
In data exploration, glyphs refer to graphi-
cal objects or symbols that represent data

through visual parameters that are either spatial (posi-
tions x or y), retinal (color and size), or temporal. Com-
mon examples of graphical objects include the bars in

a bar chart or the points within a
scatter plot.

We focus on glyphs for visualizing
software project management data.
Any large-scale project will have
many different classes of resources
(lab equipment, staff time, machine
cycles, disk resources, interim deliv-
erables, and customer commit-
ments) that must be scheduled and
tracked. Inevitably, problems will
arise and solutions must be found.
To support the management
process, information systems collect
and maintain large status databas-
es. We aim to support and improve
the understanding of this informa-
tion through visualization. Our

glyphs are designed to expose patterns among sets of
software artifacts and to help identify differences
between items.

There are four interesting issues in project manage-
ment data:

1. Time: Project management is time-oriented. Each
project has a time in which it must be completed—
a deadline. To properly meet deadlines we must
track milestones, monitor resource usage patterns,
and anticipate delays.

2 Large data volumes: Large projects have a lot of data
associated with them. For example, a multimillion-
line software project may be partitioned into tens to
hundreds of subsystems, hundreds to thousands of
modules, and thousands to hundreds of thousands
of files. Much of this data is unstructured, making
mining information from it difficult. Our

approach—typical in large projects—partitions the
data hierarchically. For example, a software project
will have a high-level manager with overall respon-
sibility. These managers may have several supervi-
sors under them, and each supervisor will lead a
group of engineers.

3. Diversity/variety: Projects commonly have a diverse
group of resources as well as resource attributes.
Expressing different types of resources (engineers
and computers) as well as their attributes (number
of code lines and number of errors) requires visual
representations flexible enough to convey informa-
tion about a set of diverse data meaningfully. We
designed our glyphs to be versatile so that they can
show data for many different software artifacts. Users
do not need to learn new visualization structures for
each object type. Flexibility results from enabling our
representations to show many different data types,
including both discrete and continuous domains.

4. Correspondence to “real world” concepts: In a project
database, data elements usually correspond to “real
world” entities or concepts. For example, a userID-
1 data element in a software database represents an
actual person, and the element file-125 corresponds
to a source code file. By using glyphs, we maintain
the “objectness” of the data elements because all the
properties of a data element are grouped together
visually.

Glyphs are not a new concept. Chernoff first developed
them for multidimensional data.1 Our work, however,
differs from previous efforts because it combines estab-
lished visualization views (time series, histograms, and
rose diagram) to form glyphs. This lets users more easily
interpret the glyph by using prior graphic knowledge.

Software project management data
The management systems for large software projects

collect a huge amount of project information, frequent-
ly organized hierarchically as in Figure 1. The top levels
of the hierarchy have fewer aggregate objects while the
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lower levels have greater numbers of individual objects.
In our system a scatter-plot interface (not shown)

allows users to access and filter the objects at different
levels of the hierarchy. Users may select and view aggre-
gate objects at any level in any of our information-rich
glyph representations. These tools and visual represen-
tations let users filter software objects at the upper lev-
els so they can focus on a small number of objects,
analyzing them at the lower levels for particular tasks. 

Timewheel glyph
Our timewheel glyph is used to visualize time-orient-

ed information. A conventional way to visualize time-
oriented information involves a time-series plot—a line
chart with time on the x-axis and a variable on the y-axis.
The timewheel glyph displays multiple time series, with
each series rotated around a circle, as in Figure 2. To sim-
plify data attribute identification, each attribute is col-
ored according to a rainbow-hue colormap. We used
color because it is perceptually discrete.2 The arrows in
Figure 2 show the time increment for each series.

Figure 3 shows 16 software releases using the time-
wheel glyph interface. From Figure 3, we can easily pick
out two major trends: the increasing trend and the
decreasing or tapering trend. The increasing trend glyph
looks like a prickly fruit (the objects outlined in white
in Figure 3). The tapering trend glyph, on the other
hand, looks like a coconut husk or a hairy fruit (the
objects outlined in red in Figure 3).

In addition to showing the global trends of an object,
the timewheel glyph also helps in examining differences
in trends within an object. For example, in Figure 2 the
overall trend of userId-1 is tapering; however, the anew
and dnew attributes (two variables measuring newly
written code) possess two divergent increasing trends.
Because the aerr and derr attributes (two variables mea-
suring error density) are tapering, we can deduce that
at the start of their career userId-1 fixed errors, but later
moved on to developing new code. Error fixing evidently
accounted for an important portion of userId-1’s activi-
ties because it corresponds to the dominant trend.

An obvious and traditional way to arrange a set of time
series on a 2D plane would be to lay
them out linearly. For tasks involv-
ing browsing or searching for gestalt
patterns, the circular layout may be
more effective than a linear layout
for five reasons:

1. It reduces the number of eye
movements per object.

2. It’s less susceptible to local
patterns.

3. It weakens the reading order
implications.

4. It separates objects with less
space, leading to gestalt percep-
tion.

5. It’s rotation invariant.

Let’s consider the ramifications of
these characteristics in order.

Reducing eye movements per object. Cropper
and Evans as well as Danchak found that the visual angle
over which the eye is most sensitive is 0.088 radians (5
degrees).3 Cropper and Evans subsequently stated 

The presentation of information in “chunks” ...
which can be taken in one fixation will help to
overcome the limitations in the human input sys-
tem in searching tasks.
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Laying out the time series in a linear fashion as in Figure
4 requires more than one eye fixation. Laying them in a
circular fashion as in Figure 5 allows all of the time plots
to be taken in with one eye fixation. The circular layout
reduces the glyph pattern’s diameter and better match-
es the eye’s field of vision.

A limit exists on the number of object attributes that
can be displayed in the timewheel for it to fit within the
area of an eye fixation. As a rough approximation, for a
viewer 15 inches from the screen, a visual angle of 5
degrees translates into a circular area on the screen with
a radius of 0.65 inches. Our experience is that we can
comfortably encode 10 variables in that area. It may be
possible to encode as many as 15 variables before the
display becomes too dense to interpret.

An alternative layout scheme arranges the time series
in rows (Figure 4). This reduces the number of eye fixa-
tions; however, the user might begin to cluster the data
by rows because we are conditioned to it from reading
text. This would adversely affect your ability to sense the
overall time patterns in the glyphs. Another possibility
positions the time series out in 3D space and encodes
properties along the z-axis. The drawback to this 3D lay-
out is occlusion: The first few series occlude the others.

Less susceptible to local patterns. Linear
ordering highlights local patterns. For example, in Fig-
ure 4 the cyclic local pattern shown in Figure 6 forms a
dominant visual impression. The local pattern formed
here occurs because our perceptual system groups the
two time series based on the gestalt principle of closure.4

This grouping, however, is spurious because the object
attributes have no ordering.

Local grouping effects emphasize the perceptual dif-
ferences between the two rows in Figure 4. By compari-
son, the circular placement suffers less because the
symbols are not placed directly next to each other. As an
example, Figure 5 shows that the rows in Figure 4 are in
fact quite similar—one is merely a rotation of the other.

Reading order. A linear layout encourages users to
read the plots from left to right. Since the attribute types
are unordered, this may cause false impressions. For
example, more importance could be placed on the series
at the beginning or end. Unlike linear ordering, a circu-
lar layout positions each time series at the same distance
from the glyph center. In this way, the time series’ posi-
tion has a much weaker ordering implication. Reading
order is another reason why the two rows in Figure 4
appear different. The top object has cyclic patterns at its
beginning and end, while the bottom object has two
opposing patterns.

Less separation for gestalt perception. The
circular layout creates a strong gestalt pattern out of
individual time series. We recognize the circular pat-
tern because it is a common geometric shape. On the
other hand, the linear layout ties the time series togeth-
er only through spatial proximity. As a result, for us to
see the boundaries between objects, we have to leave a
lot more white space between the series than in the
timewheel case.

The top row in Figure 7, for example, contains the
same information as the bottom row and is divided by
the same amount of white space. It is hard to see the
division between the top objects, while it is much easi-
er to see the division between the bottom objects.
Instead of white space we could use a bounding box to
indicate object boundaries for the linear layouts,
although this adds to the density of the display and may
distract the user.3

Rotation invariant. Some aspects of our shape
perception depend on orientation. For example, we have
difficulty recognizing faces and facial expressions from
upside down images. Our engineering assumption when
designing our timewheel glyphs, and our subjective
experience using the glyphs, is that this class of symbol
perception is rotation invariant. Our ability to perceive
patterns in timewheels is independent of their orienta-
tion. Timewheels, in our experience, are particularly
effective for showing global symmetry.

Some situations call for a linear ordering rather than
a circular ordering. These include, for example, tasks
where we want to sense the change in a natural ordered
progression of time series, such as multiple time series
corresponding to several different releases of a software
product. Because the circular layout has a very weak
ordering implication, it cannot express the ordered pro-
gression of the various time series. The circular layout
also proves less appropriate for tasks involving pair-wise
comparisons. The time series within a timewheel rotate
differently, making it more difficult to compare them.
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We designed the timewheel for gestalt comparisons
between a set of time trends related to one object with
that of another.

Another shortcoming of the circular layout is that it
has lower information density or “data to ink ratio.”5 In
Figures 4 and 5 the information density is approximately
1.78 time series per square centimeter using the linear
layout and 1.26 using the circular layout. The circular
layout is slightly less efficient because it wastes the space
in the middle.

Besides the horizontal linear ordering, we investi-
gated vertical orderings. For our visualizations we pre-
fer horizontal layouts, since both screens and people
tend to have horizontal aspect ratios. This may be
because our eyes are arranged side-by-side rather than
top-to-bottom on our heads.

Another common way to represent time data maps
the time data attribute to real time, then animates the
visualization display. Although effective for identifying
outliers, animations prove less effective than traditional
time-series plots for determining overall time patterns.

3D wheel glyph
The 3D wheel encodes the same data attributes as the

timewheel, but uses the height dimension to encode
time. Each variable is encoded as an equal slice of a base
circle, and the radius of the slice encodes the variable’s
size as in a rose diagram.6 Each variable is also colored
in its own discrete, shaded color.

Figure 8 shows the 16 releases from Figure 3 using 3D
wheel glyphs. An object with a sharp apex (as in the
right-most glyphs in Figure 8) has an increasing trend
through time. An object that balloons out (as in the
lower-left glyphs in Figure 8) has a tapering trend.

The 3D wheel shares the advantages of the timewheel
over linear ordering methods. However, unlike the time-
wheel, the 3D wheel allows users to perceive the dom-
inant time trend through its shape rather than through
the global pattern formed by the series. As a result, it is
easier to identify overall time trends using the 3D wheel.
Accurately determining the trend of any particular time
series within the 3D wheel glyph (or making pair-wise
trend comparisons) proves more difficult because
human depth perception is not as powerful as our abil-
ity to compare 2D spatial positions. It is also harder to
identify divergences in trends within a 3D glyph because
of occlusion and perspective. Even with occlusion in the
3D wheel, it is still much less than if we were to lay out
the time series over the z-axis.

Infobug glyph
The infobug glyph looks like an insect, hence the

name. The infobug’s wings, head, tail, and body repre-
sent four important classes of software data.

The wing
Each wing represents a time series with time running

from top to bottom. The x-axis on the left wing encodes
the number of code lines, and the x-axis of the right wing
encodes the number of errors. Usually, increases in code
bring about comparable increases in number of errors.
This results in symmetrical insect wings.

Increases in code not accompanied by similar increas-
es in errors may imply poor testing of the component. On
the other hand, increases in the number of errors not
accompanied by similar increases in code could mean
that the existing code is inherently difficult, has architec-
tural problems, or is poorly written and in need of re-engi-
neering. Nonsymmetrical wings help identify these cases.

Wing position (whether starting at the top or bottom)
indicates the time at which the project started, while the
wing shape shows whether the number of code lines and
the number of errors found are increasing, decreasing,
or static with time.

Through animation the infobug glyph can show infor-
mation at different times within the project. Clicking on
the wings selects a time-slice, causing the head, body,
and tail to update. The selected time slice shows up as a
red band on the infobug wing. The time component for
all infobug glyphs can be changed simultaneously by
using the slider at the bottom of the interface (Figure 9).
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The head
A particular software component may consist of sev-

eral different types of code, for example C, C++, Java,
or VRML. The code consistency of software components
indicates the components’ capabilities and purposes.
For example, knowing that VRML is used suggests 3D
representations. Examining such data might also show
changes in development practices and in the require-
ments for a particular software component.

The head shows the relative code sizes, by type, for a
given time slice. The code type is color-coded. The color
scale for the encoding appears at the left of the inter-
face in Figure 9. The color scale on Figure 9 is discrete,
with 18 different hues. Although the scale looks con-
tinuous, the different hues are clearly visible and easily
distinguishable on a computer monitor. The software
component in Figure 10, for example, consists of C code,
SD (state definition) code, and header files. By interac-
tively changing the time component, we can obtain
information on how the different code types evolve.
Such changes give us hints about a software compo-
nent’s changing needs.

The tail
In the triangle-shaped bug tail, the base encodes the

number of code lines added and the height encodes the
number of code lines deleted. The tail base further divides
into two parts: code added due to error fixing (red) and
code added for new functionality (green). Figure 9 shows
that most of the releases consist of code added for new
functionality, except for bug fixing release-8.

Tail shape determines the ratio between the number
of code lines added to lines deleted. A short, squat trian-
gle like the one for release-8 shows a high added-to-delet-
ed ratio. The triangle shapes for most of the other releases
are less squat, indicating a lower added-to-deleted ratio.

The body
Often important, component size reflects the extent to

which a component affects the project. It is encoded in
two ways: through the number of altered files and
through the number of child objects a software compo-
nent contains. The bar in the middle of the infobug body
shows the absolute number of file changes. The sizes of
the black circles on the body encode the number of child
components contained within the current objects. Child-
group size helps us gauge whether a software object is

wide (related to many other compo-
nents) or narrow (related to only a
few other components). The type of
child objects encoded depends on the
software hierarchy of the system
being analyzed. Our system, for
example, is based on the software
hierarchy shown in Figure 1.

In our experience, the infobug
wings and head may dominate our
perception of the glyph and make it
seem less integrated—it may not be
viewed as a whole. This contrasts
with Chernoff faces, where the dif-
ferent facial features are naturally

viewed together because of our lifelong training in rec-
ognizing faces. This contributes directly to the main
strength of Chernoff faces—our ability to use them for
rapid gestalt comparisons. Nevertheless, it is also more
difficult to separate the different facial features and
determine which feature(s) contribute to a particular
facial expression (visual pattern). Thus, it may be diffi-
cult to interpret the face glyphs when mapped to data.
Infobugs make gestalt comparisons slightly harder, but
simplify analyzing the glyph and separating the specific
parts of the glyph (sections of the data) contributing to
a visual pattern. In the future, we hope to experiment
with the saliency of different infobug components and
determine their effectiveness. We would also like to
explore the importance and effect of integration, and
ultimately hope to strike a good balance between inte-
gration and separability.

Glyph design philosophy
Three guiding principles motivated our glyph designs:

small multiples, established visualizations, and infor-
mation rich glyphs.

Small multiples
Small multiple designs contain a small number of

visually rich representations arranged on a grid, where
each representation must be derived from the same
design structure. Figures 3 and 9 show examples of small
multiple designs. Each visualization contains 16 glyphs
arranged on a 4 × 4 grid, with each glyph built from the
same circular or insect-like design structure. Small mul-
tiple designs are effective for three reasons:

1. Visual constancy: Because the same design structure
repeats, we tend to focus on the change in data from
one representation to the next rather than on
change in graphical representation.

2. Economy of perception: From a small multiple
design, “An economy of perception results; once
viewers decode and comprehend the design for one
slice of data, they have familiar access to data in all
the other slices.”7

3. Uninterrupted visual reasoning: “Their multiplied
smallness enforces local comparisons within one
eye-span, relying on an active eye to select and make
contrasts rather than on bygone memories of images
scattered over pages and pages.”7
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Established visualizations
We combine well-known, established visualization

views (time series, histogram, and rose diagram) to
form our glyphs. This solves an important problem with
information rich glyphs discovered by Chernoff in
1973.1 Chernoff mapped data attributes onto features
of faces in the hope of exploiting a person’s innate abil-
ity to group faces in interesting ways. The problem, how-
ever, is that salient facial features do not necessarily
conform to important information relationships.8 In
addition, facial groupings may be subjective and not
consistent for all users.

By using established visualization views, we ensure
that the visual patterns formed within the glyph will bet-
ter correspond to real patterns within the data set—and
thus recognized by glyph users. In addition, interpreta-
tion of the glyph is simplified by using prior graphic
knowledge that involves significantly less interpretive
subjectivity than with unconventional glyphs.

Information rich glyphs
Our glyphs have visually rich representations so that

we can view many dimensions of a data object simulta-
neously. Each glyph consists of a clustered set of simple
graphical artifacts. Users achieve visual grouping of the
elements in each glyph by the proximity of the visual
elements as well as by arranging the elements to form a
familiar object or a common geometric shape (the insect
glyph or the circle). 

Another powerful method for viewing multidimen-
sional objects is through linked scatter plots.9 Informa-
tion rich glyphs have an advantage over linked plots:
information rich glyphs preserve the “objectness” of the
data elements. In other words, all properties of a par-
ticular software component group together spatially.
This preservation is important in analyzing software sys-
tems because the data elements within that domain con-
form to real programs, people, or concepts.

Another possibility, using dense glyph fields, densely
concentrates stick-figure glyphs into a 2D or 3D space.10

In such displays, useful data is extracted from the “tex-
ture contours” or variation formed within the dense
glyph field. A weakness of this approach is that unlike
scatter plots, it ignores the use of spatial cues. These cues
can effectively reveal relationships among data attrib-
utes. It also falls prey to the “moiré effect in which the
designs interact with the physiological tremor of the eye
to produce the distracting appearance of vibration and
movement.”5

Conclusion
We have developed three information-rich glyphs and

applied them to a large, multidimensional data set in
the software project management domain. The glyphs,
coupled with filtering and aggregation, highlight inter-
esting patterns and anomalies in the data set.

A problem with our approach is that the aggregate
summaries used in the glyphs may hide important data
patterns from the user. To ensure that the user does not
lose any crucial information, it is important visually to
encode statistics that may indicate the accuracy and
importance of a particular aggregate, such as number

of data objects within the aggregate, or the standard
deviation for all the summary data attributes. We
already have some of this information integrated into
our glyphs, but hope to include more in the future. ■
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