Component Selection for the Metro Visualisation of the Self-Organising Map

Robert Neumayer, Rudolf Mayer, and Andreas Rauber
{neumayer,mayer,rauber}@ifs.tuwien.ac.at

Vienna University of Technology
Institute for Software Technology and Interactive Systems
Favoritenstraße 9-11, 1040, Vienna, Austria

presented at WSOM’07
September 4, 2007
plain clusterings overwhelmingly difficult to understand

visualisation of

- cluster quality
- instances
- attributes/components across clustering

component planes

+ visualisation of all components
- one illustration per component
the metro visualisation

component planes \rightarrow component lines
metro line metaphor for data visualisation
 skewed distances
 layer of abstraction / simplified structure
 easier to understand, interpret and memorise
 overlayed onto any som visualisation
unsupervised feature selection with respect to a certain som
aggregation of component lines
london metro maps

real-world map

Figure: correct 1932 metro map

skewed distances

Figure: classic 1933 metro map
component planes

model vector visualisation
partitions of projections of single variables
number of plots equals number of components

Figure: component plane visualisation for a single variable
one single, continuous component plane

projection of single variable
discretisation

Figure: after discretisation step for a single component
binned component plane

computation of centres of gravity
interconnecting lines

Figure: metro visualisation based on centres of gravity for a single component
distances between component lines

distance measure necessary
minimum pairwise distances
computed for both directions

Figure: distance function for component lines
visual enhancements

snapping of lines onto som grid
heuristic algorithm
leads to aligned metro lines

Figure: snapping of metro lines
component selection 1/2

visualisation not always feasible
selection of feasible components
for a given som clustering

visualisation of scattered components makes less sense
component selection 2/2

(a) plain component planes

(b) binned component planes

Figure: not all components are equally feasible for metro visualisation

<table>
<thead>
<tr>
<th></th>
<th>.750</th>
<th>.546</th>
<th>.500</th>
<th>.214</th>
<th>.210</th>
<th>.177</th>
</tr>
</thead>
</table>

Table: component region ratios
component aggregation

plotting of all components might overload the illustration
selection of most feasible components
 ward's clustering on component lines
 based on line distance function
resultant illustration is less crowded
the boston housing data set

describes housing in the boston area
506 instances
14 components
20 \times 16 = 320 \text{ units}
discretisation performed for six bins
boston housing discretisation step

Figure: component planes visualisation of all variables

Figure: all variables after discretisation
binned component lines

Figure: discretisation is performed for all components
snapped component lines

Figure: component lines are snapped onto the som grid
aggregated component lines

Figure: aggregation of similar lines according to line distance
selected components

Figure: only components selected by scattering measures are visualised
selected and aggregated components

Figure: only selected components are aggregated and subsequently visualised
... we’ve come a long way

from 14 component planes plots

... to a single, slim visualisation

Figure: component planes visualisation of all variables

Figure: only selected and aggregated components are visualised
recap

plotting of component planes in one single illustration
visualisation of correlations between components
aggregation of highly correlated components
overlaying existing som visualisations
things to do and see

line distance functions
weighting criteria for snappings
heuristics for setting parameter values
intersections as SOM quality criteria
 intersections independent from clusterings and initialisation?
more infos

http://www.ifs.tuwien.ac.at/~neumayer
http://www.ifs.tuwien.ac.at/dm