were one and 40 per centn the former case, the 33
songs are mapped onto 30 units, in the latter only onto 13. Hee, the lyrics cluster-
ing uncovers information such as vastly di erent interpreations of one and the same
song, that have the same lyrics, but di er greatly in sound. Mnually assigned labels
demonstrate the di erent key tokens present on the respee® areas of the map, i.e.
the “red / blood / christmas' cluster on the top of the map. Dueto the Self-Organising
Map's random initialisation, the fundamental di erences in lyrics space, and the gen-
eral training algorithm, the songs are mapped onto di erentorners of the map. For
evaluation the absolute location on the map plays a less impant role than the rela-
tive distances. However, it is clear that the spread of songs ers from one clustering
to the other. In the lyrics space, Christmas carols are clusted more closely to each
other, whilst they get spread over more units and occupy a lger space of the map in
the audio space. The two interpretations of the song "The Kt Noel', for example, are
mapped onto one unit in the lyrics space. On the audio map, hewer, these songs lie
on di erent units on di erent regions of the map. The artists of the interpretations are
the "Bright Eyes' and "Saxofour', even though the “Saxofdunterpretation is instru-
mental, the lyrics space helps to uncover the similarity bateen the two songs. Songs

by "Bright Eyes' are concentrated around clusters of ratheslow folk music.

Noticeable Artists

Table 6.2.2 shows a selection of particularly interestingrigsts with respect to their
positions on the maps. A total of 18 "Sean Paul' songs are magpon eachSelf-
Organising Map. For the audio map, the songs are distributed across sevenedéent

units, eleven being mapped onto one unit. On the lyrics map lasongs are mapped
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Artist AC LC CR | ADR | ADR CR
Sean Paul .3162 | .1313| .4152| .4917 .2042
Good Riddance | .0403| .0485 | .8299| .7448 .6181

Silverstein .0775| .1040| .7454| .8619 .6424
Shakespeare | .2626 | 1.000| .2626 | .3029 .0795
Kid Rock .0894 | .0862| .9640| .9761 .9410

Table 6.5: Artists with exceptionally high or low spreading values. AC denotes the audio contiguity,
LC the lyrics Contiguity, CR the contiguity ratio, ADR the average distance ratio, andADR CR
the product of ADR and CR

onto two adjacent units, the rst one covering 17 out of the 18racks. The univying
theme for the distribution across units is based on song lalken the textual feature
space, i.e. songs having similar labels will be mapped ontaits having high weights

for these labels.

The situation is di erent for "Good Riddance', a Californian "Punk Rock' band. For
the lyrics map, their 27 songs are spread across 20 units. Fardio, the songs lie on
18 units, but some of them are adjacent units, a fact that is presented by a rather

high value for AC, the audio contiguity measure.

Shakespeare sonnets are clustered in a similar way. In terofdyrics the six sonnets
lie on two units, whereas the audio representations are magg on three units, non of

which were adjacent (only one sonnet is read by a male voice).

"Kid Rock' songs, mainly "Country' tracks, lie on 13 units orthe audio map, in-
cluding two adjacent units, compared to 11 units in the lyris space, none of which are
adjacent. The spread is therefore almost identical on both aps. Figure 6.9 shows the

3D visualisation for all "Kid Rock' songs.
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Figure 6.9: Detailed view of connections for the almost equiéy distributed artist “Kid Rock'. Dark

lines denote a high number of connections
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Genre AC LC CR | ADR | ADR CR
Speech .0822| .0665| .8092| .3417 .2765
Christmas Carols | .0393| .0677 | .5800| .7779 4512
Reggae .0392| .0413| .9495| .8475 .8047
Grunge .0382| .0466 | .8204 | .9974 .8182
Rock .0372| .0382| .9740| .9300 .9059

Table 6.6: Genres with exceptionally high or low spreading alues. AC denotes the audio contiguity,
LC the lyrics contiguity, CR the contiguity ratio, ADR the average distance ratio, andADR CR
the product of ADR and CR

Noticeable Genres

Analogously to the artists, we identi ed genres of interesin Table 6.2.2.

"Rock’ music has proven to be the most diverse genre in termé audio features
and rather diverse in terms of lyrics features alike. There eve 672 songs assigned
to that genre in the test collection. The overalladr cr measure is still rather high
due to the impact of adjacent units on both maps. "Speech' aselvas 'Christmas
Carols', on the other hand, are rather diverse in terms of aual similarity, but are more
concentrated on the lyrics (or text) level, yielding in a lowadr cr value. Figure 6.10
shows the connections between all "Christmas' songs, giyian interesting idea about
the di erences in distributions on the maps, c.f. Figure 6.8The similarity of 'Reggae’
music is de ned by acoustic and lyrics features to an equal amant. This genre has
rather high values foradr and cr, caused by a high number of adjacent units and a low

overall number of units.

6.2.3 Musical Genre Classi cation

In order to utilise the information contained in music for gare classi cation, we de-

scribe sets of audio features derived from the waveform ofdia tracks as well as the
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Figure 6.10: Detailed view of connections for the genre "Clistmas Carols'. Dark links denote a high

number of connections
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Table 6.7: Macro-avraged classi cation accuracies basednaten-fold cross validation for di erent types
and combinations of audio features and features based on ligs. The experiments Al - A3 denote
audio-only, L1 - L4 lyrics-only, and C1 - C3 features combine from audio and lyrics feature sets. The

type column shows the types of feature sets used, dimensioliy notes the resultant dimensionality

of the data
Name | Type Dimensionality Classi cation Accuracy
Al RH. 60 .264702
A2 SSD. 168 377473
A3 RP. 1440 .375454
L1 LYRICS 60 .216076
L2 LYRICS 168 .263394
L3 LYRICS 1422 .334101
L4 LYRICS 3000 .363122
C1 LYRICS + RH 120 .375454
Cc2 LYRICS + SSD 336 436819
C3 LYRICS + RP 3085 429821

bag-of-word features for song lyrics. Our experiments weperformed on the large test

collection introduced in Chapter 3.

Table 6.7 shows classi cation accuracies for a set of exprents based on audio
and lyrics features as well as combinations thereof. We aekied the di erent lyrics
dimensionalities by document frequency thresholding, thapper limit was set to 40
per cent, the lower threshold was continually increased ae match the required resul-
tant dimensionality, leading to di erent values for the lower threshold in all settings.
Experiments were performed by Weka's implementation of Spprt Vector Machines
for ten-fold strati ed cross validation (linear kernel, c = 1:0). Results shown are the

macro averaged classi cation accuracies.

The classi ers based on audio data showed good results, expeent A2 and A3

being rather similar, even though the dimensionalities arquite di erent. Experiment
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Al showed by far lower results.

The higher-dimensional the data for the lyrics experimentss, the higher is its
classi cation accuracy, implying that there is even more dicriminating information
contained in lyrics (see experiments L1 - L4), which is not gered in this context

because of the limitations of the simple concatenation appach.

For combination experiments (C1 - C3) we use balanced comhiions of features,
i.e. the dimensionality of the lyrics component always eqigthe dimensionality of
the audio feature componerit Results show that a combination of lyrics and audio
features improves overall classi cation performance. Vgtigh accuracy was achieved
in the 'LYRICS + RP' setting (C3), having the highest dimensonality, second only to
the "LYRICS + SSD' experiment (C2). For all combination expeéments (C1 - C3) the
accuracies were at least equal to the highest values for thespective one-dimensional

approaches (A3 and L4).

For statistical signi cance testing we used a paired T-testor a signi cance level of

= :05. Results showed that A2 performs better than Alp(= :0189), but there is
no signi cant di erence between A2 and A3 p = :9661). Further, it is shown that C3
performed better than L3 (p = :0059). Hence, a classi er based on di ering numbers of
lyrics than audio features, e.g. more dimensions in the Iys than in the audio space,
might further improve classi cation accuracy. Yet, by comlning lyrics and audio (C2),
the same performance was achieved at a fraction of the dimenslity. Experimental
results for C2 and C3 are not signi cantly di erent (p = :7994). Further test results

are given in Table 6.8.

3These values sometimes are slightly skewed due to the dynami c feature space reduction with document frequency

thresholding.
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Table 6.8: p-values obtained by statistical signi cance tests perforned on classi cation results. The
given tests were performed for a signi cance level of = :05 using a paired T-Test for distributions

with equal means

Name Cc2 C3 A2 L3 L4
Al .0157(1) .0189(1) .0732(0) .2021(0)
A2 .0074(1) .2298(0) .9661(0) .8118(0)
A3 .0885(0) .0059(1) | .9661(0) | .3208(0) .5197(0)
L1 1.0096e-04(1)| 1.0597e-04(1)| .0051(1) | 2.2785e-04(1)| .2021(0)
L2 .0011(1) 2.0158e-05(1)| .0573(0) | 1.0526e-05(1)| 2.3352e-04
L3 .0885(0) .0059(1) | .9661(0) .5197(0)
L4 .1343(0) .0076(1) | .8118(0)| .5197(0)

Cl | 1.2867e-04(1)] .0031(1) .0031(1) .0435(1) .2173(0)

C2 .7994(0) .0074(1) .0885(0) .1343(0)

c3 .7994(0) 2298(0)| 0.0059(1) | .0076(1)
6.3 Recap

In this chapter we provided experimental results on two testollections { one of small,
one of large size. We thereby underpinned our position that iic Information Re-
trieval greatly bene ts from the use of multi-modal data souces. We provided results
for multi-modal clustering, relying on the lyrics space asdalitional input information.
These principles were evaluated both in terms of an experimtal user interface and
guantitative evaluation. We used a wide range of textual da sources like artist de-
scriptions or album reviews, to provide experimental restsl for the classic similarity
retrieval use case. The combination of these data sourcesezmded the classic approach
of using audio similarity only. We furthermore showed thatyrics can greatly in uence
the task of musical genre classi cation and provided statigal signi cance tests for

our classi cation experiments.
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Conclusions and Future Work

To a god, a wall is but a line on a page. We are all naked, seen bag seeing.
Way nder Hasturi, aka \The Mad Perseid" 217 AFC

In this thesis, we investigated a multi-modal vision of Musi Information Retrieval,
taking into account both a song's lyrics as well as its acoustrepresentation, as op-
posed to concentrating on acoustic features only. We presed a novel approach to
the visualisation of multi-modal clusterings and showed stfeasibility to introspect col-
lections of digital audio, in form of a prototype implementéion for handling private
music collections, emphasised by concrete examples. On tojpthat, we introduced
performance metrics forSelf-Organising Mapson a per-class level (e.g. artist or genre
classes), showing di erences in spreading across maps. Btoer, we introduced mea-
surements for the comparison of multi-modal clusterings #&t showed their application

to identify genres or artists of particular interest.

We also integrated textual data beyond lyrics. A similarityranking technique was
presented to additionally accommodate for further data soues such as artist and
genre descriptions and album reviews. To show the applictityi of this approach we
presented a prototype that allows for interactive adjustmets in weightings for these

di erent modalities.

102
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As another application we performed musical genre classation on audio tracks
represented by their indexed lyrics as well as audio featweWe presented experimental
results showing that a feature combination is highly desitde in order to increase

classi cation accuracies.

Future work will mainly deal with the further exploitation of multi-faceted repre-
sentations of digital audio. Further, we plan to provide a mce elaborate user interface
that o ers sophisticated search capabilities. Ensemble rtfeods have been successfully
used for the integration of multiple classi er instances ath might prove particularly
useful for the music scenario. These classi ers mostly dren the subset of features of
classi er technigue used. In this context, classi ers codl be trained on di erent sets
of features { motivated by the wealth of modalities availal® for musical data. Such
an approach would be feasible to achieve better overall iggsation and accuracy rates

for the musical genre classi cation task.

Besides, the possibilities of automatically adding metadia to audio les through
multi-modal representations will be explored in connectio with semantic analysis or
automatic concept identi cation in music. An interesting gpplication of this would
be automatic musical genre classi cation, emphasising omeé additional information
contained in a song's lyrics as opposed to purely acousticpapaches currently being in
use. Moreover, the investigation and evaluation of advanddeature sets for the lyrics

space will play an important role in future work.

In this thesis, a suitable categorisation of textual data wa presented, which can
practicably be exploited for similarity retrieval. Our experimental results showed
how important the di erent weightings are and in how far theyin uence the results.
Nonetheless, our evaluation approach can only be seen as at step towards a more
encompassing utilisation of multiple dimensions in Musicmformation Retrieval. More-
over, strategies for dealing with information that is not pesent in such a system that
showed improvements compared to the simple exclusion stegty, were presented. How-

ever, the results lead to the conclusion that a higher covega of text data is desirable



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 104

to improve similarity retrieval results.

One future goal is to nd an optimal weighting for the di erent levels presented
in this thesis { both according to the evaluation used and usg' preferences. This
approach obviously o ers itself for the application of a redvance feedback approach,
emphasising the interactive dynamics required to be addie=d when talking about
music similarity. A long term objective is the integration d more sophisticated re-
trieval components, yielding a possibly much higher coveyga. Moreover, for being
vital aspects for every large-scale Music Information Rea@val system, scalability and

performance issues need serious attention.

Exploiting the results from the comparisons of clusteringfor classi cation, partic-

ularly its feasibility for ensembles of classi ers, couldmprove results.
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