
Hand Dynamics for Behavioral User Authentication

Abstract—We propose and evaluate a method to authenticate
individuals by their unique hand dynamics, based on measure-
ments from wearable sensors. Our approach utilises individual
characteristics of hand movement when opening a door. We
implement a sensor-fusion machine learning algorithm to classify
individuals based on their hand movement and conduct a lab
study with 20 participants to test the feasibility of the concept
in the context of accessing physical doors as found in office
buildings. Our results show that our approach yields an accuracy
of 92% in classifying an individual and thus highlights the
potential for behavioral hand dynamics for authentication.

I. INTRODUCTION

Passwords are still the most widely used approach to
authenticate a user towards a system. As highlighted in
the scientific literature, knowledge-based authentication
methods have several shortcomings in both security and
privacy [31], [23], [5]. On the one hand, users find it difficult
to choose and remember complex and secure passwords.
On the other hand, passwords may be lost, forgotten or stolen.

In security research, physiological biometrics relying on
static physical attributes of an individual (’something you
are’), such as face, iris or fingerprints have been proposed
as alternative means of authentication. However, also these
systems have been proven to be potentially infeasible and,
besides their usability issues, are also considered as privacy
invading as they often involve high-resolution cameras [26],
[29]. Furthermore, leaked biometric information and misuse
may have significant impact on the affected individual. If
biometric information is compromised, it is also hard yet
impossible to renew an account.

Behavioral biometrics (’something you do’) are often
considered as an alternative solution as they are based on
the combination of a number of weak invariant feature that
are strong in combination and hard to impersonate [14], [1].
So far, different activities such as walking or keystroke and
touchscreen interaction have been proposed in the scientific
literature.

To the best of our knowledge, we are the first to consider
hand dynamics for authentication based on movement
characteristics when opening a door. Our approach is solely
based on sensor data from built-in sensors in wearable
devices, such as smartwatches. The movement description
is based on information obtained from sensors such as
gyroscope, magnetometer and accelerometer. To classify
individuals based on their movement characteristics, we
propose a machine learning based approach, comprising of
various statistical and physical features and Support Vector

Machines (SVM).

In addition, we explore manufacturer-dependent and
-independent characteristics of commercial sensors as used
in smartphones and wearables. To evaluate our approach, we
collected data from 20 participants that each opened a door 10
times. Our lab study shows that our solution allows to classify
individuals with an accuracy of 92% based on their hand
movement. Despite the tremendous advances in biometric
technology, the recognition systems based on the measurement
of single modality cannot guarantee 100% accuracy. In fact,
these factors laid the foundation of the systems which use
multiple independent evidences of biometric information from
either single or different biometric modalities, very often
termed as multi-modal biometric systems [30]. We consider
our approach to be a reliable part of such a multi-modal
system.

The remainder of the paper is organized as follows: Section
II describes the sensors used for this paper in detail. Section
III reports on state of the art methods for behavioral biometrics
and available datasets based on information obtained from
accelerometers, gyroscope and magnetometer sensors. Section
IV details the method to obtain our dataset, and the characteris-
tics thereof. Section V explains our authentication method. The
experimental results revealing the efficacy of the method are
described in Section VI. The paper concludes with discussions
and future work in Section VII.

II. SENSORS MEASUREMENTS

Today’s smartphones are equipped with a variety of sen-
sors: GPS, motion sensors, magnetometers, proximity sensors,
microphones, cameras, and radio (cellular, Bluetooth, Wi-
Fi, RFID, NFC) antennas. Moreover, sensors are still a fast
growing segment of these devices. We therefore expect even
more sensors to be part of future devices. According to The
Wall Street Journal, Samsung will embed iris scanners into
future mobile devices [20]; and Google will produce a 3D
imaging tablet based on infrared sensors [21].
The rich set of built-in sensors enable a wide range of
applications [19]. For instance, Michalevsky et al. [24] used
an MEMS gyroscope as found in smartphones to extract
speech. This highlights the rich capabilities of these sensors.
In this paper, we use motion sensors and the magnetometer
embedded in Google Nexus 4 smartphone to authenticate a
user based on hand movement when opening a door. This
smartphone first appeared on the market in November 2012.
The key specification is given in Table I. In the following,
we will describe the device’s motion sensors (accelerometer



TABLE I
KEY SPECIFICATIONS OF GOOGLE NEXUS 4

Processor Qualcomm SnapdragonTM S4 Pro CPU
Operating

System Android 4.2 (Jelly Bean)

Memory 2GB RAM, 16GB flash memory

Display 4.7” WXGA (1280x768)

Battery 2100mAh

Senors

GPS
LGE Accelerometer Sensor

LGE Gyroscope Sensor
LGE Magnetometer Sensor

LGE Proximity Sensor
LGE Barometer Sensor

LGE Light Sensor
LGE Gravity Sensor

LGE Linear Acceleration Sensor
LGE Microphone

and gyroscope) and the magnetometer capabilities to measure
movement data in detail.

A. Accelerometer, Gyroscope and Magnetometer

Our movement data is based on sensor data from an
accelerometer, gyroscope and magnetometer embedded in
Google Nexus 4.

The accelerometer sensor measures the amount of force
applied on the smartphone trying to move it. For instance,
when the smartphone is laying flat with its back on a table,
the acceleration value of phone’s Z axis should be the gravity
force (9.81m/s2) and the other two axes (X and Y) should be
0m/s2.

The gyroscope sensor measures the rotation speed around
X, Y and Z axis. For instance, when the smartphone is at rest,
the gyroscope measurements should be 0◦/s.

The magnetometer measures the ambient magnetic field
force in the X, Y and Z axis. If there is not magnet or large
metal object nearby, it indicates the magnetic field of the earth.

Android uses a standard 3-axis coordinate system to express
values for the acceleration, gyroscope and the uncalibrated
magnetometer (Figure 1). When the phone is held in an upright
position with the screen facing the user, the Z axis points to
the outside of the screen, the X axis is horizontal and points
to the right, the Y axis is vertical and points up.

Table II shows the specifications of the accelerometer,
gyroscope and magnetometer sensors of Google Nexus 4: the
minimum delay allowed between two events in microsecond,
the resolution of the sensor in the sensor’s unit, and the
maximum range of the sensor in the sensor’s unit. Both the
delay and the resolution are adequate to capture the movement
of the hand with a sufficient detail and precision.

B. Empirical Sensor Data

To verify and augment the device characteristics given
by the specification, we discuss in the following some of
the findings presented by Ma et al.[22] in a performance

Fig. 1. Coordinate system (relative to a device).

TABLE II
SPECIFICATIONS OF THE ACCELEROMETER, GYROSCOPE AND

MAGNETOMETER OF THE GOOGLE NEXUS 4

Sensor Min.
Delay(µs) Resolution Max.

Range
LGE

Accelerometer(m/s2) 5000 0.0012 39.23

LGE
Gyroscope(rad/s) 5000 0.0011 17.45

LGE
Magnetometer(µT) 20000 0.1495 4912

TABLE III
GYROSCOPE AND ACCELEROMETER SAMPLING FREQUENCY

Average Max Min StdDev

Gyroscope (fast) 0.00503 0.00583 0.00424 0.000034

Gyroscope (normal) 0.201 0.202 0.201 0.000068

Accelerometer (fast) 0.00503 0.00536 0.00496 0.00001

evaluation of the accelerometer, gyroscope and orientation of
the Google Nexus 4. In case the orientation is not provided
by a real sensor, it is a software sensor that combines
accelerometer and magnetometer measurements and hence
provides orientation information.

Table III shows the maximum possible frequency of the
gyroscope and accelerometer, indicating that there is relatively
little variation in the sampling frequency. It further shows that
the fastest sampling rate for the accelerometer and gyroscope
sensors are 0.00496s and 0.00424s respectively, approximately
equal to 0.005s of the specifications (Table II).

The sampling frequencies with the normal sampling rate
are approximately 0.201s for both sensors, which is a quarter
of the sampling frequency under faster rate. The variation
reported for the gyroscope at medium sampling rate is similar
to the fast sampling rate.

Table IV shows the stability of the accelerometer output.
Ma et al. [22] conclude: (1) the accelerometer and gy-

roscope sensor are very stable, (2) the derivation error of
the digital compass is about 170 degrees under the faster
rate, which shows that it is unstable and therefore unreliable
under certain circumstances, (3) the standard deviation of the
accelerometer under normal sampling rate (0.2s) is higher than



TABLE IV
ACCELEROMETER STABILITY MEASUREMENTS

Average Max Min Std Deviation

Fastest X(m/s2) 0.0697 0.1725 -0.0262 0.0274
Sampling Y(m/s2) 0.0187 0.1278 -0.0781 0.0253

Z(m/s2) 9.6603 9.8920 9.3742 0.0441

Normal X(m/s2) 0.0113 0.1142 -0.0548 0.0308
Sampling Y(m/s2) -0.0634 -0.0031 -0.1269 0.0289

Z(m/s2) 9.7541 9.9015 9.5920 0.0524

TABLE V
ACCELEROMETER AT REST

ACCELEROMETER (SAMPLING 0.1S)

Glove

Average Max Min Std Deviation

X(m/s2) 0.0041 0.0225 -0.0226 0.0106
Y(m/s2) -0.0018 0.0272 -0.0190 0.0125
Z(m/s2) 10.2996 10.3281 10.2732 0.0100

Handle

X(m/s2) 0.0028 0.0229 -0.0080 0.0067
Y(m/s2) -0.0014 0.0160 -0.0228 0.0102
Z(m/s2) 10.8233 10.8529 10.7900 0.0132

the standard deviation under fastest rate for each axis (cf. Table
IV), and (4) the standard deviation of sampling frequency
under normal rate is the double of the one under the fastest
rate. We can thus expect to achieve sufficient accuracy and
precision for measuring our hand movements with the selected
device, at the highest sampling rate.

C. Sensors Differences Between Devices

During fabrication, subtle imperfections arise in sensors,
which yields different responses to the same stimulus.
Several studies investigated the effect and magnitude of these
imperfections; [11] uses the accelerometers, [4] analyze the
frequency response of the speakerphone-microphone plus the
accelerometer calibration errors, and [8] uses the microphones
and speakers to provide unique fingerprints of the devices
-[11], [4] and [8] use these imperfections in the sensors to
identify the devices.

We evaluate the differences and the stability of our two
Google Nexus 4, which we use to collect the data. One phone
is used to collect the data from the user’s hand movement
– it is mounted on a glove (cf. Figure 5). The other phone
collects the data of the door handle movement - it is mounted
on the door handle (cf. Figure 6). Figures 2-4 show the values
of the accelerometers, gyroscopes and magnetometers of the
two phones phone located in the glove and in the handle,
respectively, when both phones are at rest – laying flat with
the back on the table.

Tables V-VII shows the average, maximum, minimum and
standard deviation of the sensors (accelerometer, gyroscope
and magnetometer) of both phones at rest, and with a sample

Fig. 2. Accelerometer at rest.

Fig. 3. Gyroscope at rest.

TABLE VI
GYROSCOPE AT REST

GYROSCOPE(SAMPLING 0.1S)

Glove

Average Max Min Std Deviation

X(◦/s) -0.0262 0.0350 -0.0262 0.0246
Y(◦/s) 0.0175 0.0175 -0.0568 0.0264
Z(◦/s) 0.0149 0.0149 -0.0577 0.0259

Handle

X(◦/s) -0.0087 -0.0087 -0.1923 0.0388
Y(◦/s) 0.0044 0.0044 -0.2404 0.0378
Z(◦/s) -0.0026 0.0586 -0.0026 0.0264

rate equal to 0.1s . The sampling frequency is closer to the



Fig. 4. Magnetometer at rest.

TABLE VII
MAGNETOMETER AT REST

MAGNETOMETER (SAMPLING 0.1S)

Glove

Average Max Min Std Deviation

X(µT) -22.5586 -21.5393 -23.0392 0.3673
Y(µT) -10.7986 -10.2585 -11.3388 0.2484
Z(µT) -31.7695 -31.0791 -32.2189 0.3234

Handle

X(µT) -20.4293 -19.7388 -21.2387 0.4472
Y(µT) -11.3388 -10.5591 -11.9385 0.3405
Z(µT) -36.6889 -36.1786 -37.0193 0.2131

0.2s of the normal sampling rate than to 0.005s of the fastest
sampling rate. We note that the standard deviations of the
phone located in the glove are smaller than the one located in
the door handle. Meanwhile the average values of the phone
located on the handle are closer to zero than the other one.
But most of the standard deviations and the average values are
smaller in both cases than the obtained values for the fastest
sampling rate by Ma et al. [22]. However, at this point it must
be mentioned that we only used a subset of their test cases.

III. RELATED WORK

The potential of human behavior for user authentication
using wearable sensors has already been discussed in the
scientific literature. One of the human behaviors considered
unique is arm’s flex. Negara et al. [25] were the first to
examine the uniqueness of arm movements when answering
calls. They conduct their experiments with a tri-axial
accelerometer embedded in a Pantech Sky Racer smartphone.
They evaluate the cosine similarity and the euclidean distance
of the acceleration pattern in 6 users and with 10 repetitions
per user. They achieve 87.8% accuracy when the phone is
picked from the table, and 90% accuracy when the phone is

picked from the pocket.

Biometric gait recognition using smartphones has recently
gained attention: Derawi et al. [10] and [9] use the low-grade
accelerometers embedded in commercially available mobile
devices to collect the data. [10] calculates the average step
cycle of the users and use Dynamic Time Warping to compare
them. They considered 51 users and they obtained an error
rate of 20.1%. They say that biometric gait recognition can
be run in smartphones but it is not yet ready for practical use,
because the sensors embedded in the smartphones contain a
lower sample rate. In [9] the authors use the accelerometer
embedded in a Samsung Nexus S smartphone to implement
an application for activity and gait recognition in the Samsung
Nexus S smartphone. They extract the cycles of the users and
they use the Manhattan (L1) distance to compare them. They
consider 5 users and they correctly identify 89.3% of the users.

Touch screen gestures have recently gained popularity as
a new behavioral biometric for user authentication [13]. This
is because the data is indicative of the user hand geometry
and muscle behavior. Such biometric characteristic variations
have the potential to provide user discrimination. Feng et al.
[13] consider 23 smartphone users. They extract the following
features: how fast a user performs a swipe/zoom gesture; the
time difference between two clicks; contact surface area; swipe
location preference; length of the swipe or zoom gestures;
slope of a user’s swipe or zoom gestures; and the running
application context. They compare the features with the com-
bination of the nearest neighbor (1-NN) classifier and Dynamic
Time Warping (DTW). They correctly identify 90% of the
users, in real-life naturalistic conditions.

A. Available Datasets

To be able to better compare our results to previous work,
we investigated datasets containing biometrical data previously
collected and published. We present an overview in the fol-
lowing. However, the vast majority of the research works and
available datasets using body worn inertial sensors focus on
recognizing human activity instead of classifying individuals.

[33] models and recognizes human activity using wearable
sensors. The authors record the data using a multimodal
sensing platform called MotionNode [16], which is packed
firmly into a mobile phone pouch and attached to the users’
front right hip. The resolution is equal to 0.0019m/s2±5% for
the accelerometer, 0.07◦/s for the gyroscope and 0.1µT for the
magnetometer sensors. The sample rate is equal to 0.01s for
the accelerometer, gyroscope and the magnetometer sensors.

Bao et al. [3] use a two-axis accelerometers sensor
(ADXL210E) with a sample rate equal to 0.05s. The ac-
celerometers are attached on the limbs (upper arm, lower arm,
upper leg and lower leg), plus the right hip to 20 users. The
users perform random sequences of 20 activities (e.g., walking,
eating and drinking, reading, etc.)

Ravi et al. [27] use a a triaxial accelerometer CDXL04M3
marketed by Crossbow Technologies with a sample rate equal



to 0.02s. The accelerometer is attached on the pelvic region
to two users. The users perform eight different activities
(e.g., walking, running, sit-ups, etc.) in multiple rounds over
different days.

Banos et al. [2] use inertial measurement units (Xsens MTx)
with a sampling rate 0.02s. The inertial measurement units
are attached on the left calf, left thigh, right calf, right thigh,
back, left lower arm, left upper arm, right lower arm and
right upper arm of 17 users. The volunteers perform warm
up, cool down and fitness exercises considered for the activity
set, where there are some activities with the arms like arm
frontal crossing, arms lateral elevation, etc.

Bulling et al. [6] present a tutorial on human activity
recognition using body worn inertial sensors. They conduct a
small user study with three Inertial Measurement Units (IMUs)
with a sampling rate 0.03s. The inertial measurements units
are attached on the right hand, as well as on the right lower
and upper arm to two volunteers. The volunteers performs
26 activities repetitions of some activities, such as opening
window, closing a window, cutting with a knife, etc.

No one of the dataset place the sensors in the hand, except
for [6]. We therefore tested that dataset for user authentication
and we got different accuracy for the sensors located in the
lower arm and in the hand. For example, for the closing
window activity we achieved an authentication accuracies of
93% with the sensors in the hand and 85% with the sensors
in the lower arm, respectively. However, these results, and the
dataset in general, are not useful because the dataset has only
two users.

As there was no fitting dataset available for our task, we
collected and make publicly available the dataset described in
the following Section IV).

IV. CONSTRUCTION OF THE DATASET

Although there exist multiple datasets which describe hu-
man movements based on information obtained from sensors
such as gyroscope, magnetometer and accelerometer, there is
no single dataset that investigates the hand dynamics and the
door handle movement when opening a door [33], [3], [27],
[2]. Bulling et al. [6] investigate the hand dynamics when
opening and closing windows, but the dataset has only two
users.

This is why we collect our own dataset with 20 participants.
The size of our dataset is comparable to previous studies in
behavioral biometrics. We utilise two Google Nexus 4 phones
to collect accelerometer, gyroscope and magnetometer data. In
Section II we discussed the characteristics of these phones. In
Section IV-A we describe our protocol for collecting the raw
data from the sensors, and in Section IV-B we describe the
resulting data files.

A. Sensor Data Collection

We used the AndroSensor app1 to collect and store the
sensor measurements in a data file (csv file). This app allows

1http://www.fivasim.com/androsensor.html

Fig. 5. User opening the door with the smartphone attached to the glove.

to choose the sampling interval among normal, fast and very
fast, and the recording interval between 0.005s and 1s. We
choose a sampling interval equal to 0.1s, as settings less than
0.1s have caused frequent crashes in our Google Nexus 4
smartphones.

The hand and door handle movements were tracked using
different devices. One phone is used to collect the data from
the user’s hand movement when he opens a door. It was located
in the right hand of the right-handed users and in the left-hand
of the left-handed users, as can be seen in Figure 5. The phone
was fixed in a non-intrusive way on the outside of a glove,
thus providing as little disturbance to normal hand movement
as possible. Figure 5 shows a user opening the door with the
Google Nexus 4 attached to the glove. The other phone was
placed on the door handle, but on the other side of the door, to
ensure that users do not displace it when they open the door,
as depicted in Figure 6.

We recorded the hand and the door handle movements of 20
participants when they opened the same door. 19 participants
were right-handed, and one was left-handed. They repeated the
movement ten times in a continuous sequence. To synchronize
the collected data and to extract individual attempts from the
continuous sequence, the participants raised and lowered the
arm before and after opening the door.

B. Activity Labels

For each participant we extract the periods of time when
they were opening the door. Therefore we have 20 data files,
10 data files with the data of the hand movements (e.g.,
hand1d1.csv) and 10 data files with the data of the door handle
(e.g., door1d1.csv). Moreover, the data of the hand and of



Fig. 6. Sensor setup in the door handle.

the door handle have been synchronized regarding the starting
time.

The median time to perform the door opening activity varies
between the minimum median time 3.131s of participant
#18 and the maximum median time 4.9878s of participant
#2. The minimum variance of the time to open the door is
0.505s of the participant #10, the maximum variance of the
time to open the door is 2.828s of participant #2 and the
mean-variance for all the 20 participants is 1.3905s. The
sensors sampling rate was set to 0.1s, and the recording
interval in the data files is 0.101s.

The columns of the data files are show in Table VIII, the
rows representing the different time instants.

V. AUTHENTICATION METHOD

The act of open a door is mainly one of the involuntary
control of hand and arm movements, we had reason to believe
at the start of this investigation that opening a door would be
different enough between individuals. Furthermore, previous
researches have shown that the arm bending action results in
various unique traits due to various force strength exerted from
various posture and biological muscular structure [25]. Further,
the hand-pressure pattern when a user grips a gun [28] or the
dynamics of the signature have been already used for user
authentication.

Fig. 7 provides a graphical overview of our authentication
method. The method is divided into two phases, the training
and the classification phase.

The training phase consists of the following steps:

• Data segmentation stage identifies those segments of the
data streams that contain the open door activity.

• Features are extracted from each data stream to form the
feature vector.

• The training returns a model which is used for the
classification task.

TABLE VIII
COLUMNS OF THE CSV FILE

Column# Data

1 Accelerometer X (m/s2)

2 Accelerometer Y (m/s2)

3 Accelerometer Z (m/s2)

4 Gravity X (m/s2)

5 Gravity Y (m/s2)

6 Gravity Z (m/s2)

7 Linear Acceleration X (m/s2)

8 Linear Acceleration Y (m/s2)

9 Linear Acceleration Z (m/s2)

10 Gyroscope X (◦/s)

11 Gyroscope Y (◦/s)

12 Gyroscope Z (◦/s)

13 Magnetometer X (µT)

14 Magnetometer Y (µT)

15 Magnetometer Z (µT)

16 Orientation X (◦)

17 Orientation Y (◦)

18 Orientation Z (◦)

19 Time since start (ms)

Fig. 7. Block diagram of our authentication method.

The classification phase (authentication phase) consists as
well of a segmentation and feature extraction phase, as in
the training phase. Finally, the trained model is used for user
authentication.

A. Feature Extraction

Feature extraction methodologies are used to filter relevant
information and to obtain quantitative measures that allow
signals to be compared. They transform the raw time series
dataset into a set of feature vectors. It is well understood that
high quality features are essential to improve the classification
accuracy of the machine learning method.

There are studies focusing on exploring the best features
that can be extracted from human activity signals. In this
work, we evaluate two features sets: statistical features and



Fig. 8. Correlation coefficients of pairs of features.

physical features. Statistical features have been intensively
investigated in previous studies and proved to be useful for
activity recognition [3], [27], [17]. The physical features were
originally designed by [32].
Overall we have a feature set of 170 features, where 85
features are determined by the door handle and 85 from
the glove. We will describe them in the following. Figure 8
illustrates the correlation coefficients of all pairs of features in
a color-coded plot.

1) Statistical Features: The statistical features are com-
puted from each axis (channel) of the accelerometer, gyro-
scope and magnetometer over the segments of the data streams
that contain the open door activity. We consider statistical fea-
tures that have been successfully applied in similar recognition
problems. Examples are zero crossing rate, mean crossing rate,
and first-order derivative. These features have been heavily
used in human speech recognition and handwriting recognition
problems. We thus extract the following statistical features:

• Mean: The DC component (average value), (dimension-
ality: 9, feature index: 1-9)

• Median: The median signal value, (dimensionality: 9,
feature index: 10-18)

• Root Mean Square Level: The quadratic mean value,
(dimensionality: 9, feature index: 19-27)

• Averaged derivatives: The mean value of the first order
derivatives, (dimensionality: 9, feature index: 37-45)

• Interquartile Range: Measure of the statistical dispersion,
(dimensionality: 9, feature index: 46-54)

• Zero Crossing Rate: Total number of changes from pos-
itive to negative or vice versa normalized by the length
of the data segment. (dimensionality: 9, feature index:
55-63)

• Mean Crossing Rate: The total number changes from
below average to above average or vice versa normalized
by the length of the data segment, (dimensionality: 9,
feature index: 64-72)

2) Physical Features: The physical features are derived
based on the physical interpretations of human motion [32]. It
should be noted that the way to compute physical features is
different from statistical features. For statistical features, each
feature is extracted from each sensor axis (channel) individ-
ually. In contrast, the physical features are the combination
of multiple sensor axis. We extract the following physical
features:

• Movement intensity: The Euclidean norm of the total
acceleration vector after removing the static gravitational
acceleration. This feature is independent of the orientation
of the sensing device, and measures the instantaneous
intensity of human movements. We compute the mean
(AI) and the variance (VI):

– Mean (AI) (dimensionality: 1, feature index: 73)
– Variance (VI) (dimensionality: 1, feature index: 74)

• Normalized signal magnitude area: The acceleration
magnitude summed over three axes normalized by the
length of the data segment, (dimensionality: 1, feature
index: 75)

• Dominant frequency: The maximum of the squared dis-
crete Fast Fourier transform (FFT) component magni-
tudes from each sensor axis.

• Energy: The sum of the squared discrete FFT component
magnitudes from each sensor axis, normalized by the
length of the data segment. (dimensionality: 9, feature
index: 76-84)

• Averaged acceleration energy: The mean value of the
energy over three acceleration axes. (dimensionality: 1,
feature index: 85)

B. Classification Algorithm

In order to authenticate users, we propose a classification
approach that uses the features and the trained model to
classify the user into one of the previously-observed users.

After initial tests with various machine learning models,
for our final setup, we use Support Vector Machines (SVM),
a popular machine learning method for classification that has
shown good results in many application domains.SVM was
originally designed for binary classification. For multi-class
classification we use the Library LIBSVM [7]. LIBSVM
implements the ’one-against-one’ approach [18] for multi-
class classification. Even though many other methods are
available for multi-class SVM classification, Hsu et al.[15]
performed a detailed comparison of them and concluded that
the ’one-against-one’ is a competitive approach.

Chang et al. [7] propose to combine the individual one-
against-one binary classification results: each binary classifi-
cation is considered to be a voting where votes can be cast
for all data points x - in the end a point is designated to be
in a class with the maximum number of votes. In case that
two classes have identical votes, though it may not be a good
strategy, now we simply choose the class appearing first in the
array of storing class names.



VI. EXPERIMENTAL EVALUATION

In this section we describe our experiments and then present
and discuss our results for the authentication task.

A. Methodology

Our experiments first requires a collection of labelled raw
sensor (accelerometer, gyroscope and magnetometer) data
and then transform to a feature vectors. This process was
described in Section V-A. We combine the features with
an early fusion scheme which combines features before
performing classification – obtaining 85 features per user.
Our dataset consists of 20 individuals (users). Every user
opened the door 10 times. 50% of the data (i.e. opening the
door 5 times) is used for training and the other 50% of the
data for testing. Note that the data in the training set are not
present in the test set.

Once the data set was prepared and the features extracted,
we used multi-class classification techniques from the the
Library LIBSVM [7]. We choose the following parameters
when learning the SVM:

• Type of the SVM: C-SVC.
• Kernel function: linear (u’∗ v).
• Degree in kernel function: 3.
• Gamma in kernel function: 1/k (k means the number of

attributes in the input data).
• coef0 in kernel function: 0.
• Parameter C of C-SVC: 1.
• Tolerance of termination criterion: 0.001.
• Parameter C of class i to weight∗C in C-SVC: 1.
The training provides us with a model, which is subse-

quently used for the classification task (the future prediction).
We tested a linear, a polynomial and a radial kernel function.
For all the three kernels we varied the soft margin constant C
in powers of ten between 1 and 1000. The polynomial kernel
was used with degrees between 2 and 5. For the polynomial
and the radial kernel the values of parameter are between
0.00001 and 1, similar to Eberz et al. [12]. The best result
were achieved with rbf-kernel with C=10 and =0.0001, where
we obtained an accuracy equal to 97.5%.

B. Adversary Model

Our adversary model is based on an insider threat scenario.
Therefore, we consider every subject as potential imposter of
every other subject. Hence, for our evaluation we also consider
the class distance, which measures the distance between the
probability to be a determinate user and the most successful
out of the potential impostors.

C. Results

The summary results for our authentication experiments
are presented in Table IX. This table specifies the predictive
accuracy associated with each user, for the sensors located in
the glove (Figure 5), the sensors located in the door handle
(Figure 6), and the combination of the sensors from the glove

and the door handle.

Table IX demonstrates that in most cases we can achieve
a high level of accuracy. For the combination of the sensors
from the glove and those from the door handle, we achieve
the 100% accuracy for 14 users (70% of the total number of
users), 80% (that is, one misclassification and four correctly
identified samples) for four users (20% of the total number
of users) and 60% for two users (10% of the total number of
users). The average accuracy predicted with the combination
of both sensors (glove and door handle) is 92%.

We observe that the achieved accuracies for the sensors
from the glove and the door handle individually are similar
and lower than for the combination of both: for the sensors
located in the door handle is 84%; and for the sensors in
the glove is 83%. We achieve the 100% accuracy for nine
users (45% of the total number of users) and ten users
(50% of the total number of users) with the glove and the
door handle respectively. The lowest accuracies are 40%
for two users (10% of the total number of users) for both cases.

More detailed results for the individual users are presented
in the confusion matrices in Tables X-XII).

The user #1 is the only one with an accuracy lower than
80% for the both individual configuration of sensors. User
#1 is mostly predicted as user #6 and #15 in the case of the
sensors located in the glove, and as user #4 in the case of
the sensors located in the door handle.

For the sensors located in the door handle we observe that
the classifier confuses user #4 with user #1 and #19, and
vice-versa. Uuser #4 has an accuracy equal to 100% in the
case of the sensors located in the glove and with combination
of the sensors from the glove and from the door handle.
Uuser #19 has an accuracy equal to 80% in the case of the
sensors located in the glove, but he is confused with user
#15 in this case. And user #19 has an accuracy of 100% with
combination of the sensors from the glove and from the door
handle.

Uuser #11 is mostly predicted as user #5 in the case of
the sensors located in the glove, while he has an accuracy of
100% in the case of the sensors located in the door handle
and with combination of the sensors from the glove and from
the door handle.

User #12 is mostly predicted as users #6 and #4 in the case
of the sensors located in door handle. He has an accuracy of
100% in the case of the sensors located in the glove, but and
accuracy of only 60% with combination of the sensors from
the glove and from the door handle.

For the sensor located in the glove, the users with accuracies
lower than 80% are: #1, #4 and #12.

For the sensor located in the glove, the users with accuracies
lower than 80% are: #1, #8, #9, #11 and #13.



TABLE IX
ACCURACIES OF USER AUTHENTICATION

% of Records Correctly Predicted

ID glove handle glove and handle

1 40 60 80

2 80 80 80

3 100 100 100

4 100 40 100

5 100 100 100

6 100 80 100

7 100 80 100

8 60 80 60

9 60 100 80

10 100 100 100

11 40 100 100

12 100 40 60

13 100 100 100

14 80 100 100

15 100 80 100

16 100 80 100

17 60 100 80

18 80 80 100

19 80 80 100

20 80 100 100

AVG 83 84 92

TABLE X
CONFUSION MATRIX FOR THE SENSORS LOCATED IN THE GLOVE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ID

2 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 7

0 1 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 10

0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 11

0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 12

0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 13

0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 16

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 17

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 20

TABLE XI
CONFUSION MATRIX FOR THE SENSORS LOCATED IN THE DOOR HANDLE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ID

3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 4

0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6

1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 7

0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 11

0 0 0 1 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 12

0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 13

0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 1 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 18

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 20

TABLE XII
CONFUSION MATRIX FOR THE COMBINATION OF THE SENSORS LOCATED

IN THE GLOVE AND IN THE DOOR HANDLE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ID

4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 7

0 1 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 9

0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 10

0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 11

0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 12

0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 13

0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 16

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 20

We improve the accuracies with the combination of the
sensors located in the glove and the sensors located in the
door handle. The users #8 and #12 are the only users with an
accuracies lower than 80% with the combination.

We study the characteristic of hand movement when
opening a door in an uncontrolled scenario. For the
experiment we did not regulate the distance to the door, thus
the participants might have spent more time walking towards
the door. This is a possible explanation for approximately
equal accuracy with the sensors located in the glove than
with the sensors located in the door handle. We obtain more
information with the sensors located in the glove (the arm flex
[25], hand muscle behavior, the relative users’ high compared
to the door high, etc.) but they introduce more degrees of
freedom (e.g., user #2 has a variance of 2.828s of the needed
time to open the door).

The recognition systems based on the measurement of
single behavioral modality cannot guarantee 100% accuracy.
In fact, these factors laid the foundation of the systems which
use multiple independent evidences of biometric information
from either single or different biometric modalities, very
often termed as multi-modal biometric systems [30].

Our lab study shows that our solution allows to classify
individuals with an accuracy of 92% based on their hand
movement only. Our authentication method shows a higher
accuracy compared to other related work: Negara et al. [25]
examined the uniqueness of arm movements when answering
calls. They achieved 87.8% accuracy in picking up a phone
from a table to answer a call; and 90% accuracy for picking



up a phone from a pocket. Compared to our study, they
only considered 6 participants and 10 repetitions for each
participant.

Derawi et al. [9] performed gait recognition using smart-
phones. They considered only 5 users and they were able to
correctly identify 89.3% of the users which is justified by the
lower sample rate of the smartphones.

Feng et al. [13] performed user identification using touch
screen. They considered 23 smartphone users in real-life
naturalistic conditions. They correctly identified 90% of the
users.

To evaluate our approach towards the attacker model de-
scribed in Section VI-B, we calculated the class distance
for our 19 potential impostors. The lowest calculated class
distance was 15.91% (mean = 67.22%).

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel authentication algorithm
based on hand dynamics. Our machine learning-based ap-
proach relies on the richness of motion sensors in smartphones
and smartwatches in particular. It also exploits the uniqueness
of hand and arm movements and thus highlights the potential
of hand movement biometrics for continuous authentication.
To evaluate our approach, we collected hand movement data
from 20 participants. We also selected a set of statistical and
physical features that we then used to classify individuals. Our
experiments have shown that our hand dynamics authentication
method was able to classify individuals with an accuracy
of 92%. As future work, we plan to perform experiments
with smartwatches. We furthermore plan to consider security
attacks, such as impersonation attacks by mimicking the
behaviour of others; and to conduct an extensive usability
study in order to evaluate the usefulness and feasibility in
a real-world scenario, such as granting access to premises in
office buildings.
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and Luis Hernández Gómez. Usability evaluation of multi-modal
biometric verification systems. Interacting with Computers, 18(5):1101–
1122, 2006.

[30] J. A. Unar, W. C. Seng, and A. Abbasi. A review of biometric technology
along with trends and prospects. Pattern recognition, 2014.

[31] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael
Maass, Michelle L Mazurek, Timothy Passaro, Richard Shay, Timothy
Vidas, Lujo Bauer, et al. How does your password measure up? the
effect of strength meters on password creation. In USENIX Security
Symposium, pages 65–80, 2012.

[32] M. Zhang and A. A. Sawchuk. A feature selection-based framework
for human activity recognition using wearable multimodal sensors. 6th
International Conference on Body Area Networks, 2011.

[33] M. Zhang and A. A. Sawchuk. Motion primitive-based human activity
recognition using a bag-of-features approach. In Proceedings of the 2nd
ACM SIGHIT International Health Informatics Symposium, 2012.


