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Abstract—A wealth of different feature sets for analysing music
has been proposed and employed in several different Music Infor-
mation Retrieval applications. In many cases, the feature sets are
compared with each other based on benchmarks in supervised
machine learning, such as automatic genre classification. While
this approach makes features comparable for specific tasks, it
doesn’t reveal much detail on the specific musical characteristics
captured by the single feature sets. In this paper, we thus perform
an analytic comparison of several different audio feature sets by
means of Self-Organising Maps. They perform a projection from
a high dimensional input space (the audio features) to a lower
dimensional output space, often a two-dimensional map, while
preserving the topological order of the input space. Comparing
the stability of this projection allows to draw conclusions on the
specific properties of the single feature sets.

I. INTRODUCTION

One major precondition for many Music Information Re-
trieval (MIR) tasks is to adequately describe music, resp. its
sound signal, by a set of (numerically processable) feature
vectors. Thus, a range of different audio features has been
developed, such as the Mel-frequency cepstral coefficients
(MFCC), the set of features provided by the MARSYAS
system, or the Rhythm Patterns, Rhythm Histograms and
Statistical Spectrum Descriptors suite of features.

All these feature sets capture certain different characteristics
of music, and thus might perform unequally well in different
MIR tasks. Very often, feature sets are compared by the means
of benchmarks, e.g. the automated classification of music to-
wards a certain label, such as in automatic genre classification.
While this allows a comparative evaluation of different feature
sets with respect to specific tasks, it doesn’t provide many
insights on the properties of each feature set. On the other
hand, clustering or projection methods can reveal information
such as which data items tend to be organised together, re-
vealing information on the acoustic similarities captured by the
respective feature sets. Building on this assumption, we utilise
a recently developed method to compare different instances
of a specific projection and vector quantisation method, the
Self-Organising Maps, to compare how the resulting map is
influenced by the different feature sets.

The remainder of this paper is structured as follows. Sec-
tion II discusses related work in Music Information Retrieval
and Self-Organising Maps, while Section III presents the em-
ployed audio features in detail. Section IV then introduces the
method for comparing Self-Organising Maps. In Section V we

introduce the dataset used, and discuss experimental results.
Finally, Section VI gives conclusions and presents future work.

II. RELATED WORK

Music Information Retrieval (MIR) is a discipline of Infor-
mation Retrieval focussing on adequately describing and ac-
cessing (digital) audio. Important research directions include,
but are not limited to, similarity retrieval, musical (genre)
classification, or music analysis and knowledge representation.

The dominant method of processing audio files in MIR is
by analysing the audio signal. A wealth of different descriptive
features for the abstract representation of audio content have
been presented. The feature sets we used in our experiments,
i.e. Rhythm Patterns and derived sets, MARSYAS, and Chroma,
are well known algorithms focusing on different audio char-
acteristics and will be described briefly in Section III.

The Self-Organising Map (SOM) [1] is an artificial neural
network used for data analysis in numerous applications. The
SOM combines principles of vector projection (mapping) and
vector quantisation (clustering), and thus provides a mapping
from a high-dimensional input space to a lower dimensional
output space. The output space consists of a certain number
of nodes (sometimes also called units or models), which are
often arranged as a two-dimensional grid, in rectangular or
hexagonal shape. One important property of the SOM is
the fact that it preserves the topology of the input space as
faithfully as possible, i.e. data that is similar and thus close to
each other in the input space will also be located in vicinity
in the output map. The SOM thus can be used to uncover
complex inherent structures and correlations in the data, which
makes it an attractive tool for data analysis.

The SOM has been applied in many Digital Library set-
tings, to provide a novel, alternative way for browsing the
library’s content. This concept has also been applied for
Music Retrieval to generate music maps, such as in the
SOMeJB [2] system. Specific domain applications of music
maps are for example the Map of Mozart [3], which organises
the complete works of Mozart in an appealing manner, or the
Radio SOM [4], illustrating musical profiles of radio stations.
A comprehensive overview on music maps, with a special
focus on the user interaction with them, can be found in [5].
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III. AUDIO FEATURES

In our experiments, we employ several different sets of
features extracted from the audio content of the music,
and compare them to each other. Specifically, we use the
MARSYAS, Chroma, Rhythm Patterns, Statistical Spectrum
Descriptors, and Rhythm Histograms audio feature sets, all of
which will be described below.

A. MARSYAS Features

The MARSYAS system [6] is a software framework for
audio analysis, feature extraction and retrieval. It provides a
number of feature extractors that can be divided into three
groups: features describing the timbral texture, those capturing
the rhythmic content, and features related to pitch content.

The STFT-Spectrum based Features provide standard tem-
poral and spectral low-level features, such as Spectral Cen-
troid, Spectral Rolloff, Spectral Flux, Root Mean Square
(RMS) energy and Zero Crossings. Further, MARSYAS com-
putes the first twelve Mel-frequency cepstral coefficients
(MFCCs).

The rhythm-related features aim at representing the regu-
larity of the rhythm and the relative saliences and periods of
diverse levels of the metrical hierarchy. They are based on
the Beat Histogram, a particular rhythm periodicity function
representing beat strength and rhythmic content of a piece of
music. Various statistics are computed of the histogram: the
relative amplitude of the first and second peak, the ratio of the
amplitude of the second peak and the first peak, the period of
the first and second beat (in beats per minute), and the overall
sum of the histogram, as indication of beat strength.

The Pitch Histogram is computed by decomposing the
signal into two frequency bands, for each of which amplitude
envelopes are extracted and summed up, and the main pitches
are detected. The three dominant peaks are accumulated into
the histogram, containing information about the pitch range of
a piece of music. A folded version of the histogram, obtained
by mapping the notes of all octaves onto a single octave,
contains information about the pitch classes or the harmonic
content. The amplitude of the maximum peak of the folded
histogram (i.e. magnitude of the most dominant pitch class),
the period of the maximum peak of the unfolded (i.e. octave
range of the dominant pitch) and folded histogram (i.e. main
pitch class), the pitch interval between the two most prominent
peaks of the folded histogram (i.e. main tonal interval relation)
and the overall sum of the histogram are computed as features.

B. Chroma Features

Chroma features [7] aim to represent the harmonic content
(e.g, keys, chords) of a short-time window of audio by
computing the spectral energy present at frequencies that
correspond to each of the 12 notes in a standard chromatic
scale (e.g., black and white keys within one octave on a
piano). We employ the feature extractor implemented in the
MARSYAS system, and compute four statistical values for
each of the 12-dimensional Chroma features, thus resulting in
a 48-dimensional feature vector.

C. Rhythm Patterns

Rhythm Patterns (RP) are a feature set for handling audio
data based on analysis of the spectral audio data and psycho-
acoustic transformations [8], [9].

In a pre-processing stage, multiple channels are averaged
to one, and the audio is split into segments of six seconds,
possibly leaving out lead-in and fade-out segments.

The feature extraction process for a Rhythm Pattern is then
composed of two stages. For each segment, the spectrogram
of the audio is computed using the short time Fast Fourier
Transform (STFT). The window size is set to 23 ms (1024
samples) and a Hanning window is applied using 50 %
overlap between the windows. The Bark scale, a perceptual
scale which groups frequencies to critical bands according to
perceptive pitch regions [10], is applied to the spectrogram,
aggregating it to 24 frequency bands. Then, the Bark scale
spectrogram is transformed into the decibel scale, and further
psycho-acoustic transformations are applied: computation of
the Phon scale incorporates equal loudness curves, which
account for the different perception of loudness at different
frequencies [10]. Subsequently, the values are transformed into
the unit Sone. The Sone scale relates to the Phon scale in
the way that a doubling on the Sone scale sounds to the
human ear like a doubling of the loudness. This results in
a psycho-acoustically modified Sonogram representation that
reflects human loudness sensation.

In the second step, a discrete Fourier transform is applied
to this Sonogram, resulting in a (time-invariant) spectrum
of loudness amplitude modulation per modulation frequency
for each individual critical band. After additional weighting
and smoothing steps, a Rhythm Pattern exhibits magnitude of
modulation for 60 modulation frequencies (between 0.17 and
10 Hz) on 24 bands, and has thus 1440 dimensions.

In order to summarise the characteristics of an entire piece
of music, the feature vectors derived from its segments are
averaged by computing the median.

D. Statistical Spectrum Descriptors

Computing Statistical Spectrum Descriptors (SSD) features
relies on the first stage of the algorithm for computing RP
features. Statistical Spectrum Descriptors are based on the
Bark-scale representation of the frequency spectrum. From this
representation of perceived loudness, a number of statistical
measures is computed per critical band, in order to describe
fluctuations within the critical bands. Mean, median, variance,
skewness, kurtosis, min- and max-value are computed for each
of the 24 bands, and a Statistical Spectrum Descriptor is
extracted for each selected segment. The SSD feature vector
for a piece of audio is then calculated as the median of the
descriptors of its segments.

In contrast to the Rhythm Patterns feature set, the dimen-
sionality of the feature space is much lower – SSDs have
24 × 7 = 168 instead of 1440 dimensions – at matching
performance in terms of genre classification accuracies [9].
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E. Rhythm Histogram Features

The Rhythm Histogram features are a descriptor for the
rhythmic characteristics in a piece of audio. Contrary to the
Rhythm Patterns and the Statistical Spectrum Descriptor, infor-
mation is not stored per critical band. Rather, the magnitudes
of each modulation frequency bin (at the end of the second
phase of the RP calculation process) of all 24 critical bands
are summed up, to form a histogram of ‘rhythmic energy’ per
modulation frequency. The histogram contains 60 bins which
reflect modulation frequency between 0.168 and 10 Hz. For
a given piece of audio, the Rhythm Histogram feature set is
calculated by taking the median of the histograms of every 6
second segment processed.

IV. COMPARISON OF SELF-ORGANISING MAPS

Self-Organising Maps can differ from each other depending
on a range of various factors: simple ones such as different
initialisations of the random number generator, to more SOM-
specific ones such as different parameters for e.g. the learning
rate and neighbourhood kernel (cf. [1] for details), to differ-
ences in the map-size. In all such cases, the general topological
ordering of the map should stay approximately the same, i.e.
clusters of data items would stay in the neighbourhood of
similar clusters, and be further away from dissimilar ones,
unless the parameters were chosen really bad. Still, some
differences will appear, which might then range from e.g. a
minor deviation such as a mirrored arrangement of the vectors
on the map, to having still the same local neighbourhood
between specific clusters, but a slightly rotated or skewed
global layout. Training several maps with different parameters
and then analysing the differences can thus give vital clues
on the structures inherent in the data, by discovering which
portions of the input data are clustered together in a rather
stable fashion, and for which parts random elements play a
vital role for the mapping.

An analytic method to compare different Self-Organising
Maps, created with such different training parameters, but also
with different sizes of the output space, or even with different
feature sets, has been proposed in [11]. For the study presented
in this paper, especially the latter, comparing different feature
sets, is of major interest. The method allows to compare a
selected source map to one or more target maps by comparing
how the input data items are arranged on the maps. To this end,
it is determined whether data items located close to each other
in the source map are also closely located to each other in the
target map(s), to determine whether there are stable or outlier
movements between the maps. “Close” is a user-adjustable
parameter, and can be defined to be on the same node, or
within a certain radius around the node. Using different radii
for different maps accommodates for maps differing in size.
Further, a higher radius allows to see a more abstract, coarse
view on the data movement. If the majority of the data items
stays within the defined radius, then this is regarded a stable
shift, or an outlier shift otherwise. Again, the user can specify
how big the percentage needs to be to regard it a stable or
outlier shift. These shifts are visualised by arrows, where

different colours indicate stable or outlier shifts, and the line-
width determines the cardinality of the data items moving
along the shift. The visualisation is thus termed Data Shifts
visualisations. Figure 1 illustrates stable (green arrows) and
outlier (red arrows) shifts on selected nodes of two maps, the
left one trained with Rhythm Pattern, the right one with SSD
features. Already from this illustration, we can see that some
data items will also be closely located on the SSD map, while
others spread out to different areas of the map.

Finally, all these analysis steps can be done as well not
on a per-node basis, but rather regarding clusters of nodes
instead. To this end, first a clustering algorithm is applied to
the two maps to be compared to each other, to compute the
same, user-adjustable number of clusters. Specifically, we use
Ward’s linkage clustering [12], which provides a hierarchy of
clusters at different levels. The best-matching clusters found
in both SOMs are then linked to each other, determined by the
highest matching number of data points for pairs of clusters
on both maps – the more data vectors from cluster Ai in the
first SOM are mapped into cluster Bj in the second SOM,
the higher the confidence that the two clusters correspond to
each other. Then all pairwise confidence values between all
clusters in the maps are computed. Finally, all pairs are sorted
and repeatedly the match with the highest values is selected,
until all clusters have been assigned exactly once. When the
matching is determined, the Cluster Shifts visualisation can
easily be created, analogous to the visualisation of Data Shifts.

An even more aggregate and abstract view on the input data
movement can be provided by the Comparison Visualisation,
which further allows to compare one SOM to several other
maps in the same illustration. To this end, the visualisation
colours each unit u in the main SOM according to the average
pairwise distance between the unit’s mapped data vectors in
the other s SOMs. The visualisation is generated by first
finding all k possible pairs of the data vectors on u, and
compute the distances dij of the pair’s positions in the other
SOMs. These distances are then summed and averaged over
the number of pairs and the number of compared SOMs,
respectively. Alternatively to the mean, the variance of the
distances can be used.

V. ANALYTIC COMPARISON OF AUDIO FEATURE SETS

In this section, we outline the results of our study on
comparing the different audio feature sets with Self-Organising
Maps.

A. Test Collection

We extracted features for the collection used in the ISMIR
2004 genre contest1, which we further refer to as ISMIRgenre.
The dataset has been used as benchmark for several different
MIR systems. It comprises 1458 tracks, organised into six
different genres. The greatest part of the tracks belongs to
Classical music (640, colour-coded in red), followed by World
(244, cyan), Rock/Pop (203, magenta), Electronic (229, blue),
Metal Punk (90, yellow), and finally Jazz/Blues (52, green).

1http://ismir2004.ismir.net/ISMIR Contest.html
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Fig. 1. Data Shifts Visualisation for RP and SSD maps on the ISMIRgenre data sets

TABLE I
CLASSIFICATION ACCURACIES ON THE ISMIRGENRE DATABASES.

Feature Set 1-nn 3-nn Naı̈ve B. SVM
Chroma 39.59 45.54 40.73 45.07
Rhythm Histograms 60.45 63.04 56.74 63.74
MARSYAS 66.69 64.36 59.00 67.02
Rhythm Patterns 73.21 71.37 63.31 75.17
SSD 78.20 76.44 60.88 78.73

B. Genre Classification Results

To give a brief overview on the discriminative power of
the audio feature sets, we performed a genre classification on
the collection, using the WEKA machine learning toolkit2.
We utilised k-Nearest-Neighbour, Naı̈ve Bayes and Support
Vector Machines, and performed the experiments based on a
ten-fold cross-validation, which is further averaged over ten
repeated runs. The results given in Table I are the micro-
averaged classification accuracies.

There is a coherent trend across all classifiers. It can be
noted that SSD features are performing best on each single
classifier (indicated by bold print), achieving the highest value
with Support Vector Machines, followed surprisingly quite
closely by 1-nearest-neighbours. Also the subsequent ranks
don’t differ across the various classifiers, with Rhythm Patterns
being the second-best feature sets, followed by MARSYAS,
Rhythm Histograms and the Chroma features. In all cases,
SVM are the dominant classifier (indicated by italic type), with
the k-NN performing not that far off of them. These results
are in line with those previously published in the literature.

C. Genre Clustering with Music Maps

We trained a number of Self-Organising Maps, with differ-
ent parameters for the random number generator, the number
of training iterations, and in different size, for each of the five
feature sets. An interesting observation is the arrangement of
the different genres across the maps, which is illustrated in
Figure 2. While the different genres form pretty clear and

2http://www.cs.waikato.ac.nz/ml/weka/

distinct clusters on RP, RH and SSD features this is not so
much the case for Chroma or MARSYAS features. Figure 2(a)
shows the map on RP features. It can be quickly observed
that the genres Classical (red), Electronic (blue) and Rock/Pop
(magenta) are clearly arranged closely to each other on the
map; also Metal/Punk (yellow) and Jazz/Blues (green) are
arranged on specific areas of the map. Only World Music
(cyan) is spread over many different areas; however, World
Music is rather a collective term for many different types of
music, thus this behaviour seems not surprising. The maps for
RH and SSD features exhibit a very similar arrangement.

For the MARSYAS maps, a pre-processing step of normal-
ising the single attributes was needed, as otherwise, different
value ranges of the single features would have a distorting
impact on distance measurements, which are an integral part
of the SOM training algorithm. We tested both a standard
score normalisation (i.e. subtracting the mean and dividing
by the standard deviation) and a min-max normalisation (i.e.
values of range [0..1] for each attribute). Both normalisation
methods dramatically improved the subjective quality of the
map, both showing similar results. Still, the map trained with
the MARSYAS features, depicted in Figure 2(b), shows a
less clear clustering according to the pre-defined genres. The
Classical genre occupies a much larger area, and is much
more intermingled with other genres, and actually divided in
two parts by genres such as Rock/Pop and Metal/Punk. Also,
the Electronic and Rock/Pop genres are spread much more
over the map than with the RP/RH/SSD features. A subjective
evaluation by listening to some samples of the map also found
the RP map to be superior in grouping similar music.

Similar observations hold also true for all variations of
parameters and sizes trained, and can further be observed for
maps trained on Chroma features.

Thus, a first surprising finding is that MARSYAS features,
even though they provide good classification results, outper-
forming RH features on all tested classifiers and not being that
far off from the results with RP, are not exhibiting properties
that would allow the SOM algorithm to cluster them as well
as with the other feature sets.
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(a) Rhythm Patterns

(b) MARSYAS

Fig. 2. Distribution of genres on two maps trained with the same parameters,
but different feature sets

D. Mapping Stability

Next, we present the analysis of the stability of the mapping
on single feature sets, i.e., we compare maps trained with the
same feature sets, but different parameters, to each other. One
such visualisation is depicted in Figure 3(a), which compares
maps trained with RP features. The darker the nodes on the
map, the more instable the mapping of the vectors assigned to
these nodes is in regard to the other maps compared to. We can
see that quite a big area of the map seems to be pretty stable
in mapping behaviour, and there are just a few areas that get
frequently shuffled on the map. Most of those are in areas that
are the borderlines between clusters that each contain music
from a specific genre. Among those, an area in the upper-
middle border of the map holds musical pieces from Clas-
sical, Jazz/Blues, Electronic, and World Music genres. Two
areas, towards the right-upper corner, are at intersections of
Metal/Punk and Pop/Rock genres, and frequently get mapped
into slightly different areas on the map. We further trained a
set of smaller maps, on which we observed similar patterns.

While the SOMs trained with the MARSYAS features are
not preserving genres topologically on the map, the mapping
itself seems to be stable, as can be seen in Figure 3(b). From a
visual inspection, it seems there are not more “instable” areas
on the map than with the RP features, and as well, they can
be mostly found in areas where genre-clusters intermingle.

(a) Rhythm Patterns

(b) MARSYAS

Fig. 3. Comparison of the two maps from Figure 2 to other maps trained
on the same respective feature set, but with different training parameters

E. Feature Comparison

Finally, we want to compare maps trained on different
feature sets. Figure 4 shows a comparison of an RP with an
SSD map, both of identical size. The Rhythm Patterns map
is expected to cover both rhythm and frequency information
from the music, while the Statistical Spectrum Descriptors are
only containing information on the power spectrum. Thus, an
increased number of differences in the mapping is expected
when comparing these two maps, in contrast to a comparison
of maps trained with the same feature set. This hypothesis is
confirmed by a visual inspection of the visualisation, which
shows an increased amount of nodes colour-coded to have high
mapping distances in the other map.

Those nodes are the starting point for investigating how the
pieces of music get arranged on the maps. In Figure 4, a total
of four nodes, containing two tracks each, have been selected
in the left map, trained with the RP features. In the right map,
trained with the SSD features, the grouping of the tracks is
different, and no two tracks got matched on the same node
or even neighbourhood there. Rather, from both the lower-
leftmost and upper-rightmost node containing Classical music,
one track each has been grouped together closely at the centre-
right area and at the left-centre border. Likewise, the other two
selected nodes, one containing World Music, the other World
Music and Classical Music, split up in a similar fashion. One
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Fig. 4. Comparison of a RP and an SSD map

track each gets mapped to the lower-left corner, at the border
of the Classical and World Music cluster. The other two tracks
lie in the centre-right area, close two the other two tracks
mentioned previously.

Manually inspecting the new clustering of the tracks on the
SSD based maps reveals that in all cases, the instrumentation
is similar within all music tracks. However, on the RP map, the
music is as well arranged by the rhythmic information captured
by the feature set. Thus the tracks located on the same node in
the left map also share similar rhythmic characteristics, while
this is not necessarily the case for the right, SSD-based map.

To illustrate this in more detail, one of the Classical music
pieces in the lower-left selected node on the RP map is in that
map located clearly separated from another Classical piece
on the upper one of the two neighbouring selected nodes in
the centre. Both tracks exhibit the same instrumentation, a
dominant violin. However, the two songs differ quite strongly
in their tempo and beat, the latter music piece being much
more lively, while the first has a much slower metre. This
differntiates them in the Rhythm Pattern map. However, in
the Statistical Spectrum Descriptors, rhythmic characteristics
are not considered in the feature set, and thus these two songs
are correctly placed in close vicinity of each other.

Similar conclusions can be drawn for comparing other
feature sets. An especially interesting comparison is Rhythm
Patterns vs. a combination of SSD and Rhythm Histogram
features, which together cover very similar characteristics
as the Rhythm Patterns, but still differ e.g. in classification
results. Also, comparing Rhythm Patterns or Histograms to
MARSYAS offers interesting insights, as they partly cover the
same information about music, but also have different features.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we utilised Self-Organising Maps to compare
five different audio feature sets regarding their clustering
characteristics. One interesting finding was that maps trained
with MARSYAS features are not preserving the pre-defined
ordering into genres as well as it is the case with RP, RH and

SSD features, even though they are similar in classification
performance. Further, we illustrated that the approach of using
Self-Organising Maps for an analytical comparison of the
feature sets can provide vital clues on which characteristics
are captured by the various audio feature sets, by highlighting
which pieces of music are interesting for a closer inspection.
One challenge for future work is to automate detecting inter-
esting patterns as presented in the previous Section.
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