
Text Mining
with Adaptive Neural Networks

eingereicht von:
Rudolf Mayer

Diplomarbeit

zur Erlangung des akademischen Grades
Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften
(Mag. rer. soc. oec.)

Fakultät für Wirtschaftswissenschaften und Informatik,
Universität Wien

Fakultät für Technische Naturwissenschaften und Informatik,
Technische Universität Wien

Studienrichtung: Wirtschaftsinformatik

Begutachter:
Univ.Doz. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, im Februar 2004

i

Abstract
Analysing high-dimensional data is a task where software tools can rea-

sonably assist the data analyst, by visualising, and thereby uncovering, the
inherent structure and topology of the data collection. Especially the kinds
of tools that can produce results autonomously, i.e. unsupervised tools, are
a goal; here, neural network models may be one solution. In the category
of unsupervised neural network models, the ones based on the principles of
the Self-Organizing Map have become quite popular.

We have tested the applicability of adaptive unsupervised neural network
models, speci�cally of a model which was proposed just recently, the Adaptive
Hierarchical Incremental Grid Growing, for free-text data in the domain of
tourism: we have utilised the model to create a structured and hierarchically
organised view of Austrian hotels. To be able to give a good analysis of the
model's strength and weaknesses, we have furthermore compared the results
with two other models, the standard Self-Organizing Map respectively the
Growing Grid, and the Growing Hierarchical Self-Organizing Map.

Kurzdarstellung
Die Analyse hoch dimensionaler Daten ist eine Aufgabe, bei der softwaretech-
nische Hilfsmittel den Datananalysten durch Erzeugung einer Visualisierung
der Struktur und Topologie der Datensammlung unterstützen können. Beson-
ders eine Software, die diese Visualisierung autonom, d.h. unüberwacht,
erzeugen kann, ist wünschenswert, und neuronale Netzwerke sind eine
Lösungsmöglichkeit. Modelle, die auf den Prinzipien der Self-Organizing
Map (Selbstorganisierende Merkmalskarte) beruhen, erfreuen sich gröÿerer
Beliebtheit.

Wir haben die Anwendbarkeit von adaptiven, unüberwachten neuronalen
Netzwerken, und hier insbesondere eines erst kürzlich vorgestellten neuen
Models, der Adaptive Hierarchical Incremental Grid Growing auf die Analyse
mit Hinblick auf unstrukturierten Text aus dem Anwendungsbereich Touris-
mus Informationssysteme, untersucht. Das Model der AHIGG wurde zur
Erstellung einer strukturierten, hierarchisch gegliederten Visualisierung von
Hotelbeschreibungen verwendet. Um die Ergebnisse vergleich- und besser
analysierbar zu machen, wurden ähnliche Visualisierungen mit einer Self-
Organizing Map und einerGrowing Hierarchical Self-Organizing Map erstellt.

Table of Contents

1 Introduction 1

2 Neural network models 6
2.1 The Self-Organizing Map . 8

2.1.1 The Architecture . 8
2.1.2 The Training Algorithm 8
2.1.3 Examples of SOM Applications 10
2.1.4 Alternative Cluster Visualisation 13
2.1.5 Labelling a SOM . 14
2.1.6 SOM Algorithm Improvements 16
2.1.7 Discussion . 18

2.2 Growing Grid . 19
2.2.1 The Architecture . 19
2.2.2 The Training Algorithm 20
2.2.3 Discussion . 23

2.3 Incremental Grid Growing . 23
2.3.1 The Architecture . 24
2.3.2 The Training Algorithm 24
2.3.3 Discussion . 28

2.4 Growing Self-Organizing Map 30
2.4.1 The Architecture . 30
2.4.2 The Training Algorithm 30
2.4.3 Spread Factor . 33
2.4.4 Discussion . 33

2.5 Hierarchical Feature Map . 34
2.5.1 The Architecture . 34
2.5.2 The Training Algorithm 35
2.5.3 Discussion . 37

2.6 Growing Hierarchical Self-Organizing Map 38
2.6.1 The Architecture . 38
2.6.2 The Training Algorithm 39

ii

TABLE OF CONTENTS iii

2.6.3 Applications of the GHSOM 41
2.6.4 Discussion . 41

2.7 Other Models . 42
2.7.1 Growing Cell Structures 42
2.7.2 Neural Gas . 43

3 Adaptive Hierarchical Incremental Grid Growing 45
3.1 The Architecture . 45
3.2 The Training Algorithm . 46

3.2.1 Initialisation . 46
3.2.2 Training . 47
3.2.3 Hierarchical Expansion 52

3.3 Automatic Labelling . 52
3.4 Discussion . 53

4 Application of the AHIGG 55
4.1 Implementation . 56

4.1.1 Visualisation . 56
4.1.2 Improvements of the Original Model 57

4.2 Animals Demo Data Set . 59
4.2.1 Results . 59

4.3 Zoo Demo Data Set . 60
4.3.1 Results . 64
4.3.2 Conclusion . 64

4.4 Tourism Data . 69
4.4.1 Data Pre-processing 71
4.4.2 Results with the Self-Organizing Map and Growing Grid 75
4.4.3 Results with the Growing Hierarchical Self-Organ-izing

Map . 78
4.4.4 Results with the Adaptive Hierarchical Incremental Grid

Growing . 81
4.5 Conclusion . 87

4.5.1 Adaptive Hierarchical Incremental Grid Growing 87
4.5.2 Hotel data . 90

5 Future work 92
5.1 Growth . 92
5.2 Deleting Nodes . 94
5.3 Improvement Degree . 96
5.4 Feature Vector Reduction . 96
5.5 Algorithm Speed-up . 97

TABLE OF CONTENTS iv

5.6 Growth Control Measures . 98
5.7 Connectivity . 99
5.8 Automatic Parameter Fine-tuning 99

6 Conclusion 101

A Glossary of terms 104

B Zoo data set 105

List of Figures

2.1 Topology-preserving mapping 7
2.2 Two variants for the neighbourhood adaptation 11
2.3 A Self-Organizing Map in standard and Adaptive Coordinates

representation . 14
2.4 A Self-Organizing Map in Cluster Connections representation 15
2.5 Fast winner search in the Self-Organizing Map algorithm . . . 17
2.6 Inserting new nodes in the Growing Grid 21
2.7 Neighbourhood in the Incremental Grid Growing 25
2.8 Expanding the grid in the Incremental Grid Growing 26
2.9 Connectivity in the Incremental Grid Growing 28
2.10 Architecture of a three layered Hierarchical Feature Map . . . 35
2.11 Architecture of a Growing Hierarchical Self-Organizing Map . 39

3.1 Architecture of a three-layered Adaptive Hierarchical Incre-
mental Grid Growing . 46

3.2 Stagnation in the AHIGG training process 49
3.3 Cluster detection in the AHIGG post-processing phase 51

4.1 AHIGG of the animals data set (layer 1) 61
4.2 AHIGG of the animals data set: birds (layer 2) 61
4.3 AHIGG of the animals data set: big mammals (layer 2) 62
4.4 AHIGG of the animals data set small mammals (layer 2) . . . 62
4.5 AHIGG of the zoo data set (layer 1) 65
4.6 AHIGG of the zoo data set: insects (layer 2) 66
4.7 AHIGG of the zoo data set: reptiles (layer 2) 66
4.8 AHIGG of the zoo data set: mammals (layer 2) 67
4.9 AHIGG of the zoo data set: mammals (layer 3) 68
4.10 AHIGG of the zoo data set: mammals (layer 4) 68
4.11 An exemplary hotel description 70
4.12 Vector normalisation . 75
4.13 SOM of the hotel data set . 77

v

LIST OF FIGURES vi

4.14 GHSOM of the hotel data set (layer 1) 79
4.15 GHSOM of the hotel data set: spas (layer 2) 80
4.16 GHSOM of the hotel data set: sports (layer 2) 80
4.17 AHIGG of the hotel data set (layer 1) 82
4.18 AHIGG of the hotel data set: conference hotels (layer 2) . . . 84
4.19 AHIGG of the hotel data set: wellness hotels (layer 2) 85
4.20 Problematic cluster emergence in the Incremental Grid Growing 89

5.1 Problematic growth around multiple nodes 93
5.2 Deleting nodes in the AHIGG 94
5.3 Mean quantisation error vs. quantisation error 98

List of Tables

3.1 Di�erent variants to compute quantisation errors. 48

4.1 The animal demo data set . 59
4.2 Categories in the animals demo data set 60
4.3 Part of the zoo demo data set 63
4.4 Categories in the Zoo data set 63
4.5 Hotel data set: English documents 71
4.6 Hotel data set: German documents 72

B.1 The zoo demo data set . 106

vii

Chapter 1

Introduction

In the past few years, an increasing �ood of digital information and data,
from various di�erent sources, became available to a wider range of users, ever
more readily and easily. This trend is, besides others, perfectly supported
by the rapid development of the Internet, particularly the World Wide Web:
for the year 2002, there were about 8,712,000 unique web sites; out of these,
35% or 3,080,000 web sites were publicly available. Though the growth of
the number of web sites is not as fast as it was in the late 90s, there was yet
a signi�cant growth of 20% between 2000 and 2002 1. Furthermore, so-called
Digital Libraries o�er massive document collections as well.

The quantity of data available increases rapidly, but that does not neces-
sarily lead to the same quantity of information becoming retrievable: it gets
very di�cult for users to �nd the relevant piece of information they want
in this �ood of data. Therefore, methods supporting users with organising,
exploring and searching features in collections of text data are needed.

Classical methods for searching documents by keywords exist; these meth-
ods may be enhanced with proximity search functions as well as keyword
combinations according to Boole's algebra. Especially the keyword combina-
tion is currently widely used and well known to a large number of users, as it
is used, for example, in so-called "search-engines" in the World Wide Web,
as well as for libraries, etcetera. Other methods rely on document similarity
measures based on a vector representation of the text documents. However,
the visualisation of the results, most of the time being lists ordered by the
keyword-relevance, has de�ciencies in aiding the user to actually retrieve the
desired documents.

A di�erent approach is the explorative search, when there is a lack of exact
keywords to guide the search process towards relevant information. This may

1all statistics taken from the "OCLC Online Computer Library Center, Inc.",
http://wcp.oclc.org/stats/size.html, accessed on December 12th, 2002

1

CHAPTER 1. INTRODUCTION 2

be supported by structuring the data to visualise clusters, and by organising
the data into hierarchies, which the users can "browse through" to �nd the
information they are searching for. This approach is advantageous in that it
is familiar to users: it is how libraries and bookshops are organised.

There are di�erent approaches for organising data; among the most widely
used, cluster analysis as a statistical method, based on pairwise similarities
between documents, has to be mentioned. Hierarchical, tree-like structures
can be generated to describe similarities between the documents, and to
provide explorative searching. A discussion on these techniques can be found
e.g. in [Sal89].

In the recent years, however, increasing attention has (again) been fo-
cused on neural network models, mainly because they became available at
reasonable costs, with increasing computational speed. Neural network mod-
els had their origin in attempts to model the functioning of the human brain;
the �rst models were already introduced in the 1940s. Neural networks may
be utilised to model non-deterministic learning processes. Their architecture
in general consists of a number of neurons as processing units, which are
connected by synapses ; neurons are normally activated by receiving input
activation from their neighbours. This architecture can be modelled using a
graph, where the neurons are represented by nodes, and the synapses by the
edges between the nodes.

Three categories can be distinguished for the way neural networks learn
[Spe96]:

• Supervised learning: Here, the result from the network for a speci�c
input is compared to the desired output, and the error between these
two is minimised in subsequent learning iterations. This process can
be compared to human learning, under the supervision of a teacher;
the teacher gives feedback, and the pupil tries to minimise the error.
The Backpropagation Network is a well known example for this kind of
neural networks.

• Unsupervised learning: Here, the neural network is organising itself in
subsequent learning iterations. Changes to the neurons (which re�ect
the learning process) are determined by a so-called learning rate.

• Reinforcement learning: this is a hybrid of supervised and unsupervised
learning; the network is only noti�ed whether the result is good or bad.

For clustering problems, especially unsupervised models are well suited,
as changes in the document collections will appear quite often [Mer97] (for

CHAPTER 1. INTRODUCTION 3

example, new documents on the world wide web or in digital libraries are
added every single day in enormous quantities); in a supervised environment,
one would have to revise the class structure frequently. Among unsupervised
models, Adaptive Resonance Theory and the Self-Organizing Map have to
be mentioned [Spe96]. Although the functioning of the Self-Organizing Map
has not yet been theoretically proven [Bay95], this model, and variants of it,
has enjoyed increasing popularity in the last few years.

In this thesis, we will focus on how to use neural network models to struc-
ture data and to organise it in hierarchies, and therefore allow explorative
search as well as (shown, for example, in [KKL+00]) a better visualisation
of the results from a keyword-based search. Among the quite many di�erent
models proposed in the literature, we chose a rather new model, namely the
Adaptive Hierarchical Incremental Grid Growing (AHIGG), �rst presented
in [He01]. This model will be implemented and tested for usefulness with
an example of real-world data. However, to give the reader a background
on neural network models, as well as to argue and justify why the model
of the AHIGG has been chosen over the many alternatives, we will start
by describing and discussing neural network models that have inspired the
development of the AHIGG. We will point out their weaknesses for our pur-
pose, i.e. structuring and organisation into hierarchies of a large collection
of unstructured text documents, in Chapter 2.

More speci�cally, after de�ning some basic characteristics and prerequi-
sites that neural network models should ful�ll for our purpose, we will take
a closer look at the model that forms the basis and has inspired the devel-
opment of many similar neural network models: the Self-Organizing Map
(SOM), as �rst presented in [Koh82] and described in detail for example in
[Koh90], in Section 2.1. This model allows a mapping from high-dimensional
data to a lower dimensional representation, usually a two-dimensional grid.
This two-dimensional representation is an easily human-readable one, thereby
providing the user with a good visualisation of the complex input space, al-
lowing to recognise the structure in the input space.

Though the SOM is a well analysed and widely used tool for Information
Retrieval and Text Mining purposes, it lacks some features desired in our
application: it is in general necessary to have an a-priori knowledge about
the data to choose the right parameters for the two-dimensional map; fur-
thermore, in spite of considerable speed-ups due to algorithmic short-cuts
allowing the SOM to scale up to very large data sets [KKL+00], computa-
tional complexity is still signi�cant, and besides, the SOM lacks mechanisms
for direct cluster visualisation and for organisation in hierarchies.

The Growing Grid [Fri95a] and the Incremental Grid Growing [BM93]

CHAPTER 1. INTRODUCTION 4

will then be presented in Sections 2.2 and 2.3, respectively, as models address-
ing the problem of the need to have an a-priori knowledge of the structure
of the data by replacing a grid with a �xed, prede�ned size (which is hard to
determine) by a dynamically growing one. The Incremental Grid Growing
uses a more �exible approach in developing the mapping by dropping the
strictly rectangular structure, using an adaptive architecture instead; more-
over, it proposes a way to visualise clusters directly in the architecture of the
map by introducing the concept of connections between the elements of the
map. Clusters become visible as a group of interconnected elements that are
separated by the other elements forming di�erent clusters, in the way that
they have no connection between them. However, these models still lack
mechanisms for creating a hierarchical structure.

Then, the Growing Self-Organizing Map, proposed in [AHS00], will be
presented in Section 2.4 as a model having similar characteristics in the
growing algorithm, also not limited to a completely �lled rectangular shape.
In addition, the authors propose a way of creating hierarchies, though the
proposed approach is a manual one, by interactively applying the model again
on subsets of the input data.

Then, two models allowing hierarchical structures to be created automat-
ically will be presented in Sections 2.5 and 2.6. The �rst one, the Hierarchi-
cal Feature Map, proposed in [Mii90], builds upon using the Self-Organizing
Map in its hierarchical layers. Therefore, the single maps on the di�erent
hierarchical layers su�er from the same shortcomings as the Self-Organizing
Map itself, though the computational speed may be increased dramatically,
resulting from breaking down the problem with the use of smaller maps.
Furthermore, the Hierarchical Feature Map always builds a fully balanced
hierarchical tree (i.e., all possible paths down the hierarchical layers have the
same depth), a representation that will only �t into a uniformly distributed
data collection - an assumption that cannot be made for real-world data.
That is where the Growing Hierarchical Self-Organizing Map (GHSOM), pre-
sented e.g. in [RMD02], combining the principles of the architecture of the
Growing Grid to generate a (not necessarily balanced) dynamically growing
hierarchical representation of the input data, adds. Being based partially on
the Growing Grid, some of the shortcomings also apply to the GHSOM.

Therefore, the Adaptive Hierarchical Incremental Grid Growing (AHIGG)
was proposed in [He01], building on the Growing Hierarchical Self-Organizing
Map, but rather using the Incremental Grid Growing for the individual maps
instead of the Growing Grid. This new model of the AHIGG will be described
and discussed in detail in Chapter 3.

Finally, the AHIGG has been implemented, and will be tested and dis-

CHAPTER 1. INTRODUCTION 5

cussed with respect to its usability and usefulness for document classi�cation
in Chapter 4. The AHIGG will be tested on three data sets: �rst, we will
apply two demo data sets, the well known animals, containing 16 data items
with 13 features, and tzoo, consisting of 100 data items with 20 distinct fea-
tures, demo data sets, as an intuitive way to show that the AHIGG produces
useful mappings. Using such a demo data set has the advantage that the
clusters and hierarchies developed by the AHIGG may be easily evaluated,
because the semantic, in this case the di�erent classes of animals (mammals,
birds, etcetera) are well known [Mer97].

Then, we will use data from the domain of tourist information services, a
collection of free-text hotel descriptions, to test the AHIGG on a large, real-
world collection of unstructured data. An approach to facilitate information
retrieval in tourist information systems with free-text queries has been carried
out e.g. in [DMB02]; however, this was a more conventional approach by
transforming the free-text queries into SQL statements, which were carried
out in turn on structured data. We, however, want to rely only on the
unstructured, free-text data.

In order to use the neural network models presented in this thesis for
creating a mapping from a high-dimensional input space to a two-dimensional
grid, the various text documents have to be represented as histograms of its
words, i.e. the free-text data has to be described in high-dimensional vectors
of features [Mer97]. How this can be achieved will be dealt with in detail
in the corresponding Section 4.4.1. The results from this application will
be presented and a comparison to the Self-Organizing Map respectively the
Growing Grid, and the Growing Hierarchical Self-Organizing Map will be
carried out. The chapter will �nish with a discussion of the results.

Chapter 5 will give some indications for future work, while a conclusion
of our work will be presented in Chapter 6.

Chapter 2

Neural network models

We want to identify neural network models giving a topology-preserving map-
ping from a high-dimensional input space to a two-dimensional output space,
keeping spatially close vectors in the input space V spatially close in the tar-
get space A. The model should create a visualisation of the inherent complex
structure of the input data, allowing to give the user an insight into it. To
support explorative search, our model would need to provide mechanisms to
organise the mapping in a hierarchical structure; further, clusters should be
easily visible and recognisable. The whole process should be automated, and
no a-priori knowledge of the input data set should be necessary to get satis-
fying results. This can be formulated by de�ning the following prerequisites:

1. The mapping should be topology-preserving [Fri92]:

• Input patterns that are spatially close in the input space V , i.e.
are similar to each other, should also be mapped spatially close in
the output space A.

• Elements which are spatially close in A should have similar input
patterns mapped on them.

• Areas of a high density in V should be represented by a corre-
sponding number of elements in A.

2. The model should (automatically) create a hierarchical mapping, cor-
responding to the hierarchies found in the input data.

3. The model should provide a (direct) way for visualising clusters in the
input data.

4. The model should not require any a-priori knowledge of the structure
of the input data, i.e. the grid sizes and hierarchical layers should be
determined automatically.

6

CHAPTER 2. NEURAL NETWORK MODELS 7

V

A

Figure 2.1: Topology-preserving mapping: Spatially close elements in V
are spatially close in A as well.

5. The structure of the two-dimensional representation should not be lim-
ited to a completely �lled rectangular shape (in other words, the rep-
resentation should �t the input space, not the other way around).

The �rst prerequisite is illustrated in Figure 2.1: input patterns that
are spatially close to each other in the input space will be spatially close to
each other in the mapping. The high-density area in V is represented by
correspondingly many spatially close elements in A.

All the models in this chapter ful�l these �rst three prerequisites; however,
to the best of our knowledge, so far only the model described in Chapter 3,
the Adaptive Hierarchical Incremental Grid Growing, ful�ls all of them.

The rest of this chapter is organised as follows: �rst, we investigate the
model which constitutes the "ancestor" of all the subsequently presented
models: the Self-Organizing Map (Section 2.1). Building on this model,
architectures that do not require (or require reduced) a-priori knowledge of
the input data space are presented: the Growing Grid (Section 2.2), the
Incremental Grid Growing (IGG, Section 2.3), as well as the Growing Self-
Organizing Map (GSOM, Section 2.4). While the IGG and the GSOM also
ful�l prerequisite 5, the IGG also allows direct cluster visualisation.

Then, models that allow the organisation of the map in hierarchies are
presented: the Hierarchical Feature Map (Section 2.5), and the Growing
Hierarchical Self-Organizing Map (Section 2.6), with the latter also ful�lling
prerequisite 4 by determining grid sizes and hierarchies dynamically.

CHAPTER 2. NEURAL NETWORK MODELS 8

Also, models not using a two-dimensional output space, or rectangular
grid structure (and therefore not providing an easy, direct visualisation), the
Growing Cell Structures and the Neural Gas, will be examined in Section
2.7, as they propose some interesting mechanism for the growth process, as
well as the connectivity and cluster visualisation.

2.1 The Self-Organizing Map
The Self-Organizing Map (SOM), as �rst presented in [Koh82] and described
in detail e.g. in [Koh90], is a well known and widely used neural net-
work model; it de�nes many principles that other models presented later
in this chapter build on. As documented in the SOM Bibliography ([KKK98],
[OKK03]), the SOM has been widely discussed and examined, and is, amongst
other applications, widely used for visualisation of high-dimensional data, as
it generates topology-preserving and dimensionality reducing maps. In gen-
eral, the SOM consists of a two-dimensional regular grid of nodes, which is
an easy, "human readable" representation. Each node on the grid is asso-
ciated with a model of some observation, which is computed by the SOM
algorithm so that they optimally describe the domain of observations. The
SOM organises the models in a way that similar models are closer to each
other than more dissimilar ones. In doing so, the SOM also provides a kind
of clustering of the input data, a desired feature in Information Retrieval and
Text Mining applications. However, cluster boundaries are not detected and
visualised directly.

2.1.1 The Architecture
The SOM usually consists of a (rectangular or hexagonal) two-dimensional
grid, with each node of the grid being associated with a model. These models
mi have the form of a so-called model vector mi = [mi1,mi2, ...min]T ∈ <n

of the same dimension as the input vectors xi = [xi1, xi2, ...xin]T ∈ <n. To
each of the nodes of the SOM, a number of input vectors xi are assigned to
during the training process, with similar vectors being mapped to the same
node.

2.1.2 The Training Algorithm
The training algorithm consists of the following basic steps:

• Initialisation of the network

CHAPTER 2. NEURAL NETWORK MODELS 9

• A number of iterations of

� Presenting input patterns and �nding the best matching node
� Adapting the model vectors of the best matching node and a cer-

tain number of neighbouring nodes.

These steps will now be described in detail.

Initialisation
For initialising the nodes in the grid, a common approach is to assign each
node with a randomly generated model vector. Alternatively, randomly cho-
sen vectors from the input data set could be taken.

Best matching node
A vector of the collection of input patterns is randomly selected, and pre-
sented to the SOM: we �nd the model (i.e. the node's model vector) which is
most similar to a presented input vector x. As a measure for the similarity,
the Euclidian distance between the model vector mi and the input vector
x can be taken. The node c which has the smallest Euclidian distance to
the input vector, called the winner, is selected as the best matching node
according to

c(x, t) = arg min
i
{‖x(t)−mi(t)‖}. (2.1)

Model vector adaptation
To improve the quality of the SOM, after each vector presentation, some
model vectors of the SOM are adapted towards the input vector x in the
learning process. The value of the new model vector is determined by its
current value and two other factors, the learning rate α as well as the neigh-
bourhood function hci, and can be computed according to

mi(t + 1) = mi(t) + α(t) · hci(t)[x(t)−mi(t)]. (2.2)

The learning rate α, 0 < α(t) < 1, determines how much a vector is
adapted, and should be a time-decreasing function, in other words, vectors
should be adapted more in the beginning of the learning process, with this
adaptation decreasing towards the end. The neighbourhood function is typi-
cally designed to be symmetric around the winning node; its task is to impose
a spatial structure on the amount of model vector adaptation [Mer97].

CHAPTER 2. NEURAL NETWORK MODELS 10

For the neighbourhood function, there are mainly two di�erent approaches
to be found in the literature. The simpler one is by de�ning a neighbourhood
set Nc, centred around the best matching node c. Nodes which lie inside
this neighbourhood set are (all to the same degree) adapted according to the
learning rate, while nodes outside the neighbourhood set are left as they are.
Therefore, the neighbourhood function can be written as

hci(t) =

{
1,∀i ∈ Nc(t)

0,∀i /∈ Nc(t)
(2.3)

This neighbourhood function is illustrated in Figure 2.2 (a), with the black-
coloured nodes, lying within the neighbourhood set, going to be adapted, i.e.
for these nodes, the neighbourhood function takes value 1. It is of advantage
to have a time-variable width or radius of Nc, with Nc being very wide at
the beginning of the training process, shrinking monotonically with time.

The second, more widely used approach for a neighbourhood function is
the use of a Gaussian function. With ri and rc denoting the coordinates of
the nodes i and c in the two-dimensional output space <2, respectively, a
proper form for hci might be

hci(t) = e
‖ri−rc‖2

2·σ(t) (2.4)

Analogous to the �rst approach for the neighbourhood, this function is de-
creasing with time t by the usage of a monotonically decreasing function σ(t).
Contrary to the simpler approach, using the Gaussian function will adapt the
nodes' model vectors di�erently depending on their "distance" from the win-
ning node c in the output space A. This is expressed by the term ‖ri − rc‖,
specifying e.g. the Euclidean distance. This behaviour is a desired one:
nodes close to the winning node should be adapted more than nodes further
away, as closer nodes mean closer relation. This neighbourhood function is
illustrated in Figure 2.2 (b), where the black node is the winner, and the
grey-shaded nodes are going to be adapted (the darker the node, the more
it will be adapted).

Further information and a more detailed description of the Self-Organ-
izing Map can be found for example in [Koh90].

2.1.3 Examples of SOM Applications
The Self-Organizing Map has been widely used for many di�erent kinds of
applications, e.g. for pattern recognition, image encoding, similarity recog-
nition, etc. Some examples may be found in [Bay95] and [Spe96].

CHAPTER 2. NEURAL NETWORK MODELS 11

(a) (b)

Figure 2.2: Two variants for the neighbourhood adaptation: In (a), all
nodes will be adapted to the same degree, in (b) the adaptation
strength is dependent on the distance from the winner.

Various projects dedicated to the organisation and visualisation of high-
dimensional document collections have also been carried out. Among these,
the two WEBSOM and the SOMLib projects are particulary interesting, as
they provide (at least to some extent) methods for exploration of the data;
they are described below.

WEBSOM
In the WEBSOM [Koh97] project, the usefulness of the Self-Organizing Map
for the organisation and exploration of massive document collections was
shown. A document collection of a total of 1,124,134 documents from 85
di�erent Usenet newsgroups were organised in a map of 204× 510 = 104,040
nodes, with 315 inputs each. In the �nal learning phase, the map was trained
with 1,000,000 cycles, using techniques to speed-up the original SOM algo-
rithm (some of these improvements are presented in Section 2.1.6). The
WEBSOM was computed on general-purpose computers in tolerable time
(eight to nine weeks).

The WEBSOM project showed successfully that SOMs can be used for
large document collections; further, it provides a user interface for navigating
through, and thereby exploring, the data, o�ering two di�erent levels of
"zoom" before displaying the list of documents represented by the selected
area of the map1. Besides that, the WEBSOM project initially used an

1The WEBSOM project is accessible on the World Wide Web at

CHAPTER 2. NEURAL NETWORK MODELS 12

interesting way to form word category histograms of the documents by using
another SOM for this purpose. For more details on this, please refer to
[Koh97].

WEBSOM 2
In the WEBSOM 2 [KKL+00] project, an even bigger document collection
than in the �rst WEBSOM project was organised: 6,840,568 patent abstracts
were mapped as 500-dimensional document vectors on a SOM of 1,002,240
nodes. The algorithm was, similarly to the WEBSOM project, an improved
version of the original SOM algorithm, utilising among others the techniques
presented in Section 2.1.6; it took around six weeks to compute the �nal
SOM.

The visualisation of the WEBSOM 2 is highly similar to the WEBSOM,
o�ering mechanisms for submitting keyword searches as well as content ad-
dressable search queries (the user submits a longer text, e.g. another docu-
ment, to search for similar content) and for exploring the data.

SOMLib
The SOMLib project [RM99a], [RM99b] is, as the name implies, a system
for creating (digital) libraries based on the SOM. It tries to provide the
users with an environment familiar to them from conventional libraries, i.e.
categorising of the documents available; further, the user can interactively
explore the library.

The application builds on SOMs, using an architecture of two layers of
SOMs. First, there are individual SOMs for subsets of (independent) docu-
ment collections. These maps are rather small, therefore allowing a satisfy-
ingly fast application with the SOM algorithm; the maps are trained using
the standard SOM algorithm. Secondly, there is another layer of a SOM
that functions by integrating the smaller maps. This SOM, however, is not
trained using the sum of all the sub-maps' input vectors, but rather by using
the maps' model vectors as input vectors. Therefore, on this SOM, we will
not �nd the documents directly, but rather the nodes representing these doc-
uments in another SOM. This approach is aimed for modelling distributed
libraries, as only rarely will all the documents be located in one and the same
place. By its architecture, the SOMLib allows SOMs representing document
collections to be integrated into one common representation.
http://websom.hut.�/websom/ (accessed on January 7th, 2004), including a demo-
application of data-exploration

CHAPTER 2. NEURAL NETWORK MODELS 13

The SOMLib package further utilises the LabelSOM technique (see Sec-
tion 2.1.5), and a component called libViewer to metaphorically visualise the
resulting library [RB99].

2.1.4 Alternative Cluster Visualisation
The SOM has become a popular tool for organising high-dimensional data;
therefore, a lot of research has been done to �nd improvements for the vi-
sualisation of clusters. Among the many approaches, two approaches pro-
posed in [MR97] on cluster visualisation in standard Self-Organizing Maps
are presented here; these methods are add-ons to the standard SOM, there-
fore preserving its robustness. The �rst approach mirrors the movement of
a node's model vector in a virtual two-dimensional output space, while the
second determines the degree of connectivity of neighbouring nodes, utilising
the distances between their model vectors. These methods will be described
in detail now.

Adaptive Coordinates
The basic learning rule of the SOM is extended to capture the movement of
the various model vectors within the (virtual) two-dimensional output space:
after each iteration, the Adaptive Coordinates (AC) of all but the winning
nodes are moved towards the position of the winning node in the output
space. Thus, clustering the nodes around the winning node resembles the
clustering of the model vectors around the input signal presented. After the
convergence of the training process, the clusters can be visualised using the
adaptive coordinates of the nodes to plot them in the virtual output space.
This is illustrated in Figure 2.3: While (a) shows the standard representation
of a SOM, the same SOM is visualised in Adaptive Coordinates representation
in (b). Clusters become clearly visible by similar nodes being grouped closely
to each other.

For more details on the Adaptive Coordinates, refer to [MR97].

Cluster Connections
Cluster Connections (CC) is a technique based on post-processing informa-
tion contained in the model vectors of a trained SOM: the distances between
model vectors of neighbouring nodes are used to determine three types of
relationships between nodes: Highly similar nodes, medium similar nodes
(nodes that still belong to the same cluster), as well as dissimilar nodes, i.e.
nodes with a cluster boundary going right in between them. A visualisation

CHAPTER 2. NEURAL NETWORK MODELS 14

Figure 2.3: A 6 × 6 Self-Organizing Map in (a) standard representation
and (b) Adaptive Coordinates representation

example with the same trained SOM as in Figure 2.3 (a) is presented in
Figure 2.4: Here, clusters become visible by the non-existence of a connec-
tion; furthermore the degree of similarity between nodes is indicated by the
darkness of the connection symbols.

For more details on the Cluster Connections, please refer to [MR97].

2.1.5 Labelling a SOM
Though using the techniques presented in Section 2.1.4, or similar ones, clus-
ters in the SOM become visible and intra cluster relations information is
extracted, still the relevance of attributes of the input patterns for a cluster,
i.e. the characteristics of this cluster, are not extracted. For the majority of
SOMs so far, the labelling was a manual process; this approach is suitable
for small maps, where there is a knowledge about the input data. However,
for large maps and unknown data characteristics, it is unfeasible. Also ap-
proaches to label the SOM with the label of the input data are only feasible
when the label of the input patterns actually carry some information about
their characteristics. In the WEBSOM project (see Section 2.1.3) for in-
stance, the name of the use-groups was used for labelling. However, in many
cases, information like this will not be available.

One method to automatically assign the nodes in a SOM with labels
that give some descriptive information about the clusters is the LabelSOM
method [RM01]. It builds on the fact that the most descriptive attributes
for a set of input data are the ones shared by all data on a speci�c node. If
a majority of input patterns mapped on a particular node exhibit a highly

CHAPTER 2. NEURAL NETWORK MODELS 15

Cat . . Goose . Hawk

. . Duck . Dove .

Fox . . Hen

.

Wolf . Tiger . . Cow

Dog . Lion . Zebra .

. Eagle

Figure 2.4: A 6×6 SOM in Cluster Connections representation: Clus-
ter boundaries as well as the degree of similarity become visible.

similar input vector value for a particular feature, the same will apply for
the corresponding model vectors; therefore, those model vector elements that
show largely the same value for all input patterns mapped on a node may
serve as a descriptor for that very node. Determining these elements is based
on computing the quantisation error qi for each vector element k of a node i
according to:

qik =
1

‖Ci‖ ×
∑

xj∈Ci

‖(mik − xjk
‖, (2.5)

where Ci is the set of input patterns xj ∈ <n mapped on node i, whose
model vector is mi. The smaller the value, the higher the similarity between
all input vectors; a value of 0 would denote all nodes sharing the same value.
[RM01] proposes to either select as many attributes as a prede�ned number,
or to use a preciseness threshold, selecting attributes with a quantisation
error below that value.

It is to noted that with this approach, labels that either describe the
shared presence or the absence of a speci�c attribute in a cluster are deter-
mined; however, in text mining applications, we want to describe a cluster
of documents by its present features only, in other words, we do not want
to describe documents by saying what they are not about. Therefore, be-

CHAPTER 2. NEURAL NETWORK MODELS 16

sides requiring a low quantisation error, we also demand an attribute to have
high model vector value, which indicates high importance: it is suggested to
de�ne another threshold indicating the minimum importance, and to select
only those attributes with a model vector value above this threshold.

2.1.6 SOM Algorithm Improvements
In recent years, a lot of improvements to speed-up the original algorithm
of the Self-Organizing Map have been proposed; out of these, some of the
suggestions from theWEBSOM [Koh97] andWEBSOM 2 [KKL+00] projects
will be presented here.

Rapid construction of large maps
The idea behind this technique is to estimate good initial values for the model
vectors of very large maps on the basis of asymptotic values of the model
vectors of a (much) smaller map. In other words, a smaller SOM is trained
with the same input patterns, and then interpolated to the larger map. This
is based on the idea that with good initial values, the training process can
be run with much fewer iterations and much smaller neighbourhood range
and adaptation strength. Thus, the process is much faster in total. This
technique was applied in the WEBSOM 2 project, where a small 435 nodes
map was, in four successive stages, enlarged 2,304 times, to develop a large
map of 1,002,240 nodes.

Rapid �ne-tuning of large maps
• Addressing old winners: It is assumed that in the middle of the training

process, when the SOM is smoothly ordered, though yet not asymp-
totically stable, the model vectors are not changed much during one
iteration. When the same input pattern is presented to the SOM some
time later, the new winner is found at, or in the vicinity of, the old win-
ner. This can be utilised as follows: To each input pattern, a pointer
to the old winner is stored. When an input pattern is presented again,
the node referenced will be searched �rst, and then a local search in
the neighbourhood will su�ce to �nd this new winner. As a precau-
tion, when the new winner is at the edge of the neighbourhood, this
will be only a preliminary best match, around which a new neighbour-
hood is built and searched. A regular full search for the winner can be
performed intermittently to ensure globally best matches. This mech-
anism is, according to [KKL+00] a signi�cantly faster operation than

CHAPTER 2. NEURAL NETWORK MODELS 17

Vectors Pointers

b

p

o

Figure 2.5: Fast winner search in the Self-Organizing Map algorithm

the exhaustive winner search over the whole SOM.
A possible scenario is depicted in Figure 2.5: For the selected input,
node o is stored as the old winner. In o's neighbourhood, p is found
as the best matching node; however, p is located at the edge of the
neighbourhood, and will therefore be regarded as a preliminary best
match only. Therefore, a new neighbourhood is built (and searched)
around this node. A node b is found as the �nal best match in the new
neighbourhood.

• Batch map principle of the SOM: The incremental algorithm of the
SOM, as de�ned by Equation 2.1 and 2.2, can often be replaced by
a signi�cantly faster batch computation version, which moreover does
not require the speci�cation of any learning rate α(t). This technique is
based on the assumption that the SOM will converge to some ordered
state, and therefore, the expectation values of mi(t + 1) and mi(t) for
t →∞ are required to be equal, i.e. in the stationary state,

∆mi = mi(t) · hci(t)[x−m∗
i] = 0 (2.6)

holds true. For simplicity, hci(t) is regarded as being time-invariant,
and with a �nite number (batch) of x(t), Equation 2.6 is written as

m∗
i =

∑
t hci · x(t)∑

t hci

. (2.7)

However, this is not an explicit solution for m∗
i , as on the right, hci

still depends on x(t) and all m∗
i . Thus, starting with an approximation

CHAPTER 2. NEURAL NETWORK MODELS 18

for the m∗
i , Equation 2.1 is utilised to �nd the indexes c(x) for all the

x(t). Then, Equation 2.7 and 2.1 are applied iteratively, and after a
few cycles, stable solutions for the m∗

i are found. For a more detailed
discussion of the batch map principle of the SOM, refer to [KKL+00]
or [Koh98].

2.1.7 Discussion
The Self-Organizing Map ful�lls the �rst prerequisite de�ned for our appli-
cation as de�ned in Section 2: With the neighbourhood adaptation, similar
input patterns are guaranteed to be spatially close on the grid.

The SOM neural network model has numerous advantages: It provides
a robust algorithm for a mapping from high-dimensional data to a lower-
dimensional (usually a two-dimensional) grid while preserving the topology of
the input space. The developed map is an easy human-readable visualisation
of the complex input data. The Self-Organizing Map has been proved to be
suited for applications in the Information Retrieval and Data Mining area;
some examples of di�erent applications of the SOM can be found in Section
2.1.3.

Still, there are also a number of disadvantages. The architecture of the
SOM does not allow clusters to be easily detected, as it is for example possible
in the Incremental Grid Growing, presented in Section 2.3. However, a wealth
of methods has been developed to provide better cluster visualisation of the
SOM; two of these methods, presented in [MR97], are described in Section
2.1.4. Also, methods like the LabelSOM [RM01] (see Section 2.1.5) allow
easier interpretation of the mapping.

Another problem lies in the in�exible architecture of the SOM. With a
�xed size of the grid, one needs to know what size might be optimal for
mapping a given input data set, which requires some knowledge of the input
data. This knowledge will, in many cases, not be present, and gaining it
through experiments for each single case is not desirable. Therefore, a model
that automatically, during runtime, decides about its architecture, depending
on the input patterns, is desired. Finally, the architecture of the SOM does
not allow any hierarchical structuring of the input patterns.

Further, the SOM poses some constraints on the size of the document
collection that can feasibly be displayed on a single two-dimensional map
[RDM00].

CHAPTER 2. NEURAL NETWORK MODELS 19

Implementation issues
Implementation of the architecture and the training algorithm is relatively
simple, and well known. Also, various publicly available implementations
have been released, e.g. the public-domain software package SOM_PAK,
described in [KHKL96]2.

However, for a large set of input patterns, a large grid of nodes will be
necessary for an adequate mapping, resulting in an increased computational
e�ort. Therefore, the SOM does not seem to be well suited for organising
large data sets in a short time. Yet, a lot of improvements of the original
algorithm have been proposed; some of them are described in detail in Section
2.1.6.

Conclusion
Though all applications presented in Section 2.1.3 show the usefulness of
the SOM for text mining purposes, the computational speed, and especially
the lack of organisation into hierarchies does not make it attractive for our
purposes; we will rather use a hierarchical neural network model.

2.2 Growing Grid
The Growing Grid, as presented in [Fri95a], is a self-organising network gen-
erated by a growth process. The application range of the model is the same
as that of the Self-Organizing Map presented in Section 2.1, and can there-
fore also be used for data visualisation. The Growing Grid overcomes one of
the shortcomings of the SOM: the need to prede�ne the size of the grid, by
growing dynamically in size.

2.2.1 The Architecture
Like the SOM, the Growing Grid is a network consisting of a rectangular,
k × m grid A of nodes; like in the SOM, each node has a model vector.
Additionally, however, each node has a resource variable τc, which is used to
gather statistical information to decide where to expand the grid.

2This software package is available at http://www.cis.hut.�/research/som_lvq_pak.shtml
(accessed on December 10th, 2003)

CHAPTER 2. NEURAL NETWORK MODELS 20

2.2.2 The Training Algorithm
The training algorithm of the Growing Grid incorporates the two basic steps
of the SOM algorithm, i.e. presenting input patterns and �nding the best
matching node, as well as adapting the model vectors of the best matching
nodes and a certain number of neighbouring nodes. Additionally, the grid
is expanded when certain conditions are ful�lled, with the learning process
being terminated when a stopping criterion comes true. For initialisation,
the resource values tc are set to 0.

Best matching node and model vector adaptation
Analogous to the SOM, for each input pattern x, the node c with the most
similar model vector is determined according to Equation 2.1.

Adaptation of the model vectors towards x is done on the winning node
c, as well as on its neighbouring nodes. Rather than using the Euclidean
distance as described in Section 2.1.2, the measure known as city-block dis-
tance or L1-norm is used to calculate the distance d between two nodes
c1 = ai1j1 , c2 = ai2j2 in the output space A:

d(c1, c2) = ‖(i1 − i2‖+ ‖j1 − j2‖. (2.8)

With α0 being a constant learning rate and σ a constant neighbourhood-
width parameter, model vectors in the Growing Grid are adapted according
to

mi(t + 1) = mi(t) + α0 · e−
d2(c,i)

2·σ2 · (x−mi)(∀i ∈ A), (2.9)
with the exponential term de�ning a Gaussian neighbourhood adaptation as
in Equation 2.4.

With each adaptation step, the resource variable τc of the best matching
node is increased by one, thereby acting as a winning counter.

Grid expansion
A parameter λg determines the number of adaptation steps by k×m×λg for
a network of the size of k×m nodes. In other words, the parameter indicates
how many adaptation steps per node are done on average before expanding
the grid.

After k×m×λg adaptation steps, the node e with the maximum resource
value, i.e. the node which has the highest number of best matchings, is deter-
mined (this node is often called the error node). With the aim of distributing
the input patterns more evenly over all nodes, new rows or columns are in-
serted in the vicinity of this node. Assuming that a neighbour f of e, where

CHAPTER 2. NEURAL NETWORK MODELS 21

(b)

e f

e f

(a)

e

f

f

e

Figure 2.6: Inserting new nodes in the Growing Grid: Insertion of a
row (a) or column (b) between the nodes e and f .

f has the most di�erent model vector to e (indicating a direction with high
variance), the resolution of the grid should be increased in that direction;
this is done by inserting a new row or column, respectively, between f and
e.

The above can be formally described as follows: with Ne denoting the set
of neighbouring nodes directly connected with e, according to

Ne = {c ∈ A|d(e, c) = 1}, (2.10)

the neighbouring node to e with the most di�erent model vector ful�ls

‖mf −me‖ ≥ ‖mi −me‖(∀i ∈ Ne). (2.11)

It is assumed that e and f are neighbours in the i-th row of A, particulary
with e = aij and f = aij+1. Then, a new column j′ (having k nodes)
is inserted between the columns j and j + 1. Initial values for the model
vectors of the new nodes are derived by interpolating from model vectors
of their neighbours, thereby, as intended, increasing the density of model
vectors in the vicinity of me:

mrj′ =
1

2
· (mrj + mrj+1)(∀r|1 ≤ r ≤ k). (2.12)

By this, the number of columns increases by one: m = m + 1.
The case that e and f share the same column can be treated in complete

analogy. These two variants of inserting new nodes are described in Figure

CHAPTER 2. NEURAL NETWORK MODELS 22

2.6, with (a) showing the case of inserting a new row between the error node
e and its most di�erent neighbour f ; in (b), a new column is added.

After growing the grid as described above, all resource variables τi,∀i ∈ A
are reset to zero, and a new round of adaptation is started, until the stopping
criterion, as described below, is ful�lled.

Stopping criterion
As the network's size is not prede�ned, it has to be decided during runtime
when the growing process should be terminated. In the simplest case, a
maximum number of nodes allowed on the grid can be de�ned, halting the
growth process as soon as this maximum number is reached or surpassed.

However, an indirect stopping criterion might be desirable, as for a direct
one (for example, the maximum number of nodes) similar criticism as with
the prede�ned size of the Self-Organizing Map (see Section 2.1.7) might apply
(though the number of nodes seems to be a less complex parameter as the
actual grid-size, and thereby an improvement). An indirect stopping criterion
might be e.g. when the fraction τi

m×k
falls below a boundary for each node

i ∈ A, i.e. when at the most a certain fraction of the input patterns has been
mapped to each node. However, attention has to be drawn to designing a
stopping criterion that will eventually be ful�lled, or to combine it with a
maximum number of nodes allowed.

Fine-tuning of vector positions
The constant learning rate chosen for the adaptation during the learning
process prevents the convergence of the model vectors to near-optimal posi-
tions. However, once the growth process is �nished, the model vectors can
be �ne-tuned with a number of adaptation steps, using a decreasing learning
rate.

With t′ denoting the time in the �ne-tuning phase, and λf determining
how many adaptation steps per node are performed on average, t′max = k ×
m × λf adaptation steps are performed according to Equation 2.9, with a
time-dependent learning rate α(t′), according to

α(t′) = α0(
α1

α0

)
t′

t′max . (2.13)

After the �ne-tuning phase, the training process is �nished, and the network
has reached its �nal structure.

CHAPTER 2. NEURAL NETWORK MODELS 23

2.2.3 Discussion
The Growing Grid builds on the principles of the Self-Organizing Map, having
a two-dimensional rectangular network structure and a similar, but slightly
enhanced architecture and training algorithm; the size of the grid is not pre-
de�ned, but the best matching size for the given input patterns is automat-
ically determined during the training process. The grid is expanded in areas
with a high density of input patterns, thereby improving the representation
quality in these areas.

The Growing Grid deals with one of the major shortcomings of the SOM,
where one had to have some a-priori information about the collection of input
pattern to be able to prede�ne a �tting grid size. With the grid growing
in size, a well de�ned stopping criterion can ful�l the task for nearly any
collection of input patterns.

The usefulness of the Growing Grid for data visualisation has been shown
for example in [Fri96] for a demo data set, and in [Mer98a] for software
libraries.

On the other hand, the Growing Grid's expansion process always inserts
complete rows or columns respectively, therefore also increasing the density
of model vectors in areas of the map where nodes may represent their input
space adequately. This problem cannot be solved with an architecture where
the grid's rows and columns are completely �lled, but for example with an
approach as in the Incremental Grid Growing (Section 2.3).

Furthermore, the Growing Grid, as the SOM, does not provide any mech-
anism for directly visualising the clusters (as it is incorporated in the Incre-
mental Grid Growing, presented in Section 2.3) or for creating hierarchies
(as the models going to be presented in sections 2.5 and 2.6).

2.3 Incremental Grid Growing
The Incremental Grid Growing (IGG), as described in [BM93], tries to deal
with some shortcomings of the Self-Organizing Map: it addresses the prob-
lem of prede�ning the grid size by an algorithm that automatically chooses
a grid size and shape �tting to the input patterns during run-time. Further-
more, it proposes a solution how to visualise clusters by using the concept
of connections between nodes; clusters become visible by areas of connected
nodes, being separated from other areas simply by not having a connection to
them. Plus, the IGG proposes how to deal with discontinuities in the input
space, which in the standard SOM architecture may lead to having nodes in
areas where input probability is 0; this is solved by having the grid not fully

CHAPTER 2. NEURAL NETWORK MODELS 24

�lled with nodes, but having some grid positions left empty.
To develop an accurate representation of the topology, the algorithm must

prevent erroneous encoding of the topology, which (at least complete preven-
tion) is impossible without an a-priori knowledge of the input space. Al-
ternatively, the algorithm could recognise and correct such errors, though
fully organising a map and then modifying it so that unwanted structures
are removed requires too much computational e�ort. Therefore, an incre-
mental growing algorithm combining both approaches, with heuristics how
to remove connections and for adding new nodes, was chosen.

2.3.1 The Architecture
The Incremental Grid Growing uses a two-dimensional grid of nodes as the
SOM does, but drops the idea of having this grid fully connected to visualise
cluster boundaries, as well as the idea of having nodes placed on all grid-
positions. In other words, the grid of the IGG (likely) becomes sparse. The
grid starts from a few nodes, and is expanded during the training process.

2.3.2 The Training Algorithm
After initialisation, the algorithm is run in a number of iterations, each con-
sisting of the following steps:

• Presenting vectors and adapting the grid to the input patterns, using
a slightly modi�ed self-organising process of the SOM.

• Expanding the network by adding nodes to those areas (at the perime-
ter of the grid) that represent their corresponding input space inade-
quately.

• Deleting or adding connections between nodes by examining their model
vectors.

The new network structure is re-organised; the process continues until a
stopping criterion, in the form of a maximum number of nodes, is ful�lled.
The steps of the algorithm will be described in detail below:

Initialisation
Initially, the network consists of four connected nodes in a 2 × 2 grid. The
model vectors of these nodes are chosen randomly from the input, as well as
the error values, as described below, are set to 0.

CHAPTER 2. NEURAL NETWORK MODELS 25

(a) (b)

b

a

c d

b

a

c d

Figure 2.7: Neighbourhood in the Incremental Grid Growing: con-
nectivity as the decisive criterion for neighbourhood adaptation
of the nodes a -d.

Best matching node and model vector adaptation
Analogous to the SOM, input patterns are presented to the network, the best
matching node is chosen, and the nodes' model vector are adapted towards
the presented input pattern - the network develops a two-dimensional map-
ping of the high dimensional data (see Section 2.1.2 for details on the SOM
training algorithm).

Note, though, that there is one important di�erence for the adaptation
of neighbouring nodes: in this model, whether a node will be adapted or
not does not only depend on its distance to the winning node, but also on
whether there is a connection between these two nodes. Also, the distance
is not measured as a distance between the positions on the grid, but as the
length of any existing shortest path between these two nodes. This is illus-
trated in Figure 2.7: Both (a) and (b) represent the same network, except
for the connections. In (a), the node b is not adapted, due to the length of its
shortest path to the winning node being outside the neighbourhood range.
The nodes a, c and d are not adapted, because they have no connection
to the winning node (marked in black); in (b), however, these nodes have a
connection to the winner (respectively, a length of a shortest connection to
the winner within the neighbourhood range), and therefore are adapted.

Additionally, so-called boundary nodes, with a boundary node de�ned as
any node in the grid that has at least one directly neighbouring position not

CHAPTER 2. NEURAL NETWORK MODELS 26

(f)

e3 n6

n7

(a)

e1

(b)

e1 n2

n1

(c)

e2

(d)

n5

e2 n4

n3

(e)

e3

Figure 2.8: Expanding the grid in the Incremental Grid Growing:
growing new nodes around the error nodes.

yet occupied by a node, store a special error value E. Each time a boundary
node is selected as a winning node during the input pattern presentation, this
error value E is increased by the square of the distance between the node's
model vector m and the input pattern x according to

E(t) = E(t− 1) +
∑

k

(xk −mk)
2, (2.14)

where k is the k-th component of the feature vector.

Grid expansion
At the end of each training cycle (a training cycle consists of a number
of iterations of adaptation), the node with the highest cumulative error,
the error node, determined by the highest value of E among all boundary
nodes, is said to be the node representing the area of the input space most
inadequately. Therefore, the grid is expanded around this node, by adding
new nodes in all as yet unoccupied grid locations in its direct neighbourhood.
The new nodes are initialised being directly connected to the error node.

In Figure 2.8, a scenario of the growth process is illustrated: The IGG
starts with an initial 2×2 grid in (a). After the �rst training cycle, the node

CHAPTER 2. NEURAL NETWORK MODELS 27

e1 is selected as the error node, and new nodes (n1 and n2) are added in
open neighbouring positions of e1 (b). After the expansion, another training
cycle is carried out, and e2 is selected as the new error node (c), and new
nodes n3, n4 and n5 are added in (d). After a third cycle, with e3 as the
error node (e), and new nodes n6 and n7 added, the grid has grown almost
three times in size.

For the initial model vector, two cases are distinguished for a newly added
node:

• The node has, besides the error node, other already existing direct
neighbours (which are not necessarily, and not possibly, connected to
the new node). Then, the value for the model vector is initialised as
the average value of all neighbouring nodes' model vectors according
to

mnew,k =
1∑

i∈N mi,k

(2.15)

with mnew,k being the k-th component of the new node's model vector,
and N being the set of the n neighbouring nodes. In Figure 2.8 (d),
this case applies for the nodes n3 and n5.

• The newly added node has no other direct neighbours. In this case, the
new node's model vector is initialised to the error node's model vector;
the error node's model vector is modi�ed to the average of its existing
neighbouring nodes' and the new node's model vectors, according to

me,k =
1

ne + 1
× (mnew,k +

∑
i∈Ne

mi,k) (2.16)

with me,k being the k-th component of the model vector of the error
node, and Ne the set of ne existing neighbours of the error node.
This case is illustrated for the nodes n1 and n2 in Figure 2.8 (a).

The training process is terminated when a stopping criterion, given by a
predetermined maximum number of nodes, is ful�lled.

Initially, new nodes are connected to the rest of the network structure
only through the error node. This might change in subsequent iterations,
though, as described below.

Examining connections
During the self-organising process, nodes may develop model vectors that are
close to the model vectors of nodes they are not connected with, whereas on

CHAPTER 2. NEURAL NETWORK MODELS 28

(a) (b)

c1

c1

c1

c1

(c) (d)

d1 d2d1 d2

Figure 2.9: Connectivity in the Incremental Grid Growing: in (a),
two similar nodes establish a connection, whereas in (b), two
dissimilar nodes are disconnected.

the other hand, a node's model vector might become signi�cantly di�erent
to a model vector of a neighbouring node with which it is connected. In both
cases, it would be desirable to change the connection-state between these
two nodes. For this, a "connect" and a "disconnect" threshold parameter is
de�ned. After each training cycle, the grid is examined by comparing each
pair of two directly neighbouring nodes by calculating the Euclidean distance
between their model vectors. The following cases can be distinguished:

• If there is no connection between the nodes so far, but the distance
is below the connect-threshold, a new connection is added. This is
illustrated in Figure 2.9: the two nodes c1 and c2 have developed sim-
ilar model vectors (a), and therefore a new connection is established
between them (b).

• If there is already a connection between the nodes, and the distance
between the two nodes' model vectors is above the disconnect-threshold
(in other words, the two nodes have become too di�erent), the connec-
tion is deleted. This is depicted in Figure 2.9 (c), where the two nodes
d1 and d2 are identi�ed to be too dissimilar, and therefore the con-
nection between them is detected (d). Note that by this, two separate
clusters have been formed.

• In all other cases, the state of the connection remains the same.

2.3.3 Discussion
The Incremental Grid Growing addresses and (partly) solves two major short-
comings of the Self-Organizing Map: the need to have an a-priori knowledge

CHAPTER 2. NEURAL NETWORK MODELS 29

about the input data to be able to specify the grid-size parameters is reduced,
as de�ning the maximum number of nodes requires less information about
the input space as the need to de�ne also the width and height of the grid
as in the SOM, but is still not completely solved. A computational measure
would be desirable.

The inability to visualise clusters with the SOM however is solved with
the concept of connections. Connections in the IGG present the input dis-
tribution - if it forms a connected area, it will be rarely necessary to delete
connections from the grid, on the other hand, if there are distinct clusters
in the input patterns, (and if the thresholds are selected properly), these
clusters will develop into separate clusters in the mapping as well. Once a
cluster is separated from the rest of the network, it will continue to develop
separately (as neighbourhood adaptation will be done only on, and result-
ing from, nodes within the very same cluster). These clusters may represent
categories or sub-sets in the data; capturing these structures mapped in the
two-dimensional map can assist in the interpretation of the input data. How-
ever, selecting absolute values for the thresholds, given an unknown data set,
might be hardly possible. This issue is addressed in the Adaptive Hierarchical
Incremental Grid Growing in Section 3.2.2. Further, inter-cluster relations
are not visible anymore. This, however, could be solved by applying a vi-
sualisation technique like the Cluster Connections as described in Section
2.1.4.

Growing the network only at its perimeter allows it to develop an arbitrary
topology, while expanding only around areas that represent the input space
inadequately encourages the map to develop only topological structures that
are actually present in the input data.

Though the IGG seems to provide solutions to some of the shortcomings
in the SOM, it has, to our best knowledge, been rarely used in applications
with real world data. In [BM95], the IGG has been tested upon data from
the Webster online thesaurus ; in [KM98], the IGG has been compared to the
Growing Grid in matters of pattern recognition, with the authors stating that
it produces slightly better results, which might be due to the target-oriented
strategy of adding nodes at those edges of the grid where the quantisation
error is at its largest.

On the other hand, the Incremental Grid Growing model does not pro-
vide any mechanism for creating hierarchies. Therefore, we will investigate
hierarchical models in Sections 2.5 and 2.6.

CHAPTER 2. NEURAL NETWORK MODELS 30

Implementation issues
For the computational e�ort, arguments analogous to the ones presented in
the sections about the Growing Self-Organizing Map (2.4.4) would apply:
the computational e�ort is decreased due to the incremental growth process,
resulting in a smaller grid for most of the training process. However, this has
not yet been proved in experiments.

2.4 Growing Self-Organizing Map
The Growing Self-Organizing Map (GSOM), as presented in [AHS00], is a
model similar to the Incremental Grid Growing presented in Section 2.3. The
same as the IGG, the network grid starts small in size, growing during an
incremental process, with the growth being only at the perimeter of the grid,
and (likely) leaving the grid sparse in some areas.

There are important di�erences to the IGG though, mainly with the
GSOM not having the concept of connections (i.e., the grid is fully con-
nected, each node has a connection to its direct neighbours). Further, the
initialisation of newly created nodes follows a more sophisticated rule. The
stopping criterion for the growth process again is a user-de�ned parameter,
but, instead of using the number of maximum nodes allowed as in the IGG,
the user speci�es a more abstract "spread factor" (described in detail in
Section 2.4.3), which will determine the degree of the map's spreading, and
thereby the size of the network.

2.4.1 The Architecture
The GSOM uses a rectangular two-dimensional grid for its mapping. The
grid is, however, not necessarily (and not likely) completely �lled with nodes
- during the training process, empty grid positions may emerge. All nodes,
however, are fully connected to each other.

2.4.2 The Training Algorithm
The GSOM algorithm builds on the basic SOM concepts extended by some
steps, and can be structured in three phases: Initialisation, growing, and
smoothing phase. The algorithm will be described in detail below.

CHAPTER 2. NEURAL NETWORK MODELS 31

Initialisation
As with the GG and IGG, the network is initialised with four nodes, mainly
because it allows all starting nodes to be boundary nodes (as de�ned in Sec-
tion 2.3.2), thus each node has the possibility to grow in its own direction
at the beginning. The model vectors are initialised with random values from
the input vector space.

A variable Emax, tracking the highest accumulated error value E of a
node in the network, is initialised to 0. The growth threshold gt, which will
guide the growth process of the map, will be calculated from the user-de�ned
spread factor.

Best matching node and model vector adaptation
Analogous to the SOM, input patterns are presented, and the best matching
node is found as the node having the least Euclidean distance to the presented
input vector. Adaptation of nodes also follows the principle of the SOM, using
a time-decreasing learning rate and neighbourhood range. The winner's error
value E will be increased by the di�erence between the input vector and the
model vector similar to Equation 2.14 of the Incremental Grid Growing.

However, the neighbourhood is smaller compared to the SOM, to have
a more localised model vector adaptation. Also, the learning rate holds an
interesting new concept, which is justi�ed by the incremental growth process:
at the very beginning of the training process, the grid is small (four nodes in
general), allowing the same nodes to be selected as winner for very di�erent
input vectors. This will cause the model vectors of the same set of nodes
to �uctuate in completely di�erent directions. As a solution, a new learning
rate reduction rule, taking into account the number of current nodes in the
network is proposed: α(t) is the learning rate at time t, according to:

α(t + 1) = β × ψ(n)× α(t), (2.17)

where 0 < β < 1 is a constant value, causing Equation 2.17 to converge
towards 0 for t → ∞, and ψ(n) is a function of n, the number of nodes
in the network; this function is used to manipulate the learning rate in a
way that it is smaller at the beginning (when there are fewer nodes), and
gradually taking higher values as the network expands and the number of
nodes increases. As a simple formula, ψ(n) = 1− R

n(t)
, with the authors using

R = 3.8 in their experiments, is proposed.

CHAPTER 2. NEURAL NETWORK MODELS 32

Grid expansion
This phase is also similar to the corresponding one in the IGG presented in
Section 2.3.2 - the growth takes place only at the perimeter of the network.
A di�erence is found, though, on how the growth is initiated, which is the
case when any node has a higher error value than the growth threshold, i.e.
when the condition Emax > gt is ful�lled. All nodes for which the error
value E is higher than the growth threshold will grow new nodes in all free
neighbouring grid positions. Model vector initialisation is based on the model
vectors of the existing neighbours of the new nodes, and can be divided in
four di�erent cases, depending on the layout of the neighbourhood (for a
detailed description, refer to [AHS00]).

With the growth being triggered by the boundary nodes itself, cases might
arise where the boundary nodes have low error values, but a non-boundary
node (i.e. a node in the centre of the network, where the grid is completely
�lled) has a high error value. Though the non-boundary node can not grow
new nodes, and the boundary nodes do not trigger the growth (having a low
error value, i.e. as they represent their input space adequately), the grid
should still be expanded. Note that in the original SOM, this problem would
not arise when the grid size is big enough, as the organisation process will
result in the map spreading out.

To solve this problem, a concept of error distribution is proposed: a non-
boundary node c for which the error value E ful�ls E > gt will distribute its
error to the neighbouring nodes with the following formulas:

Ec
t+1 =

gt

2
(2.18)

where Ec
t is the error value of the node, and

Eni
t+1 = Eni

t + γ · Eni
t (2.19)

where Eni
t (i can take the values 1-4) is the error value of the i-th neighbour of

c, and γ is a constant value controlling the increase in the error accumulation,
called the factor of distribution. With 2.18 and 2.19, the error value of
the error node is reduced, and the error value of the neighbouring nodes is
increased. Thereby, the error is spread out from the error node, which shall
eventually in time (i.e. iterations) ripple outwards and cause boundary nodes
to grow. In other words, goal of these two formulas is to (indirectly) initiate
the node growth on the perimeter of the grid.

CHAPTER 2. NEURAL NETWORK MODELS 33

2.4.3 Spread Factor
As mentioned above, the growth process is guided by a growth threshold,
which in turn is calculated from a user-de�ned spread factor sf , 0 < sf < 1.
The spread factor determines the degree of spreading of the map, with a
higher value resulting in a more spread out map. The abstraction from the
growth threshold to the spread factor sf liberates the analyst of the need
to have a-priori knowledge of the factors that determine the growth in the
algorithm, as the same spread factor can be used to achieve the same degree
of granularity for di�erent input data. The basic idea behind the sf is that
the growth threshold will depend mainly on the dimensionality of the data
set; the higher the dimension, the higher the error values, in general, will
become. To liberate the user from de�ning di�erent growth thresholds for
di�erent dimensional data, the very same is calculated according to:

gt = D × f(sf), (2.20)

where D is the dimension of the data, and f(sf) a function that should take
values 0 to ∞. −ln(sf) is a function that satis�es this requirement; the
growth threshold can thereby be calculated according to:

gt = −D · ln(sf). (2.21)

2.4.4 Discussion
The GSOM, though having di�erences in the algorithm, has similar charac-
teristics as the IGG - both do not need a-priori knowledge of the analyst to
specify the size, with the GSOM, using the spread factor, being more �exible
than the IGG, and de facto requiring no a-priori knowledge at all. However,
the GSOM does not allow cluster detection as direct as the IGG with its con-
cept of connections. For cluster detection, the authors stress the fact that
the �exible structure and shape of the grid itself will give some hints (the
GSOM will "branch out", which will attract attention to groups as well as
"outliers"). The concept of the learning rate reduction for small grids is an
interesting one, and could be incorporated in other, incrementally growing
models.

Another interesting aspect is that the GSOM, as the �rst of the models
presented so far, suggests a method how to create hierarchical structures.
This is done by creating a GSOM with a low spread factor, and taking only
subsets of this map to generate a new GSOM with a higher spread factor.
This could subsequently be done a few more times, thus actually creating a
set of hierarchies. However, this process (selecting the subset, and starting

CHAPTER 2. NEURAL NETWORK MODELS 34

a new process with a higher spread factor) is done manually and therefore
time-consuming.

One more interesting concept is proposed (but not yet incorporated in
the model) in [AHS00]: extending the learning process by mechanisms to
delete nodes from the grid, when they become obsolete.

In [AHS00], the GSOM has, however, been tested only on a demo data set,
as well as a rather small human genetic data set, describing genetic distances
between 42 di�erent populations of the world (i.e., the data set contains 42
input patterns).

Implementation issues
The algorithm of the GSOM becomes more complex than the one of the
SOM, especially the aspect of the error distribution and the more sophisti-
cated model vector initialisation for newly added nodes might take additional
computational e�ort. However, the authors argue that the speed compared
to the SOM is increased, especially due to the fact that the GSOM can rep-
resent a set of data with fewer nodes than the SOM, at an equal amount
of spread, due to its �exible shape. The authors maintain that this aspect
becomes a signi�cant advantage especially for very large data sets, as the
reduction of nodes will result in a reduced processing time. However, to the
best of our knowledge, this algorithm speed-up has not yet been veri�ed in
experiments.

2.5 Hierarchical Feature Map
The Hierarchical Feature Map (HFM), as presented in [Mii90], is the �rst of
the models presented so far that allows (automatic) creation of a hierarchi-
cal structure, thereby explicitly visualising the hierarchical taxonomy of the
input patterns. To achieve this, the Hierarchical Feature Map uses several
standard, two-dimensional Self-Organizing Maps, arranged in several hierar-
chical layers. The layers are arranged in a way that for each node in one
layer, a self-organising map is added in the next layer. The highest level is
supposed to lay out the di�erent categories of input patterns, while on lower
levels the self-organisation process will form sub-categories and groups.

2.5.1 The Architecture
The Hierarchical Feature Map consists of several layers of Self-Organizing
Maps. The HFM starts with a single SOM on the �rst hierarchical layer.

CHAPTER 2. NEURAL NETWORK MODELS 35

Figure 2.10: Architecture of a three layered Hierarchical Feature
Map

For all the other hierarchical layers, which will be created in an incremental
process, there are precisely as many SOMs as there are nodes in all the SOMs
on the previous layer. If the SOM on layer 1 is a 2× 2 SOM, then there are
four di�erent SOMs on the second layer. Let us say all these SOMs are also
of the size 2× 2, then there is 4 · 2 · 2 = 16 SOMs on the third layer, etcetera.
This example is shown in Figure 2.10

Each SOM on a lower level is linked to one node on one level above, giving
a more spread-out representation of the input patterns in the parent node.

The SOMs used in the HFM model are standard SOMs, therefore, their
size is a prede�ned, �xed one; also, the number of hierarchy layers is pre-
de�ned by the user, and the hierarchies are fully balanced (i.e., all possible
paths down the hierarchies have the same length). The SOM on the �rst
level should be of small size to get a gross, high level organisation of the
input patterns.

2.5.2 The Training Algorithm
The algorithm uses the standard SOM learning algorithm, applying it to all
its SOMs on all the hierarchical levels. The maps are trained sequentially. In
other words, SOMs on lower hierarchy levels will be trained only when the
process is �nished on the previous layer.

The �rst-level SOM is initialised, and the standard self-organising process

CHAPTER 2. NEURAL NETWORK MODELS 36

will develop an ordered mapping of the input space. As learning rate and
neighbourhood function, time-decreasing functions are chosen (as in the SOM
algorithm).

After the self-organising process is �nished, for each node on the highest
level, a new SOM will be created in the second hierarchical level. For each
SOM, there is exactly one parent node that will "pass on" the input patterns
mapped onto it to this SOM. The training process continues with organising
all SOMs on the second level. When this is done, the process continues on
the next level, until the prede�ned depth of hierarchical layers is reached.

The training process therefore consists of the following steps:

1. Initialising one single SOM on the highest hierarchy level.

2. Training the SOM according to the standard SOM algorithm.

3. If the current hierarchical level is smaller than the maximum, prede-
�ned hierarchy level: For all the nodes i, 1 ≤ i ≤ m× n of the current
SOM, where m and n are the width and height of the network grid:
create a new SOM on the next hierarchical level.
Otherwise, the training algorithm is �nished.

4. For all the SOMs on the next hierarchical level: initialise the SOM and
train it, starting from step 2

One additional concept is introduced in [Mii90]: When passing on the input
patterns from a node to its corresponding lower-level SOM, the input pat-
terns will be modi�ed in its dimension: the higher-level map acts as a �lter,
choosing the relevant features for each sub-map. This is done as follows: the
features are ordered with respect to their variance over the input patterns
"won" by this node, and only a �xed fraction ri of the features will be chosen
for the next level's SOM. Instead of a �xed fraction, also a variance threshold
could be used.

This approach is justi�ed by the fact that input patterns matched to the
same node will have the values of a number of features in common (otherwise,
they would not form a cluster). Therefore, the input patterns will not be dis-
tinguishable by these features, and they are, therefore, not needed anymore
for the organisation process. This mechanism, however, might be only of use
when there are clearly separated clusters in the input patterns (as is the case
in the example demonstrated in [Mii90]). When using this mechanism on
arbitrary data collections, only the reduction of vector components based on
a variance threshold seems to be justi�ed; otherwise components that have
the lowest variance (in relation to the other components), but are not in any

CHAPTER 2. NEURAL NETWORK MODELS 37

way common for all the input patterns, might be dropped; then, the map
may lose some essential information for the organisation process.

2.5.3 Discussion
The proposed model of the Hierarchical Feature Map tries to overcome the
shortcomings of the SOM when it comes to visualising the hierarchical tax-
onomy of the input space. When using well-chosen parameters for the grid
sizes and the number of hierarchical levels, the HFM is able to represent the
hierarchies in the input data correctly.

This, however, can rarely be achieved without any a-priori knowledge of
the data, and is a non-trivial problem. This is one of the major shortcom-
ings of the Hierarchical Feature Map ([DMR00a], [Mer97], [Mer98b]), and
is also mentioned by the author himself, as he states that �nding the best
parameters might need some experiments, while also suggesting the devel-
opment of automated mechanisms for adjusting the sizes of the map as well
as the depth of the hierarchy according to the input data. One drawback is,
furthermore, that the hierarchies will on all possible paths be developed to
the maximum depth; for real-world data, this will, however, not be a realistic
representation: some subsets of the data will most likely have more hierarchy
levels, and others may have none at all. The author himself states that the
HFM is best suited for strongly hierarchical data; for data where only some
subsets have strong hierarchies, the architecture might not �t, though. All
these shortcomings are addressed by the model proposed in Section 2.6, the
Growing Hierarchical Self-Organizing Map.

For cluster detection, the Hierarchical Feature Map has been shown to
be well suited (for example in [Mer98b]); with the small size (compared to a
standard SOM) of the network's maps, on higher levels, nodes themselves will
represent clusters in the input data collection. However, [Mer97] mentions
a slight de�ciency when it comes to detection of inter-cluster similarities:
because of separating clusters in di�erent branches of the hierarchy, infor-
mation about similarities of input patterns might be invisible when they are
mapped on di�erent branches.

Implementation issues
The HFM builds basically on the standard SOM algorithm and architecture.
However, concerning the computational speed, the HFM has signi�cant ad-
vantages compared to the SOM: First, this is due to omitting vector com-
ponents in lower-layer SOMs - a decreased vector dimension will speed up
operations like best-matching node search and model vector adaptation. Sec-

CHAPTER 2. NEURAL NETWORK MODELS 38

ondly, the reduced size of the network grids, as well as having only a reduced
set of input patterns for lower-layer nodes, will also contribute signi�cantly
to a speed-up in the organising process. A third argument for the speed-up
is the following: the maps on lower layers present sub-categories of the input
space; therefore, cluster interferences, which will result in a longer training
time, will not occur, and the map is free from maintaining the overall struc-
ture, as this is done rather by the architecture of the Hierarchical Feature
Map; this will save much computational e�ort. For a detailed description,
refer to [Mer97].

In [Mii90], an example for the speed comparison is given by a HFM per-
forming the same self-organisation task approximately 190 times faster than
a standard SOM. This might be explained by using a data set the HFM
was actually developed for, having almost perfect hierarchical structure. In
[Mer97], another experimental speed-test has been done, with the HFM hav-
ing a computational time six-times faster than a standard SOM for the com-
pletely same input (note that this was achieved although the HFM maps in
total had a higher number of nodes than the SOM), a degree of speeding up
which sounds more reasonable for real-world data than the one mentioned in
[Mii90].

2.6 Growing Hierarchical Self-Organizing Map
The Growing Hierarchical Self-Organizing Map (GHSOM), as described e.g.
in [RMD02], is another hierarchical neural network model; it addresses the
major limitations of the Hierarchical Feature Map (as described in Section
2.5), as it combines ideas from the HFM with the Growing Grid (see Section
2.2): it uses dynamically growing grids instead of standard Self-Organizing
Maps. Moreover, the hierarchical depth is chosen during run-time depending
on the input data, further decreasing the need for an a-priori knowledge
about the structure of the input patterns. The hierarchy is not necessarily
balanced, which seems to be a more accurate representation of real-world
data than in the HFM.

2.6.1 The Architecture
The GHSOM consists of several layers, where each layer consists of a number
of independent self-organising networks. The GHSOM uses an incrementally
growing version of the standard SOM, comparable to the Growing Grid,
i.e. the grids will expand during the training process. A "virtual" layer 0,
consisting of only one node, representing all the input data, is the starting

CHAPTER 2. NEURAL NETWORK MODELS 39

layer 0

layer 1

layer 2

layer 3

Figure 2.11: Architecture of a Growing Hierarchical Self-Organizing
Map

point. This node has one map as child on the �rst layer. For each of the
nodes in this �rst layer map, another map might be added to the second
layer, to represent the mapped input patterns at a higher granularity level.
This principle is repeated with the third layer as well as any further layers of
the GHSOM. A sample architecture of a three-layered GHSOM is depicted
in Figure 2.11. Note that the maps on the same level may develop di�erent
sizes, and that the hierarchy is not (necessarily) balanced.

Nodes store a value called quantisation error, a similar value is also stored
for each map.

2.6.2 The Training Algorithm
Initialisation
The node in the layer 0 is initialised by its model vector m0 taking the average
value of all the input patterns, and its quantisation error qe0 is computed
according to

qe0 =
∑
xi∈I

‖m0 − xi‖, (2.22)

where C is the set of input patterns.

CHAPTER 2. NEURAL NETWORK MODELS 40

The SOM in layer 1 is proposed to be initialised with a small grid size, of
e.g. 2× 2. The nodes in the map are initialised with random model vectors.

Best matching node and model vector adaptation
Then, the map is trained according to the standard Growing Grid algorithm,
i.e. input vector presentation and model vector adaptation. Contrary to
the Growing Grid algorithm, however, a time-decreasing learning rate and
neighbourhood range are used, with [DMR00a] mainly pointing at the �xed
neighbourhood range in the Growing Grid to be problematic with increas-
ing grid-sizes. This organising process is repeated for a �xed number of λ
iterations.

Grid expansion
After the iterations, the grid is going to be expanded around the node rep-
resenting its input space most inadequately. Contrary to the Growing Grid,
this node is, comparable to the Incremental Grid Growing in Section 2.3.2,
determined by the quantisation error qei,

qei =
∑

xj∈Ci

‖mi − xj‖, (2.23)

where Ci is the set of input patterns mapped on node i, rather than on a
winner count as in the Growing Grid.

Inserting rows or columns and initialisation of the new nodes follows the
same scheme as in the Growing Grid (see Section 2.2.2).

In contrast to the Growing Grid, a map continues to grow until its mean
quantisation error MQE, i.e. the mean of all the qe's of the map, is reduced
to a certain fraction τ1 of the quantisation error qi of the node i in the upper
layer of the hierarchy. The MQE of a map m is computed according to

MQEm =
1

|U | ·
∑
i∈U

qei, (2.24)

with U denoting the subset of nodes in the map where data has been mapped,
and the stopping criterion can be formulated as

MQEm < τ1 · qeparent, (2.25)

where the subscript parent denotes the parent unit.

CHAPTER 2. NEURAL NETWORK MODELS 41

Hierarchical growth
As said before, the GHSOM is initialised with only one hierarchical layer,
and the depth of the hierarchy (i.e. the number of layers) will be determined
during run-time; also, not all nodes will grow into the full depth. A node
is expanded hierarchically (i.e. for this node a new map in the next layer
will be added and organised), when there is dissimilar input data mapped on
this node, resulting in a high quantisation error qei. Another parameter, τ2,
is introduced as a threshold deciding about hierarchical growth in a node:
a node is expanded hierarchically into another layer when its quantisation
error is above the threshold. This threshold basically indicates the desired
granularity level of data representation as a fraction of the initial quantisation
error at layer 0.

If qi > τ2 ·qe0 holds true, then a new map will be added on the hierarchical
layer below the current node's layer, and the input data mapped on this
node is self-organised in this new map (which itself might grow new nodes
or expand hierarchically as described above).

An important point with this training process is that it will not necessarily
lead to a balanced hierarchy, a desired feature, as di�erent depths in the
hierarchy will better re�ect non-uniformity in the data, an expected property
of real-world data collections.

2.6.3 Applications of the GHSOM
The GHSOM has been tested and proved to be a useful tool in document
organisation and creation of hierarchies on various real-world data sets: the
rather small data sets of the CIA World Factbook [DMR00b], with 245 input
patterns, and a collection of 420 of the TIME Magazine articles, as well as a
rather large data set from an Austrian newspaper Der Standard ([RMD02],
including 11,627 documents, each represented by a vector with a dimension
of 3,799 components.

2.6.4 Discussion
The GHSOM addresses the main shortcomings of the Hierarchical Feature
Map (as presented in Section 2.5.3): the �xed size of the individual maps and
of the hierarchy depth, which need to be prede�ned and therefore require an
a-priori knowledge of the input data. The GHSOM successfully deals with
these problems by using a Growing Grid-like neural network model instead of
the standard SOM, eliminating the need to prede�ne the grid sizes. Also, the
depth of the hierarchies is determined during runtime; �nally, the hierarchies

CHAPTER 2. NEURAL NETWORK MODELS 42

are not balanced, which will in most cases, as real-world data tends to be
non-uniformly distributed, represent the input space more accurately.

Still, similar criticism as for the Growing Grid can be brought forward:
with inserting complete rows or columns respectively, the map might be
spread out also in areas where it would not be necessary, thereby possibly
creating nodes which do not represent any data of the input space. Similarly
to a balanced hierarchy, which in most cases will not most accurately re�ect
a data collection, a rectangular structure has to face the same critique. This
is proposed to be solved in the model presented in Chapter 3.

Additionally, the more �exible structure comes with the cost of specifying
many more parameters than in the original SOM. These parameters are not
depending on the input data sets (but give an abstraction of it), but need
some experience to be set. Though, once this experience is gained, arbitrary
data sets can be easily mapped.

Implementation issues
For the implementation, similar remarks as for the Hierarchical Feature Map
(see 2.5.3) should be valid: especially for large data sets, the sizes of the indi-
vidual network grids become small compared to the standard SOM, therefore
the computational e�ort and the memory requirements can be signi�cantly
reduced.

2.7 Other Models
In this section, we describe models that are not based on a two-dimensional,
rectangular output space, and therefore have limits in visualisation, but on
the other hand, they suggest some interesting techniques and concepts worth
investigating. We will start by describing the Growing Cell Structures in
Section 2.7.1, followed by a presentation of the Neural Gas model in Section
2.7.2

2.7.1 Growing Cell Structures
The Growing Cell Structures (GCS), as introduced in [Fri92], also performs
mappings from a high-dimensional data to a lower dimensional output space.
In this model, though, the output space is not limited to two dimension,
but can lie in the range of one to three dimensions. The output space is in
general less regular, and in the two-dimensional representation, the grid is not
rectangular anymore. This makes visualisation more complicated. Therefore,
we are not going to consider this model as an alternative for our purposes.

CHAPTER 2. NEURAL NETWORK MODELS 43

However, the Growing Cell Structures introduces some concept that might
be interesting for our purpose. The structure allows for an approach to adding
new nodes, where the new cells are inserted between a node with the highest
relative resource value (i.e. a winner counter), and this cell's most dissimilar
neighbour (comparable to the Growing Grid in Section 2.2), without having
to add any other new cells (in the Growing Grid, we had to insert whole rows
or columns respectively). This will allow a very accurate representation of
the input space. This strategy does not seem to be easy to incorporate in
rectangular architectures though.

Still, the Growing Cell Structures holds another interesting concept, which
was proposed to be investigated for example also in the Growing Self-Organ-
izing Map: After a certain number of iterations, cells might be deleted from
the grid when they represent areas in the input space with very low probabil-
ity density. This concept might be worthy of inclusion in SOM-based models
with �exible network architectures, like the Incremental Grid Growing or the
Adaptive Hierarchical Incremental Grid Growing.

Of the Growing Cell Structures, also hierarchical extensions exist, for
example the TreeGCS in [HA01]. In this paper, also issues of the stability
of the algorithm are mentioned: the algorithm is found to be instable: it
generates di�erent cell structures when trained with the same set of data,
but in a di�erent order.

2.7.2 Neural Gas
The Neural Gas model, �rst presented in [MS91], is a neural network model
that maps from a high-dimensional input space to a number of nodes in the
output space A, with their model vectors mi ∈ <n, i.e. an n-dimensional out-
put space. Though this property of being not necessarily two-dimensional
makes this model not appealing for our purposes, it comprises some interest-
ing features. The most interesting might be that it provides cluster visual-
isation by establishing connections between nodes. After each input vector
presentation, a connection is established between the best and second-best
matching nodes. Also, connections might be deleted; this is achieved by
a concept called aging. All connections, except the one between the best
and second-best matching node, will increase their age, and if this value be-
comes higher than a prede�ned maximum age, they will be deleted. By this
connectivity approach, connections are not limited to neighbouring nodes in
the output space, but could virtually be established between any nodes in
the network (though, however, towards the end of the training process, only
connections in some neighbourhood range will remain). Adaptation towards
the input vectors will be performed only on the best matching node and its

CHAPTER 2. NEURAL NETWORK MODELS 44

directly connected neighbours.

Fritzke [Fri95b] proposes an incrementally growing model called theGrow-
ing Neural Gas, based on the Neural Gas, which was based on a �xed, and
prede�ned, network size. The growing scheme is similar to other models pre-
viously described in this chapter, it uses concepts also utilised in the Grow-
ing Hierarchical Self-Organizing Map and the Growing Cell Structures, with
the nodes accumulating a (quantisation) error value as the distance between
mapped vectors and the model vector. After a certain number of λ iterations,
a new node is inserted between the node with the highest accumulated error
and its neighbour with the highest error value, and the connection between
these nodes is replaced by two corresponding connections to the new node.
The growth process stops when a certain criterion, e.g. the network size, or
some other performance measure, is ful�lled. In the Growing Neural Gas, a
�xed neighbourhood and learning rate are proposed.

Chapter 3

Adaptive Hierarchical
Incremental Grid Growing

The Adaptive Hierarchical Incremental Grid Growing (AHIGG), as proposed
in [He01] and [MHDR03], was designed to combine the various features of the
models presented in the previous chapter, and to overcome the limitations for
each of them. Simpli�ed, the AHIGG combines the features of the Growing
Hierarchical Self-Organizing Map with the Incremental Grid Growing as the
model for the individual maps (instead of the Growing Grid as it is the case
in the Growing Hierarchical Self-Organizing Map). Some more additions and
improvements have been applied to the algorithm of the Incremental Grid
Growing, e.g. to reduce the learning time by an improved initialisation rule,
and a mechanism to determine a stagnation in the training process. In the
rest of this chapter, the architecture and the algorithm of the AHIGG will
be presented, before the model will be tested on real-world data in the next
chapter.

3.1 The Architecture
The AHIGG is basically composed of a number of independent Incremental
Grid Growing networks, arranged in hierarchical layers. Each of these layers
represents the input data at a speci�c level of granularity. On the �rst layer,
a rough idea of the structure of the input data is given; each node of this
layer may then be expanded to another IGG map in the next layer, thus
giving a more detailed picture of this node's subset of the input data. The
architecture of the IGG-maps, i.e. the size and layout, as well as the depth
and balance of the hierarchy is determined automatically corresponding to
the input space. The beginning of the AHIGG is a single node in a "virtual"

45

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 46

layer 2

layer 3

layer 1

Figure 3.1: Architecture of a three-layered Adaptive Hierarchical In-
cremental Grid Growing, with di�erently sized and shaped
IGG maps, and an unbalanced hierarchy

layer 0, representing a statistical mean of all the input data. All nodes store
values for the mean quantisation error mqe; each map has a vector mqe, i.e.
the average quantisation error per vector in the map, denoted as vMqe.

In Figure 3.1, one possible architecture of a trained AHIGG is depicted.
Note that the hierarchy is not necessarily balanced.

3.2 The Training Algorithm
Three di�erent phases can be identi�ed in the training process in the initial-
isation, the IGG-based training, and the hierarchical expansion phase. They
will be presented in detail now.

3.2.1 Initialisation
A single IGG map is initialised in the layer 1, usually having a 2×2 grid size,
with all nodes connected in the grid. As a parent node to this map in the
layer 1, the "virtual" layer 0 is initialised with a model vector m0, being the
average of all the input vectors x. This node's mqe is calculated according

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 47

to:
mqe0 =

1

|C|
∑
x∈C

‖m0 − x| (3.1)

where C is the set of input vectors. The mqe0 will play a crucial role during
the training process (mqe0 is a measure for the diversity in the input set).

All nodes in layer 1 will be initialised with a random model vector; con-
trary to the IGG, however, this initialisation is not completely random, but
takes available qualitative information in the form of the model vector of the
parent node into account:

mi = mparent + mqeparent · vrand (3.2)

where the subscript parent denotes this map's parent node, and vrand is a
random vector of length 1., i.e. we limit the range to the n-dimensional
subspace with mparent as centre, and mqeparent as radius.

3.2.2 Training
This phase consists of three di�erent parts: �rst, a slightly modi�ed version
of the IGG training as presented in [BM93] is carried out; after the grid has
taken its �nal shape, a �ne tuning and a post-processing phase will follow.

IGG based learning
The map is trained in training cycles according to the standard SOM algo-
rithm: A randomly chosen input vector is presented to the map, and the
winning node is chosen according to Equation 2.1. Then, the model vectors
of the winning node and nodes within the neighbourhood-range are adapted,
according to Equation 2.2.

For the learning rate α, a time decreasing function is taken, allowing a
global organisation in the beginning of the training process, and a more local
ordering towards its end. After each training cycle, the function is reset to
its initial value.

Special attention has to be paid to the neighbourhood function: As in
the IGG training, there is a di�erent concept of the distance between two
nodes: because of the non-existence of some connections, we have to de�ne
the distance between two nodes not via their position on the grid, but rather
by the length of the shortest path between two nodes. This concept was
illustrated in Figure 2.7.

One training cycle consists of k × λ adaptation steps, with k being the
number of input patterns for this map, and λ determining how many adap-
tation steps per input pattern are performed on average. After one cycle is

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 48

qei quantisation error The quantisation error of a node i, i.e. the sum of the (Eu-
clidean) distances between the input vectors mapped on a
node i and the node's model vector; computed according to
Equation 2.23.

mqei mean quantisation error A node's quantisation error, normalised by the number of
mapped input vectors; computed according to 3.10.

QE Quantisation Error A map's quantisation error as the sum of the quantisation
errors qei, or the mean quantisation errors mqei, of all the
nodes in the map.

MQE Mean Quantisation Error A map's quantisation error as the sum of the quantisation
errors qei, or the mean quantisation errors mqei, normalised
by the number of nodes in the map; computed according to
Equation 2.24, when using the quantisation errors qei.

vMQE Vector-based Mean Quan-
tisation Error

A map's as the sum of the nodes' qei, normalised by the num-
ber of input vectors on this map; computed according to Equa-
tion 3.3.

Table 3.1: Di�erent variants to compute quantisation errors.

�nished, the grid might grow new nodes; this is determined by examining
the representation quality of the map. In principal, several di�erent variants
for computing quantisation errors can be distinguished; Table 3.1 gives an
overview of commonly used measures.

In the AHIGG, the vector-based vMQE is utilised; with the map's nodes
qei as de�ned in equation 2.23, this measure is calculated according to:

vMQE =
1

|C| ·
|C|∑
i=1

qei, (3.3)

where C denotes the subset of vectors mapped on this map. In other words,
the vMQE is the quantisation error per vector.

The map will be expanded as long as

vMQE ≥ τ1 ·mqeparent (3.4)

holds true; with 0 < τ1 < 1, the desired fraction of the parent node's mean
quantisation error (i.e. the desired improvement of the representation qual-
ity) is used as the stopping criterion. The parameter τ1 is responsible for
guiding the growth process on the IGG maps: the lower the value for τ1, the
bigger the maps will grow.

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 49

threshold

wMQE

t

wMQE

stagnation

Figure 3.2: Stagnation in the AHIGG training process: Minimising
the mean quantisation error goes into a stagnation.

However, there might be cases when the growth process is going into
a stagnation phase; in other words, the quality of the representation (in
terms of reducing the vMQE) would be hardly improved in the subsequent
training cycles, and the training process might spend a long time, or even
worse, the desired fraction τ1 of the mqe0 according to Equation 3.4 might
not be achieved at all. A case where this might happen is described in Section
4.5.1

Therefore, a second criterion for stopping the growth process is proposed:
with a user-de�ned improvement degree ς, the improvement of the vMQE is
checked according to

1− ς >
vMQE(k + 1)

vMQE(k)
, (3.5)

where vMQE(k) is the map's vMQE after the k-th training cycle. As soon
as Equation 3.5 is not ful�lled anymore, a stagnation occurs, and the growth
process is terminated. In Figure 3.2, a possible scenario is depicted, with the
training process actually never achieving the desired representation quality.
Therefore, the process should be stopped when detecting the stagnation.

New nodes are grown around the boundary node, i.e. any node that has
neighbouring positions that are not yet taken by other nodes) which holds
the highest cumulative error, calculated according to Equation 2.23. Note
that in contrast to the IGG, the error value is calculated after a training
cycle, instead of accumulating the error during the iterations: the settled
model vectors are used to gain a more realistic description of the error.

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 50

In [BM93], a strategy preserving the local topology by taking into account
statistical means is proposed to initialise new nodes (see Equations 2.15 and
2.16); [He01], however, suggests to initialise the new model vectors randomly
in an ε-environment of the error node according to

mnew = merror + ε · vrand, (3.6)

where mnew and merror denote the model vectors of the new node and the
error node, respectively; vrand is a random vector with length of 1, and ε a
small constant with 0 < ε ¿ 1.

After new nodes have been added, the training cycle is completed by
examining wether connections should be added or removed. This is done
by examining the pairwise distances between neighbouring nodes; similar to
the IGG, two thresholds, the connect threshold and the disconnect threshold,
are used; however, as suitable absolute values are di�cult to de�ne, these
thresholds are rather computed depending on the data. For this purpose,
the overall average distance p between the number of m pairwise distances
between neighbouring nodes' model vectors is calculated according to

ρ =
1

m
·
∑

i6=j

‖mi −mj‖. (3.7)

By this, the connection threshold is de�ned as the fraction ϕc of ρ: connec-
tions are added when the distance between two nodes i and j drops below
the threshold according to:

‖mi −mj‖ < ϕc · ρ. (3.8)

Analogous, connections are deleted when the distance becomes bigger than
the disconnect threshold, calculated as the fraction ϕd of ρ according to:

‖mi −mj‖ > ϕd · ρ. (3.9)

After examining the connections, the training process is continued by car-
rying out another training cycle, until Equations 3.4 and 3.5 are not ful�lled
anymore.

Fine-tuning
Analogous to the concept introduced in the Growing Grid (Section 2.2.2), the
AHIGG training process includes a �ne-tuning phase, which is carried out
after the map has reached its �nal size. No new nodes are added, but the aim

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 51

(b)(a)

Figure 3.3: Cluster detection in the AHIGG post-processing phase

is to let the map converge to a stable organisation state. As the vectors should
not �uctuate too much anymore, the learning rate is rather low compared to
the usual self-organising process; furthermore, the neighbourhood adaptation
is limited to the winning node only.

Post-processing
When the network has reached its �nal structure and the model vectors are
settled, the representation quality of the clusters is to be improved: this is
done by examining the connections between the nodes. A di�erence to the
corresponding phase in the IGG is the following: [He01] instead suggests
to use the statistical mean of the mapped vectors for comparing two nodes
about connectivity. This is justi�ed by the fact that the model vectors may
"cover" cases where there are outliers mapped on a node. A possible scenario
is depicted in Figure 3.3: on the white node, input patterns which are quite
di�erent to the node's model vector, are mapped. In (a), using the model
vector as criterion, this node would still belong to the cluster which is formed
by the three other nodes. However, as this node contains highly dissimilar
data to the one otherwise represented in the cluster, it should form its own
cluster. In Figure 3.3 (b), this is achieved by using the statistical mean as
a criterion for deleting (or adding) connections. The scenario described here
might occur when the outlier(s) are mapped late in the training process, and
due to a very small learning rate do not adapt they model vector greatly.

Besides using a di�erent measurement, the post-processing is identical to
the process of examining connections during the IGG-based learning phase.

With the postprocessing, the training of an individual IGG map is com-
pleted.

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 52

3.2.3 Hierarchical Expansion
When a map in the AHIGG is completely trained, it is examined whether
any of the map's nodes requires a higher resolution of its input patterns,
and therefore should be expanded hierarchically, i.e. a new IGG map in the
next layer will be added for this node. As a measure for nodes representing
their input space inadequately, a node i's mean quantisation error, calculated
according to

mqei =
1

|Ci|
∑
x∈Ci

‖mi − x‖, (3.10)

where Ci is the set of input patterns mapped on this node, and mi its model
vector, is utilised. The, a simple threshold logic is used: with a parameter
τ2, 0 < τ2 < 1, all nodes for which

mqei > τ2 ×mqe0 (3.11)

holds true are expanded. Here, the parameter τ2 is thus responsible for
guiding the hierarchical growth process: the lower the value for τ2, the deeper
the hierarchy will develop.

The newly established map in the next layer is initialised in a similar way
as the map in layer 1: the new nodes are initialised according to Equation
3.2. Then, the new map is trained as described in Section 3.2.2, and its nodes
might in turn be expanded hierarchically.

3.3 Automatic Labelling
The AHIGG provides automatic cluster visualisation by the concept of con-
nectivity; however, for a proper interpretation of the mapping, labelling of
the clusters by their relevant features is desired. For that purpose, a tech-
nique similar to the LabelSOM technique, as presented in Section 2.1.5, is
proposed.

However, contrary to the LabelSOM, the importance of a feature i in a
data set of k items is proposed to be based on its statistical mean xi,

xi =
1

k

k∑
j=0

xji, (3.12)

as well as on the statistical standard deviation σi, according to

σi =

√√√√ 1

k − 1

k∑
j=1

(xji − xi)2. (3.13)

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 53

Then, a formula for the importance impi of the feature i might be calcu-
lated according to:

impi =
xi√

1 + σi

. (3.14)

Note that if there is a zero variance, only the average value determines
the importance of a feature.

The main argument for this approach is that features that may have a
high average value, but also a high variance, are nevertheless important for
describing the input data. In the LabelSOMmethod, the importance is �rstly
based on the quantisation error; therefore, a high variance, leading to a high
quantisation error, will rule out these features from being selected as labels.

3.4 Discussion
The Adaptive Hierarchical Incremental Grid Growing builds on utilising var-
ious features of the models presented throughout chapter 2, resulting in a
very adaptive architecture that promises to be able to represent arbitrary
input data sets. Also, it liberates the user from the need to have an a-priori
knowledge of the input data to prede�ne grid sizes or numbers of hierarchical
layers; rather, this is computed during run-time by the AHIGG, depending
on the given input patterns. The usefulness and applicability of the model
has been proven in [He01] on a demo data set as well as on a real-world text
collection, namely a collection of the Time magazine articles. However, this
was a rather small collection, and the usefulness in larger applications has
yet to be shown.

The bene�ts of the AHIGG, though, do not come totally free: compared
to the original SOM, the algorithm has lost in terms of stability and ro-
bustness. More training parameters are to be speci�ed by the user; hence,
the need to carry out some experiments to get a "feeling" for the parame-
ters. However, [He01] claims that as soon as this feeling has developed, the
AHIGG can be used for arbitrary data sets. This will be tested with another
real-world data set in the next chapter.

Implementation issues
Similar arguments as for the GHSOM (Section 2.6.4) will also apply for the
AHIGG: Due to the reduction in grid sizes by the hierarchical structuring, the
training process should be carried out much faster compared to a standard
SOM, especially for large data sets.

CHAPTER 3. ADAPTIVE HIERARCHICAL IGG 54

However, the implementation of the AHIGG becomes quite complex, as
various di�erent mechanisms are to be implemented.

Chapter 4

Application of the AHIGG

In this chapter, we will describe the application of the Adaptive Hierarchi-
cal Incremental Grid Growing in experiments. We will start by giving an
overview of our implementation of the AHIGG in Section 4.1.

Then we will test our implementation of the Adaptive Hierarchical In-
cremental Grid Growing on three data sets: Firstly, for giving an intuitively
understandable proof of the functioning of the AHIGG, we will apply well
known demo data sets. We will start with the small animals data set, which
allows an easy recognition of how the AHIGG works by its simple and distinct
input patterns (Section 4.2). Then, the comparably bigger zoo demo data set
will be used to give another example in Section 4.3; while the higher num-
ber of input patterns allows a more realistic veri�cation, this higher number
makes it more di�cult to "manually" analyse the results.

In Section 4.4, a real-world data set will be examined. The data set comes
from the domain of tourism, and contains free-text, unstructured descriptions
of hotels in Austria. The data set is available in two versions, as the hotel
descriptions are given in English and German. However, the data has yet
to be pre-processed, to obtain a representation that is suitable for use in
the AHIGG. This is illustrated in Section 4.4.1. In Sections 4.4.2 to 4.4.4,
we will present the results obtained for our data set with various models,
namely the Self-Organizing Map, respectively the Growing Grid, the Growing
Hierarchical Self-Organizing Map, and the Adaptive Hierarchical Incremental
Grid Growing itself.

The chapter is completed by a conclusion about the results of the appli-
cation experiments in Section 4.5.

55

CHAPTER 4. APPLICATION OF THE AHIGG 56

4.1 Implementation
The main objective of the implementation, an integral part of this thesis,
was to provide a clean and user-friendly implementation of the AHIGG. For
user-friendliness, some key features have been identi�ed:

• The implementation should be easily portable and not limited to a
speci�c operating system.

• The implementation should be well documented.

• The implementation should produce an easy to use, easy to share, and
easy to port visualisation. No speci�c software should be necessary to
view the output.

• The implementation should be convenient to use both for "experts"
and "beginners".

To achieve a portable implementation, the Java programming language was
chosen1; though this implies a loss of computational speed, as the Java pro-
gramming language is rather slow in run-time, the portability seems to justify
this decision.

To implement a software that is convenient to use both for beginners and
experts is in general not an easy task. However, a good solution seems to be
found by providing experts with a command-line based interface, thus allow-
ing for unsupervised batch processing of many di�erent training processes,
while new users might �nd the included graphical interface to be an easy way
to begin using the model.

4.1.1 Visualisation
For an easy solution to o�er a representation of the output, where one can
navigate through di�erent layers, the concept of hypertext is very appealing.
Furthermore, an output generated in the hypertext markup language (HTML)
format is easily readable by any so-called browser software, and therefore not
limited to a speci�c software. This is why this representation technique has
been chosen. However, to automate and simplify viewing the output, a simple
browser was implemented in the Java language as well.

In Figures 4.1 to 4.4, the visualisation of a possible outcome of an AHIGG
training process is depicted. In the top of the output, some statistical data
about the currently viewed map is shown - the layer it is in, the map ID,

1http://java.sun.com/

CHAPTER 4. APPLICATION OF THE AHIGG 57

which is composed of the parent node's ID, and information about the map
size, namely the number of nodes, the grid size of the map, and the number
of mapped input patterns. Additionally, hypertext links to view the Cluster
Connections visualisation of this map (see Section 4.1.2), as well as viewing
this map in a previous training state (this is only applicable if the map was
expanded horizontally at least once).

Then, the actual map follows. Nodes are symbolised with gray-coloured
boxes, while grid positions which are not occupied by nodes are left white.
The map's connectivity is indicated by the existence of green-coloured con-
nections between the individual nodes. The node boxes contain some sta-
tistical information on their top (the number of vectors mapped, as well as
the mqe of this node). Below, the list of labels describing the mapped data
follows; if there are any input patterns mapped, a list containing some of
them will appear below the feature labels. If a node is expanded to another
layer, this is indicated by a hyper-text link labelled lower hierarchy. Follow-
ing this link will display the map that represents this node's input in the next
hierarchical layer. From a lower-hierarchical layer, a hyper-text link labelled
Upper hierarchy will lead the user back to the previous layer.

Finally, in the bottom of the output, some information about the training
process of this map can be found, like the number of iterations, and the mqe
of the map and the parent node.

When we refer to a node, we use a x/y scheme, where x denotes the
column, starting with 0, and y denotes the row, starting with 0. Therefore,
the top-left node would be referred to as 0/0, the second node in the �rst
row with 1/0, while the second node in the �rst column is indicated as 0/1.

4.1.2 Improvements of the Original Model
Compared to the original model of the Adaptive Hierarchical Incremental
Grid Growing, we included a couple of improvements in our implementation;
they will be described below.

Growth
As already proposed in [He01], we used a slightly di�erent approach for the
grid-growth, by growing more than one new node at the same time. The
user can choose, parameter driven, how many new nodes should be grown
during one training cycle. The algorithm then, at the end of each SOM
training cycle, adds new nodes around the n nodes with the highest error
values. This algorithm improvement, as described in [He01], should lead to

CHAPTER 4. APPLICATION OF THE AHIGG 58

a shorter training phase; in Section 4.4.4, we will give our conclusions about
this assumption.

Cluster visualisation
In the Adaptive Hierarchical Incremental Grid Growing, clusters are easily
recognisable because of the connectivity of the network structure: clusters
are sets of interconnected nodes, while nodes belonging to di�erent clusters
do not have any connection-path between them.

However, this approach might be a bit too simplistic; it is still not pos-
sible to see if there would be inter-cluster similarities between nodes, and
it is not possible to recognise the degree of similarity between nodes in the
same cluster. Therefore, a solution might be to apply the concept of Cluster
Connections, as described in Section 2.1.4, to the trained map. One possible
way would be to introduce the following statuses of relationships between
two nodes: very similar and similar for nodes that are in the same cluster,
as well as partially similar and dissimilar for nodes that are not in the same
cluster; this was adopted in our implementation.

The states similar and dissimilar are represented by the way it is cur-
rently done in the AHIGG, i.e. connected and disconnected. To avoid more
user-de�ned thresholds, the thresholds for states very similar and partially
similar are computed by the existing thresholds: ϕv, the threshold for very
similar nodes, is calculated as

ϕv =
ϕc

2
, (4.1)

and ϕp,i, the threshold for partially similar nodes in a map i, is computed
according to

ϕp,i = ϕd +
maxdistancei − ϕd

2
, (4.2)

where maxdistance is the maximum distance between two nodes' model vec-
tors in the map i.

The di�erent connection states may be visualised in the output by dif-
ferent colours, and by a missing connection for dissimilar nodes. This dif-
ferent approach to visualising inter-cluster and intra-cluster relationships is
integrated in our implementation such that both variants of the output are
generated; the user can choose via, hypertext-links, to view the preferred
output mode.

CHAPTER 4. APPLICATION OF THE AHIGG 59

Name small medium big 2 legs 4 legs hair hooves mane feathers hunt run �y swim Species

dove 1 0 0 1 0 0 0 0 1 0 0 1 0 bird

hen 1 0 0 1 0 0 0 0 1 0 0 0 0 bird

duck 1 0 0 1 0 0 0 0 1 0 0 0 1 bird

goose 1 0 0 1 0 0 0 0 1 0 0 1 1 bird

owl 1 0 0 1 0 0 0 0 1 1 0 1 0 bird

hawk 1 0 0 1 0 0 0 0 1 1 0 1 0 bird

eagle 0 1 0 1 0 0 0 0 1 1 0 1 0 bird

fox 0 1 0 0 1 1 0 0 0 1 0 0 0 mammal

dog 0 1 0 0 1 1 0 0 0 0 1 0 0 mammal

wolf 0 1 0 0 1 1 0 0 0 1 1 0 0 mammal

cat 1 0 0 0 1 1 0 0 0 1 0 0 0 mammal

tiger 0 0 1 0 1 1 0 0 0 1 1 0 0 mammal

lion 0 0 1 0 1 1 0 1 0 1 1 0 0 mammal

horse 0 0 1 0 1 1 1 1 0 0 1 0 0 mammal

zebra 0 0 1 0 1 1 1 1 0 0 1 0 0 mammal

cow 0 0 1 0 1 1 1 0 0 0 0 0 0 mammal

Table 4.1: The animals demo data set

4.2 Animals Demo Data Set
As a �rst approach to show the usefulness of the Adaptive Hierarchical Incre-
mental Grid Growing for clustering and hierarchical ordering, we use a data
set well known in the SOM-community, the so-called animals demo data set.
This data set consists of 16 input patterns with 13 distinctive features; the
complete data set is shown in Table 4.1.

The animals demo data set is a rather small one, but the structure and
hierarchies of this data space are well known, with the animals forming dis-
tinct "clusters", namely mammals and birds, as seen in Table 4.2. These
clusters are further separated into subgroups: birds could be separated into
sub-groups of airborne or hunting birds, while the mammals can be classi�ed
as hoofed, hunting, or mammals with a mane. Additionally, both clusters
can be distinguished according to size.

4.2.1 Results
In Figures 4.1 to 4.4, a graphical representation of a AHIGG trained with the
animals demo data set is depicted. In Figure 4.1, the �rst layer of the trained
mapped is shown. The map shows three distinctive clusters. On the left side,
altogether four nodes form the cluster of birds. While the upper three nodes

CHAPTER 4. APPLICATION OF THE AHIGG 60

Species Count
Birds 7
Mammals 9
Total 16

Table 4.2: Categories in the animals demo data set

(1/0, 0/1, 1/1) represent airborne birds, and are grouped according to their
size respectively the hunting ability, the lower node 1/2 represents the non-
airborne birds. They are represented on a higher granularity level in the
next layer, where the swimming birds goose and duck are separated from the
non-swimming hen, as seen in Figure 4.2.

In Figure 4.3, the second layer map of big mammals is shown; other
groupings, with the hoofed mammals forming a cluster, might be possible
as well, however, the one learned by the AHIGG is justi�ed by clusters of
running and non-running mammals emerging. In Figure 4.4, the second layer
map for small and medium sized mammals is depicted. Here, dog and wolf
form a cluster of running mammals, while cat and fox form their own cluster.

Discussion
Based on the results from organising the animal demo data set, it can be
stated that the mapping generated by the AHIGG training process is easy
to verify and logical; therefore, at least for small data sets, the AHIGG can
be seen as a functional tool for structuring data, and to create a hierarchical
view. The data set itself lacks in dimensionality, therefore ambiguous results,
which are however all correct and explainable, can emerge. Further, the
small size of the data set doesn't allow demonstration of the hierarchical
functionality. Therefore, we will test the AHIGG on another demo data set
in the next Section 4.3.

4.3 Zoo Demo Data Set
As another demo data set, we use the so-called zoo demo data set. This data
set is larger than the animal data set, as it consists of 100 input patterns,
describing animals with 20 distinct features. Still, this is a rather small data
set, but once again, the structure and hierarchies of this data space are well
known; here, we can identify more di�erent clusters, such as mammals, birds,
�sh, and so on; these clusters then again have more sub-categories. A part
of this data set is shown in table 4.3. Note that, for the sake of space, not

CHAPTER 4. APPLICATION OF THE AHIGG 61

Figure 4.1: AHIGG of the animals
data set: �rst layer map.

Figure 4.2: AHIGG of the animals
data set: second layer
map of some birds.

all input vectors and features are shown in this table; a full table of the data
set can be found in Appendix B, Table B.1.

Compared to the commonly used zoo data set, some changes were made:

• The type attribute, commonly encoded as a numeric value ranging from
1..7, is not used as a component of the feature vectors. This is because
this encoding, on the one hand, does not �t the other features, which are
binary values, and this feature describes something (namely, di�erent
clusters of animals) we actually want to detect using our neural network
model. Therefore, this feature is used solely as a good indicator to verify
the results.

CHAPTER 4. APPLICATION OF THE AHIGG 62

Figure 4.3: AHIGG of the animals
data set: second layer
maps of big mammals.

Figure 4.4: AHIGG of the animals
data set: second layer
map of small and medium
sized mammals.

CHAPTER 4. APPLICATION OF THE AHIGG 63

Name hair feathers eggs milk airborne aquatic predator toothed ... type
antelope 1 0 0 1 0 0 0 1 ... mammal
bu�alo 1 0 0 1 0 0 0 1 ... mammal
carp 0 0 1 0 0 1 0 1 ... �sh
chicken 0 1 1 0 1 0 0 0 ... bird
deer 1 0 0 1 0 0 0 1 ... mammal
dove 0 1 1 0 1 0 0 0 ... bird
duck 0 1 1 0 1 1 0 0 ... bird
elephant 1 0 0 1 0 0 0 1 ... mammal
�ea 0 0 1 0 0 0 0 0 ... insect
gira�e 1 0 0 1 0 0 0 1 ... mammal
...

Table 4.3: A part of the zoo demo data set

Species Count
Amphibians 4

Birds 20
Fish 13

Insects 8
Invertebrates 10
Mammals 40
Reptiles 5
Total 100

Table 4.4: Categories in the Zoo data set

• Commonly, there is a feature called (number of) legs. However, sim-
ilarly as for the type feature, the encoding scheme, using a value in
the range of 1..8, does not �t well with the other values being either
one or zero. Secondly, number of legs is a quantitative rather then a
qualitative attribute, and therefore will not contribute to describing
an input pattern with labels - a higher value does not mean that this
feature is more relevant for the described animal. Therefore, a di�erent
encoding scheme, using the features 2_legs, 4_legs, 5_legs, 6_legs and
8_legs, respectively, adopting binary values, was chosen (this approach
was inspired by the animals demo data set described in Section 4.2,
where a similar encoding scheme is used).

Table 4.4 contains available a-priori information about the zoo data set.
This information indicates that the data set comprises distinct clusters with

CHAPTER 4. APPLICATION OF THE AHIGG 64

distinct quantities of elements. Therefore, the results should show an unbal-
anced hierarchical tree.

4.3.1 Results
In Figure 4.5, a �rst layer map of an AHIGG trained with the zoo demo data
set is depicted. The training algorithm of the AHIGG generated a mapping
with six disconnected nodes, forming six distinct clusters (of which one node
does not represent any part of the input space). On the left side, node 0/1
represents reptiles. Onto node 1/0, �sh and other aquatic animals, but not
aquatic mammals, have been mapped, while node 1/1 represents the insects
and some invertebrates. Node 1/2 represents the birds, and Node 2/1 is a
cluster of mammals.

In Figures 4.6 to 4.8, selected maps of the second hierarchical layer are
depicted.

Figure 4.6 shows a clear clustering between similar animals, like, for ex-
ample, the invertebrates slug and worm, or the insects wasp and bee. Some
of these clusters are shown on a higher granularity level in the next layer.

Figure 4.7 shows the reptiles, where for example snakes form a separate
cluster on node 0/1. Node 2/1 shows toads and related animals, while on
node 1/0, turtles are represented.

Figure 4.8 shows the rather big cluster of mammals. On node 1/2, aquatic
mammals, like the seal or the dolphin, are grouped together. On the top-
left node 0/0, mammals with only two legs are grouped together. Onto the
centre nodes, animals with four legs are grouped in one cluster, where node
0/1 represents non-hunting, and 1/1 and 2/1 hunting animals. The inputs
mapped on node 0/1 may seem to be belonging not to the same group, with
a vole and a reindeer in the same group; this, however, is due to the demo
data set itself, which doesn't contain enough features and therefore describes
these animals similarly.

Node 0/1 is shown in two more hierarchical layers in Figures 4.3.1 and
4.3.1, respectively. In Figure 4.3.1, the mammals are separated into domestic
and not domestic. Node 0/0 is expanded into another hierarchical layer as
shown in Figure 4.3.1; here, the mammals are further distinguished by having
a tail or not.

4.3.2 Conclusion
The zoo demo data set, while still being rather intuitively understandable,
allows, additionally to the animal demo data set, the demonstration of the
usefulness for creating a hierarchically correct mapping of an imbalanced data

CHAPTER 4. APPLICATION OF THE AHIGG 65

Figure 4.5: AHIGG of the zoo data set: �rst layer map

CHAPTER 4. APPLICATION OF THE AHIGG 66

Figure 4.6: AHIGG of the zoo
data set: second layer
map of the insects.

Figure 4.7: AHIGG of the zoo
data set: second layer
map of the reptiles.

CHAPTER 4. APPLICATION OF THE AHIGG 67

Figure 4.8: AHIGG of the zoo data set: second layer map of the mam-
mals.

CHAPTER 4. APPLICATION OF THE AHIGG 68

Figure 4.9: AHIGG of the zoo data set: third layer maps of some mam-
mals.

Figure 4.10: AHIGG of the zoo data set: fourth layer map of some mam-
mals.

CHAPTER 4. APPLICATION OF THE AHIGG 69

set. In this example, the mammals cluster was by far the largest, the AHIGG
generated a mapping which was imbalanced in this respect, and therefore,
this model can bee seen as usable for hierarchical clustering. Still, an example
with a larger, and higher dimensional, data set is needed to prove this.

Concerning the zoo data set itself, however, it has to be stated that it
is a bit illogical, with apparently wrongly assigned values for features like
"catsize"; further, real features for the size of animals, as in the animals
demo data set, are missing. Therefore, its purpose, the intuitive veri�cation
of results, is not completely ful�lled.

4.4 Tourism Data
The data we will use in our experiment comes from the domain of tourism:
our document collection is made up from free-text descriptions of Austrian
hotels (and other types of accommodation). The data is available as plain
text; most of the hotels were described in two languages, English and Ger-
man, in separate documents, sharing a similar document name (though not
all hotels were presented in both languages).

The data source is the Austrian part of the Tourist Information System
TIScover (http://www.tiscover.com). The system's main part is an infor-
mation system where users can inquire about hotels in Austria, for example,
prices, location, equipment, etcetera, of the registered hotels. Users can de-
�ne search-criteria by selecting values from combo-boxes (for example, the
type of accommodation, or the dates, number of persons, etcetera), and
entering other criteria in text-�elds, like the region, a name of the accom-
modation, or a maximum price. The search performed on this is performed
via structured data in a database. The information about accommodations is
retrieved via a keyword search, where the keywords are combined according
to Boole's algebra. The information retrieved is displayed in a sorted list.

On the very same data source, experiments have been carried out [DMB02],
o�ering the user a free-text search, i.e. the user speci�es a search by entering
a free-text query like "I am looking for a double room in the centre of Salzburg
with indoor pool.". However, this experiment was a more conventional ap-
proach, where this free-text was analysed and key-words were extracted to
form a database query.

Besides the structured data in the database, the TIScover system more-
over provides free-text descriptions about the hotels, most of the times writ-
ten by the owners of the accommodations themselves. This is the data we
are going to use in our experiments. The objective of the experiments was,

CHAPTER 4. APPLICATION OF THE AHIGG 70

Holiday Inn**** Welcome! The Holiday Inn Vienna is a �rst-class ho-
tel for congresses, busines travellers and tourists, located in the south of
Vienna right in the Vienna business park. Here you will �nd the perfect
infrastructure with o�ces, all kinds of services, shopping malls and un-
derground car parks. 76 comfortably furnished rooms and 5 apartments
await you. They are all equipped with air conditioning, bath, WC, tele-
phone, mini bar and satellite TV. In terms of dining and wining you
won't miss a thing. The restaurant Wiener's, the Sommerterrasse, the
Heurigen inn at the Wienerberg and the Lobby Bar await you. Our 8
conference rooms o�er space for 500 persons. All rooms have daylight
and feature the latest technical equipment. For your recreation you will
�nd various sports facilites like golf and tennis in the ultimate vicinity of
the hotel. The cosmopolitan city of Vienna awaits you - we are looking
forward to your visit!

Figure 4.11: An exemplary hotel description, containing (underlined)
spelling errors and German expressions.

on the one hand, to prove the applicability of the AHIGG on text collections,
and on the other hand, to see whether tourism data like the one present in
the experiments can be reasonably categorised, thereby providing the user
with an additional search possibility.

Prior to the experiments, we expected to be able to obtain a categorisa-
tion into di�erent hotel classes, as e.g. seminar and conference, (winter and
summer) sports, spa and wellness, and other types of hotels, as well as a ge-
ographic categorisation, because many descriptions included the name of the
village or town they are located in, as well as of nearby sites and attractions.

In Figure 4.11, you can see an exemplary hotel description for a four-
star hotel in Vienna, apparently focusing on business customers. It is to
note that there are spelling mistakes, as well as some German expressions
(mainly names of sites, or attractions, and speci�c Austrian expressions).
The spelling mistakes and the German words might cause some problems;
this will be described in Section 4.4.1.

The rest of this Section is organised as follows: �rst, we will describe
how the data was pre-processed to allow it to be used with the AHIGG (or
any other self-organising model that uses vectors of features to represent
data); then, we will give an overview of the results obtained from training
various models with the English part of the data-set; in describing the results,
we will follow an order that matches the "evolution" of the used models; we

CHAPTER 4. APPLICATION OF THE AHIGG 71

Province original minus empty minus short minus German usable
Burgenland 972 638 516 455 46.8%
Kärnten 1,437 1,040 1,012 1,004 69.8%
Niederösterreich 703 265 252 160 22,7%
Oberösterreich 982 743 737 553 56.3%
Salzburg 1,967 1,937 885 686 34.8%
Steiermark 1,078 831 811 522 51.2%
Tirol 5,153 4,312 3,992 3,911 75.8%
Vorarlberg 860 444 416 415 48.3%
Wien 145 124 120 118 81.4%
Total 13,333 9,334 8,741 7824 58.7%

Table 4.5: English hotel data set: number of documents before and after
cleaning the data set, grouped by province.

therefore start with presenting the outcome of training a Self-Organizing Map
(respectively a Growing Grid), followed by the Growing Hierarchical Self-
Organizing Map, and the Adaptive Hierarchical Incremental Grid Growing.
Each section includes a discussion about the results.

4.4.1 Data Pre-processing
Our document collection is in plain-text, and therefore no formatting infor-
mation had to be removed. Originally, the English hotel data set contained
the number of documents according to the column "original" in Table 4.5.
However, a number of documents were empty, in other words, for these hotels
no description was available from the source; these documents were removed,
and the data set resulting from this action is shown in the column "minus
empty" in Table 4.5; other documents just contained a few generic words like
"welcome to our house", or "web-site under construction"; these documents
would also not be reasonably usable for our application, and therefore it was
decided to remove all the documents that had a document length of less than
200 characters.

The data-set thus cleaned served as our initial input set, and is seen in
the columns "minus short" of Table 4.5. However, the data set was still of
bad quality, as there was a high number of German documents among the
English ones. To �lter them out in a half-automated way, both a GHSOM
and an AHIGG were trained (altogether three times) with this input data.
As a result of the training process, the German documents were mapped on
di�erent nodes on the �rst layer already, and formed distinctive clusters to

CHAPTER 4. APPLICATION OF THE AHIGG 72

Province original minus empty
Burgenland 916 903
Kärnten 1.472 1.407
Niederösterreich 611 598
Oberösterreich 804 793
Salzburg 1.767 1.621
Steiermark 795 780
Tirol 5.100 4.936
Vorarlberg 859 807
Wien 147 144
Total 12.471 11.989

Table 4.6: German hotel data set: number of documents before and after
cleaning the data set.

the other (English) documents. A certain (constant) number of documents
was each time organised into "German" clusters, and were, after manual spot
checks which con�rmed them to be German, deleted. The �nal result for our
input data set is shown in Table 4.5, column "minus German".

In the end, the English data set contained just about 60% of its initial
documents. For the German data set, as seen in Table 4.6, only empty
documents have been removed, but still one could expect the quality in the
German data set to be better from the given numbers, because of the fact of
having far fewer empty German documents.

The subsequent steps of our experiments were carried out with the English
part of the data set.

Term stemming
In order to reduce the number of words in the documents, we apply a stem-
ming program to the document collection; the stemmer creates a mapping
from the individual words to their corresponding stem, yielding the so-called
terms used to represent documents in the collection. Prior to stemming the
�nal data set, the vocabulary of the document collection contained 18,614
unique terms, while after stemming, 15,114 unique terms remained - the
stemming process created a mapping from words to terms, which leads to
a reduction of features by approximately 19%. Besides the better computa-
tional performance caused by a reduced vector dimensionality, stemming (in
general) also leads to a better clustering result, as documents that initially
had very similar words now contain the same terms. However, concerning
visualisation purposes, we have to accept a bit less readable labels.

CHAPTER 4. APPLICATION OF THE AHIGG 73

Document vector generation
In order to use any data set for analysis in the Adaptive Hierarchical In-
cremental Grid Growing, or other similar models described in this thesis,
it has to be described as a feature vector, containing a certain number of
components. Therefore, we have to use a technique to describe our doc-
ument collection in a vector-space representation: for each document, we
should obtain a vector that will describe the very same document. This can
be achieved be extracting the list of all words present in the document col-
lection. However, this list would be rather long, and would not necessarily
be adequate to unequivocally represent the documents. Therefore, we re-
move terms that do not contribute to a content description. One approach
would be to use so-called stop word lists, i.e. lists that contain among others
grammatical function words such as conjugations, articles, or pronouns, etc.
These terms exhibit approximately equal frequency in all the documents of a
collection, and therefore do not discriminate between the single documents.
Furthermore, terms that are speci�c for the data set should be discarded.
In our application, the term "hotel" e.g. will be present in a very high per-
centage of the documents, and will therefore not contribute to describing the
documents.

However, we prefer not to rely on content and language speci�c stop
word list, but we discard terms based on their relative occurrence in the
documents, i.e. we discard terms that occur in more than a certain percentage
of documents, as well as terms that occur in a number of documents below
another percentage threshold. In our experiment, we only accepted words
that consisted of at least three letters, and we discarded terms that appeared
in more than 45%, and in less than 1 % of the documents. Note that the
upper limit for term frequencies does not contribute much to term reduction:
by omitting terms that occur in more than 45% of the documents, the number
of features dropped by only ten terms. By contrast, skipping terms that are
present in less than 1 % of the documents led to omitting 14,273 terms. The
�nal number of terms, i.e. the dimension of our feature vectors, was therefore
833.

To generate weighted values for the components in our input vectors, sev-
eral approaches exist in the literature [BYRN99], amongst others, the rather
simple Boolean Model, which uses only boolean values for the weights, or
the more sophisticated Probabilistic Model. We chose the still rather sim-
ple (yet more accurate than the boolean model) term frequency × inverse
document frequency weighting scheme, as described in [Sal89]. This scheme
assigns high values to terms that are important to describe and discriminate
between documents, and low values to other terms.

CHAPTER 4. APPLICATION OF THE AHIGG 74

The scheme is based on two assumptions: terms are of importance when
they occur more frequently in one document, and less frequently in the rest
of the document collection. We therefore extract the term frequency tfij of
a term Tj in document Di, i.e., how many times the term appears in this
document. Additionally, the document frequency dfi, de�ned as the number
of documents in a collection of N documents in which the term Tj occurs,
is calculated. An appropriate indication of the term value as a document
discriminator can be given by using an inverse document frequency idf , like
log N

dfi
. Then, we can de�ne a measure of the importance of a term for

the feature vector x by computing a weighted value for its components k
according to

xk = tfij · log
N

dfi

. (4.3)

As we have seen in Figure 4.11, some documents contain spelling mistakes,
as well as including German expressions. This might result in the creation
of two di�erent components in the vectors if they are frequent enough, or if
they are just occurring in a few documents, this will lead to omitting these
terms for the vector representation. In both cases, similarities between the
documents will get "lost". The same might apply for the German words:
some of them might be translated, as for example Heurigen, which is an
expression for a special type of winery, resulting in either these terms being
omitted, or in two components for precisely the same term being created.
This will lead to a poorer clustering result.

Vector normalisation
For the remaining documents in the collection, there were only minor di�er-
ences in the average length of the documents; English documents have on
average 640 characters, German 652 characters. However, big di�erences are
found when one compares the length of single documents in the collections
- the shortest documents were in the range of a few words (sometimes only
three words, just naming the type of the hotel), while the longest descriptions
were up to 300 words long. These large discrepancies in the input data set has
a fundamental impact on the vector representations generated. As described
above, the weights for the vector components are calculated based (partly)
on the term frequency within the documents. However, it seems reasonable
for longer documents (on average) to lead to higher term frequencies. In
our application, though, these di�erent term-frequencies stem from di�erent
document quality, and we don't want this to a�ect our results. Therefore,
we will normalise the vectors to the same length. By this, the relation of the
weights within a feature vector stays the same, while all the vectors now lie

CHAPTER 4. APPLICATION OF THE AHIGG 75

(a) (b)

Figure 4.12: Vector normalisation to the same length.

in a similar range, and are therefore more easily comparable. An illustration
of this is given in Figure 4.12, where (a) shows the document vectors before,
and (b) after normalisation to the same length.

4.4.2 Results with the Self-Organizing Map and Grow-
ing Grid

In this section, we will present the results obtained from training a Self-
Organizing Map, respectively a Growing Grid, with the hotel data set. For
both models, we used the GHSOM package, available at http://www.ifs.
tuwien.ac.at/~andi/ghsom/. By de�ning appropriate values for the pa-
rameters τ1 and τ2 (see Section 2.6.2), the package can be used to train static
or only horizontally growing maps, thereby, we utilised the GHSOM algo-
rithm for training a standard Self-Organizing Map (both τ1 and τ 2 are set to
values 1), and a dynamically Growing Grid (only τ2 is set to value 1). Note
that similarly, the AHIGG could be utilised to train a connectivity-enhanced
Self-Organizing Map, a standard Incremental Grid Growing, or the AHIGG
itself).

As the SOM requires an a-priori de�ned grid-size, in our experiments,
we �rst trained a Growing Grid with the hotel data set, to get a "feeling"
about the approximate grid sizes. Having a rough idea about how big the
grid should be, we also trained various SOMs. Then, the outcome for both
models was de facto the same. To give a comparison about the run-time

CHAPTER 4. APPLICATION OF THE AHIGG 76

performance of the algorithms is di�cult, as it will depend mainly on the
number of iterations. However, through the incremental training process in
the Growing Grid, a much lower number of iterations for each training cycle
is su�cient; therefore the parameters are not easily comparable.

A Section of the outcome of one Growing Grid training is depicted in
Figure 4.13. The algorithm developed a 13 × 7 map with 91 nodes, a map-
size which is not big compared to other projects (as mentioned in Section
2.1.3, the WEBSOM projects had about 100,000 nodes), and the mapping
thus generated shows intuitively correct results. Still, the map has become
rather large for human interpretation. Clearly, a representation like this
could not be utilised in computer-based applications, as the map produced
does not �t the screen size, and thereby, the user can hardly get an overview
of the mapping. We will now describe some parts of the generated mapping.

Some nodes in the map contain solely names of places or regions, for exam-
ple Vienna (node 6/0), Achensee (node 2/1) or Ischgl (node 4/1), indicating
the location of the accommodations. This might be a useful grouping for
the user; on the given application, however, a mere geographical order could
also be achieved by using the existing structured data. A di�erent grouping,
though, might emerge, by some documents not containing the geographic
information in the structured data, but only in the free-text description, and
vice-versa.

Other nodes show only other single terms, like eur (nodes 4/0 and 5/0),
indicating that these documents contain price information in the free text,
or pension, indicating these documents describe bed and breakfast (or guest)
houses. These node-labels, however, do not contain too much information
for the user; someone who is interested in a bed-and-breakfast-style accom-
modation will not be eager to browse through the 81 documents mapped
on this node - a more detailed representation of these documents in another
hierarchical layer could greatly assist the user.

However, clusters of speci�c hotel types are visible; for example, on node
5/0, seminar and conference hotels, located in a city area, with an under-
ground connection mentioned, are grouped together. These documents will
mostly describe hotels in Vienna (as Vienna is the only Austrian city with
an underground transport system), and therefore, the group of documents to
the right, on node 6/0, with Vienna as the only label, indicates the topology-
preserving mapping ability of the Self-Organizing Map. The node 7/1 indi-
cates hotels that o�er a lot of sports facilities, while on node 9/1, so-called
wellness hotels, o�ering facilities like sauna, steam baths, swimming pools or
a solarium.

CHAPTER 4. APPLICATION OF THE AHIGG 77

Figure 4.13: Output of a Self-Organizing Map trained with the hotel
data set.

CHAPTER 4. APPLICATION OF THE AHIGG 78

Discussion
The SOM and GG algorithms produced intuitively correct results, and showed
some useful clustering according to hotel categories and geographical infor-
mation. Thus, they might be helpful. In general, though, the standard repre-
sentation of the SOM needs rather big network sizes, which does not seem to
greatly assist the user, as it does not allow easy interpretation and browsing
through the data. This is for example also acknowledged by the WEBSOM
and SOMLib projects o�ering a representation at di�erent "zoom" levels.
Smaller grid-sizes, with di�erent levels of granularity, seem to be more ade-
quate in our application as well.

4.4.3 Results with the Growing Hierarchical Self-Organ-
izing Map

After carrying out the experiments with the SOM, we then utilised the Grow-
ing Hierarchical Self-Organizing Map to generate mappings of the hotel data
set. In Figure 4.14, the �rst layer of a GHSOM thus trained is depicted.
Compared with a SOM, the hierarchical structure allows a much smaller
map on the �rst layer; this allows the user to recognise the clusters in the
data more easily.

In the given example, we can identify various types of hotels. In the
top left corner, on nodes 0/0 and 1/0, the accommodation type on farms
is grouped. As in the example of the SOM, we can see clusters of business
and conference hotels (node 5/0) and wellness hotels (6/0 and 4/1). Further,
hotels characterised as inns are located on node 6/1. In the centre-top of the
map, we can �nd hotels that describe their equipment in detail (nodes 2/0
- 4/0). On the middle-left, we can �nd hotels stressing on sports activities
(0/1, 2/1), while in the bottom-centre, we �nd hotels that o�er services for
families and children (2/2, 3/2, 6/2). The hotels on node 1/1 stress wine
and wine tasting, while the documents on 1/2 have a half board service.

Geographical clustering emerged on nodes 5/1 and 5/2, with the lake
Achensee and the mountains of the Tauern being the common locations.
Note that these two nodes are also the only ones not expanded to another
hierarchical layer.

Additionally, some rather unexpected clusters emerged: grouping docu-
ments by the common information of mentioning the price in the free-text
description (nodes 2/0, 3/1), as well as grouping hotels which mention their
WWW-address (4/2).

In Figure 4.15, a second layer map of node 4/1, showing hotels stressing
their vicinity to spas, is depicted. The hotels are mapped on di�erent nodes

CHAPTER 4. APPLICATION OF THE AHIGG 79

Figure 4.14: First layer map of a Growing Hierarchical Self-
Organizing Map trained with the hotel data set.

CHAPTER 4. APPLICATION OF THE AHIGG 80

Figure 4.15: GHSOM of the hotel
data set: layer 2 map of
hotels next to spas.

Figure 4.16: GHSOM of the hotel
data set: layer 2 map of
sport hotels.

CHAPTER 4. APPLICATION OF THE AHIGG 81

according to geographical (for example, Styria and Burgenland) aspects, or
on the additional services they provide (golf, horseback riding, etcetera).

In Figure 4.16, the documents mapped on node 0/1 are represented in
more detail. The mapped documents describe hotels mainly concentrating
on (summer) sport activities; hotels are separated according to the kind of
sports they provide, for example rafting, hiking, swimming, or biking. Ad-
ditionally, some documents are grouped according to geographical aspects.
Furthermore, a rather unexpected grouping of documents providing informa-
tion about the sea level of the accommodation emerged.

Discussion
The training algorithm of the GHSOM generates intuitively understandable
hierarchical mappings. Especially the hierarchical aspect is vital, as it allows
smaller map sizes, which are easier to interpret, and representation at a higher
granularity level on a lower layer in the hierarchy. Thus, the user can reach
the desired subspace of documents very quickly. However, cluster boundaries,
as well as intra-cluster similarities, are visible only through comparing the
labels of the nodes. This is not always accurate, and not straight-forward;
therefore, a direct cluster visualisation could become useful for the user.

Concerning the algorithm speed, the smaller grid-sizes resulted in a much
faster training time. Compared to the Growing Grid described in the previous
Section 4.4.2, the run-time for this training process was approximately four
times faster.

4.4.4 Results with the Adaptive Hierarchical Incremen-
tal Grid Growing

In our concluding experiments, we trained an AHIGG with the hotel data
set. A �rst layer map is presented in Figure 4.17, and similar results as with
the GHSOM can be observed.

Again, we can identify (the rather useless) clusters of documents that con-
tain a price information, on nodes 1/4 and 3/2, respectively. Contrary to the
experiment with the GHSOM, though, we have additional labels indicating
that one cluster more likely contains accommodations that o�er apartments,
while the other cluster includes hotels which o�er half or full board. In-
specting documents in these clusters suggested that there are two types of
documents: either very short documents with not much more than the price
information, or, actually very long and detailed documents, which, however,
contained the word "eur" or "euro" up to �ve or six times, as they stated
various prices for di�erent kinds of rooms, supplementary services, or �nal

CHAPTER 4. APPLICATION OF THE AHIGG 82

Figure 4.17: First layer map of an Adaptive Hierarchical Incremental
Grid Growing trained with the hotel data set.

CHAPTER 4. APPLICATION OF THE AHIGG 83

cleaning. Therefore, these two terms were clearly dominating values in the
document vectors. This problem is discussed in detail in Section 4.5.2.

We can further identify other (already well known) clusters, for example,
of farm holidays (node 2/4), or conference and high standard hotels on node
3/4. A cluster of documents emphasising various sports activities emerged on
node 2/0, while node 1/2 groups accommodations o�ering wellness facilities.
On node 0/2, a cluster without any descriptive label has emerged. Inspecting
the documents gathered on this node suggested that the documents, though
somehow di�erent, all describe hotels which emphasise outdoor activities,
nature, and mountains.

We will now describe a couple of second layer maps in detail.

In Figure 4.18, the second layer map representing node 3/4, in a more
detailed way, is depicted. Examining the documents on this map, one can
observe that a rather high number of hotels is not situated within Vienna,
although the most descriptive label for this cluster was Vienna. This can,
however, be easily explained by the fact that most of the hotels not located
in Vienna are instead situated in the two provinces close to the city, namely
Burgenland and Niederösterreich, and these documents mention for example
the vicinity, or possible excursions, to Vienna. Most of the nodes have Vienna
as one of their labels, and can be distinguished by either conference facilities,
or labels indicating that they cluster hotels in the city.

However, special attention has to be paid to node 0/2, as it raises some
problems. On this node, out of the 14 hotels mapped, only one describes a
hotel in (or around) Vienna. The other hotels mapped on this node have in
common that they are all conference or downtown hotels, but they are spread
all over Austria. The same applies, to some extent, to nodes 1/1, 1/2 and
1/3. A user searching for conference or high-standard hotels elsewhere than
in Vienna might be interested in these documents. However, the user might
not consider this map to be useful, as the parent node seems to indicate that
all hotels would be in Vienna, as this is the most descriptive label; similar
events may arise with other clusters as well. Therefore, the label text should
also contain the number of documents containing the speci�c term. If users
get the additional information that only 70% of the hotels are actually in (or
around) Vienna, they might also consider this cluster to be important for
their search.

In Figure 4.19, a higher granularity level of node 1/2 is depicted. Here,
we can observe a rather high number of nodes in the lower part as being
interconnected to form one big cluster (nodes 0/2 - 5/2, 0/3 - 4/3, and 1/4).
These documents all have in common that they describe hotels o�ering sauna,

CHAPTER 4. APPLICATION OF THE AHIGG 84

Figure 4.18: AHIGG of the hotel data set: layer 2 map of conference
and high standard hotels.

CHAPTER 4. APPLICATION OF THE AHIGG 85

Figure 4.19: AHIGG of the hotel data set: layer 2 map of wellness hotels.

CHAPTER 4. APPLICATION OF THE AHIGG 86

swimming pools, whirlpools, or solaria, all in-house, but are not necessarily
aimed at classifying as wellness hotels. By contrast, the clusters on nodes
1/1 and 2/1 are addressing this issue. While the former represents a cluster
of hotels that o�er services in-house, and additionally have the slogan of
vitality, the latter consists of hotel descriptions close to a spa.

While nodes 3/0 and 4/1 are more related to the big cluster in the lower
part of the map, 2/0 represents hotels that focus more on sports (tennis and
golf in this case), and mention spas, saunas and the likes only additionally;
3/1 is a cluster of conference and seminar hotels, also o�ering saunas and
steam baths.

Discussion
The self-organising algorithm of the AHIGG, similarly to the GHSOM, gen-
erates intuitively understandable hierarchical mappings. Again, the hier-
archical aspect makes it extremely attractive for visualising hierarchically
structured data, as in our application: the user can deal with smaller, easier
to interpret map sizes, and can browse through representations at di�erent
granularity levels. Additionally to the GHSOM, here, cluster boundaries
become directly visible. With the Cluster Connections, also inter-cluster
similarities and the degree of intra-cluster similarity become directly visible.
However, it has to be stated that the GHSOM could be enhanced by the
Cluster Connections visualisation technique as well.

Concerning the algorithm speed, no comparisons can be done to the other
models, as we relied on a Java implementation, while the GHSOM package
was implemented in C++; software implemented in the Java programming
language has in general longer running times. Additionally, di�erent com-
puting environments were used.

However, using the same environments and programming language, sim-
ilar (but slightly slower) running times as with the GHSOM could be ex-
pected. Compared to the GHSOM, the algorithm becomes slower with the
�ne-tuning phase, and examining the connections after each grid expansion.
Also, the grid expansion is in general slower than in the GHSOM, and there-
fore requires more expansion cycles. This can be explained by the fact that
in the AHIGG, at the most three new nodes can be added in each training
cycle (as there are at the most three unoccupied, neighbouring grid positions
for each node). By inserting complete new rows and columns, the GHSOM
might be expanded much faster. However, with the algorithm improvement
of expanding around more than one node (as described in Section 4.1.2),
faster expansion, and thereby shorter running times, can be achieved. This

CHAPTER 4. APPLICATION OF THE AHIGG 87

technique was tested in our experiment, with growing two or three new nodes
at the end of each training cycle; the results showed that the thus generated
mappings were highly similar. However, some problems arose from that tech-
nique as well; they are described in Section 4.5.1.

4.5 Conclusion
In our experiment, we have successfully shown the usefulness of the Adap-
tive Hierarchical Incremental Grid Growing for Text Mining purposes. The
user can start from a rather small map in the �rst layer, and then browse
through the hierarchies, "zooming" in and out to get a more detailed or a
more general representation of the data. With the concept of connections, the
AHIGG further provides the user with the possibility to easily detect clus-
ter boundaries; integrating the Cluster Connections representation methods,
we further can detect inter and intra-cluster similarities to a better extent.
Applying a labelling technique allows the user to easily understand the kind
of documents represented by a certain node. Using all these techniques, the
AHIGG becomes a powerful tool for analysing high dimensional data.

We showed the usefulness of the AHIGG on two demo data sets. These
demo data sets are rather small, however they give the possibility to intu-
itively verify the algorithm. In the animals data set, we could observe the
clustering abilities of the algorithm; in the zoo data set, we could addition-
ally observe the hierarchically structured mappings generated by the AHIGG.
Then, we applied the AHIGG to a real-world example; there as well, we could
observe satisfying results.

However, during the experiments with the hotel data set, we could also
observe some problems. The quality of the outcome was determined by two
separate factors, namely the model used for organising on the one hand,
and the data itself on the other hand. Therefore, we will discuss these two
components separately now.

4.5.1 Adaptive Hierarchical Incremental Grid Growing
Compared with the standard Self-Organizing Map, the underlying model for
the individual maps in the Adaptive Hierarchical Incremental Grid Growing,
namely the Incremental Grid Growing, has been subject to only a limited
amount of research and experiments. For the SOM, in many theoretical and
experimental approaches, the functionality and importance of the parameters

CHAPTER 4. APPLICATION OF THE AHIGG 88

has been examined; for the IGG, however, they remain relatively unexplored.
Some of the uncertainties concerning the AHIGG, for example the e�ects of
parameters or the concept of connectivity, stem from adopting a not too
well-explored underlying model.

The highly adaptive structure of the AHIGG, though advantageous for
generating adequate representation structures, also imposes some di�culties
on the user. Though in contrast to the SOM, the �nal grid-size has not
to be speci�ed in advance, still, the user has to specify a number of other
parameters (see Section 3.2). Most importantly, appropriate values for τ1 and
τ2, and for the connect and disconnect thresholds have to be found. These
parameters, however, will depend to a certain degree on the input data as
well; therefore, a number of experiments still has to be carried out to �ne-
tune the parameters. Inappropriate parameters for τ1 may lead to too large
maps, while a non-�tting τ2 parameter may lead to too deep hierarchical
structures; in both events, or when both e�ects are combined, the mapping
might be of not much use. Some of the improvements presented in Chapter
5, however, might reduce the e�ect of "bad" parameters.

Problems that may arise because of inappropriate connectivity thresholds
are described now.

Hierarchical model
Though the hierarchical structure generated by both the GHSOM and the
AHIGG is advantageous for the user in the way that the single maps become
smaller and therefore easier to interpret, it also holds one disadvantage: when
the user decides to zoom into one branch of the hierarchy, moving to similar
maps on the same hierarchical layers is not directly possible. Instead, the
user has to zoom out to the previous layer, and then select the sub-maps
of similar nodes. It might, therefore, be advantageous to provide hypertext-
links to similar maps on the same layer.

Growing around more than one node
The technique of growing new nodes around more than one node, as described
in Section 4.4.4, proved to produce satisfying results in many events, and led
to a speed-up of the training time.

Sometimes, however, growing around more than one node may lead to
higher map sizes than actually needed to achieve the representation gran-
ularity speci�ed by the user; especially when the map's vMQE is already
very close to the desired value, it might in many events be su�cient to grow

CHAPTER 4. APPLICATION OF THE AHIGG 89

p

Figure 4.20: Problematic cluster emergence in the Incremental Grid Growing

new nodes around only one new node. Moreover, maps that represent only
a small number of input patterns might grow too fast. These problems are
discussed, and possible solutions are presented in Section 5.1.

Non-growing clusters
By the architecture and growth algorithm of the Incremental Grid Growing,
and with non �tting parameters for the connect and disconnect thresholds,
respectively, cases might arise where in fact "large" clusters (i.e., containing
many input patterns) become mapped on comparably small areas in the
IGG, which cannot grow, as it is located in the centre of the map. A possible
scenario is depicted in Figure 4.20, where the node p forms one cluster. The
model vector of p actually represents an area with high density in the input
vector space, while the neighbouring nodes of p have developed in a totally
di�erent way.

This scenario occurred several times during our experiments, when the
threshold for deleting a connection was set too low, and therefore the con-
nections from p have been deleted early in the training process. By missing
connections to its neighbouring nodes, these cannot be adapted towards the
input patterns on p, and therefore, no other node can share the vectors
mapped on p. Though small in size in the output space A, the cluster repre-
sented by the node p may actually contain a large number of input patterns;
this may lead to a relatively high mqe of the node. As the node is situated
in the centre of the map, it cannot grow new nodes; therefore, the mqe of
the node, and possibly also the vMQE of the map, cannot be reduced to the
desired level, and the training process might either end in an endless loop,
or when using the improvement degree described in Section 3.2.2, be aborted
without reaching the desired representation granularity. Therefore, special

CHAPTER 4. APPLICATION OF THE AHIGG 90

attention has to be laid on selecting �tting connection thresholds. Alterna-
tively, at least for not extreme scenarios, this problem could be solved by
implementing the suggestion described in Section 5.7.

Note that scenarios like this cannot happen in the Growing Hierarchical
Self-Organizing Map, due to the model it builds on: the Growing Grid does,
on the one hand, not have the concept of connections, allowing the neigh-
bouring nodes of p develop model vectors similar to p, and therefore sharing
the input patterns mapped on p; on the other hand, growth in the Growing
Grid is possible also in the centre of the map, therefore also next to the node
p.

4.5.2 Hotel data
As for the data, it has to be mentioned that even after cleaning the data set
from small documents, the discrepancies between longer and shorter docu-
ments seem to be too extreme. A good example are the clusters that emerged
around the terms "sea level" and "eur"/ "euro". These contain documents
that include a price or information about the altitude of the accommodation,
but not many other details. Forming a cluster around hotels in the same price
category, or with hotels that are in the altitude would be meaningful, how-
ever, here the cluster is formed from the mere existence of these keywords.
Using a further reduced data set, taking only much longer documents, will,
however, only partly solve the problem. This is due to the fact that there are
also longer documents mapped on these nodes. These are documents with a
high frequency of these terms, for example because of giving several prices
for di�erent services. To get a better vector representation, and therefore
better clustering results, one should therefore consider, in applications like
this, additionally using a stop-word list for reducing the list of terms, for
example by the ones mentioned. Additionally, other typical stop-words like
"you", "not", etcetera, remained in the list of terms due to the fact that
many documents were not using "normal" free text, but contained, more or
less, some keywords only. Therefore, the document frequency of these terms,
easily recognised as stop-words in other text collections, was not high enough
to be �ltered out.

Moreover, some documents contained spelling mistakes; it would be desir-
able to apply some spelling correction technique before generating the vector
representations.

Another problem stems from the underlying model of the document re-
presentation. In the vector model we used, independence between the terms

CHAPTER 4. APPLICATION OF THE AHIGG 91

is assumed [BYRN99]. However, often, combinations of terms might be inter-
esting. For example, the terms "swimming" and "pool" may together form
one term, when the hotel o�ers a swimming pool, or might be independent,
when there is, for example, just "swimming" mentioned in the document,
indicating that there is any possibility for swimming close by. However, both
hotels might be organised into the same cluster, and "swimming" might be
a label for this cluster. Then a user expecting a swimming pool might �nd
many irrelevant documents. Another example are the terms "underground"
and "underground parking": documents indicating an underground public
transport stop nearby might get mixed up with others o�ering parking facil-
ities.

To solve this problem, one could use phrases rather than only words as the
index terms, or, an approach as in the WEBSOM project could be utilised
(see Section 2.1.3).

Besides the afore said, the hotel data contains actually two dimensions,
namely the category of the hotel and its equipment and possible activities,
and a geographic dimension. However, these dimensions are not covered to
the same extent in all documents, leading to a mixture of geographical and
categorial clustering. Additionally, some of the documents contain parts of
their structured data in the free-text descriptions, like the price information,
or the altitude. Therefore, some rather non useful groupings around terms
like "euro" or "altitude" respectively "sea level" emerged.

For the two dimensions, one idea might be to provide the user with two
di�erent ways of browsing through the data according to the two di�erent
dimensions.

Chapter 5

Future work

In this chapter, some possible future extensions and improvements of the
original Adaptive Hierarchical Incremental Grid Growing algorithm, as de-
scribed in Section 3.2, are discussed. Not all of these suggestions might
actually improve the usefulness of the AHIGG, however, we consider them
worthy of additional research.

5.1 Growth
As described in Section 4.1.2, we used a slightly di�erent approach for the
growth of the IGG-maps, with growing more than one new node at the same
time. However, in our opinion this approach needs to be re�ned to some
extent. When it is decided to grow the grid according to Equation 3.4,
there will be at least one node having a high error value, i.e. an error value
mqei > τ1 × qMQEparent, as otherwise, Equation 3.4 could not apply. But,
it is not necessarily guaranteed that there will be more than this one node
having an error value that would justify its growth. This could be explained
by one node having many dissimilar input patterns mapped onto itself, while
the other nodes have either very few, or very similar vectors mapped onto
themselves. A possible scenario is illustrated in Figure 5.1: the node marked
in black has a high mqe, and therefore, new nodes should be grown around
it. The user had speci�ed to grow around three nodes at the same time, and
therefore, also the gray-shaded nodes will grow; however, these nodes have
a rather small mqe, and growth in these areas might not be necessary and
target-oriented.

Therefore, we propose to guide the growth of the nodes beyond the �rst
one by a similar approach as in the Growing Hierarchical Self-Organizing
Map model (as described in Section 2.4), with a threshold value (comparable

92

CHAPTER 5. FUTURE WORK 93

mqe: 1.542mqe: 0.33

mqe: 0.21

mqe: 0.0mqe: 0.323mqe: 0.04

map wMQE: 0.9

Figure 5.1: Problematic growth around multiple nodes: growing where
it is not needed.

to the growth threshold g) as a comparison to the node's mqe. Only if the
node's mqe is higher than this threshold is it decided to grow this node. A
simple solution for the threshold, not requiring any additional parameters to
be speci�ed by the user, could be the map's vMQE itself, or a multiple of
it. This approach has, however, not been taken into account in our imple-
mentation.

Still, with the above mentioned technique, problems as described in Sec-
tion 4.4.4, i.e. the map grows bigger than actually needed to reach the desired
granularity level, might arise. Especially in events when the vMQE of the
map is already close to the speci�ed target value, it may be su�cient to grow
only around one node to reduce the vMQE enough to satisfy the growth
control condition as de�ned in Equation 3.4. But if the user has de�ned to
grow around two or more nodes with each training cycle, we may end up
with a larger map than desired. A possible solution for this problem would
be to reduce the growth to expand only around one node when the vMQE
lies within a certain environment of the desired value.

Another problem stemming from growing more than one new node in each
training cycle may arise for maps that represent only a small number of input
patterns. The number of possible new nodes is relatively high compared to
the number of existing nodes in the �rst few training cycles. For example,
if the user speci�ed to grow two nodes simultaneously in one training cycle,
and the initial grid size was 2 × 2, then, when the condition for horizontal

CHAPTER 5. FUTURE WORK 94

(b)(a)

Figure 5.2: Deleting nodes in the AHIGG: Structures as in (a) might not
be achievable, rather the case as in (b), with no vectors mapped
on the central node, will occur.

growth is ful�lled, in the �rst training cycle, the number of new nodes would
be four; thus, the number of nodes in the grid would double. When the user
speci�ed to grow around three or four nodes, then the number of nodes would
even triple or increase four times, respectively. For small input data sets, or
for maps on lower hierarchical layers, which contain only a subset of the
input data, this rapid growth may lead to a far too large map. One solution
to prevent events like this would be to limit the number of new nodes to a
certain percentage of the existing number. For example, we could say that
we expand the map only by 50 percent at the most in each training cycle.
This mechanism will reduce the number of new nodes grown in the �rst few
cycles, while in later cycles, when the relative increase in nodes is not so
dramatically anymore, it will not be e�ective anymore.

5.2 Deleting Nodes
The Adaptive Hierarchical Incremental Grid Growing, using the Incremental
Grid Growing for its maps on the individual layers, can develop very �exible
maps, thereby being able to map arbitrary input data sets. However, some
network topologies, as for example the one depicted in Figure 5.2 (a), might
not always be achievable with the current algorithm. Depending on the
ordering of input patterns, the topology might be achieved; likely however,
a structure as in (b) will be developed, with no vectors mapped on the node
marked white.

Moreover, when adding new maps on lower layers, they might be too large

CHAPTER 5. FUTURE WORK 95

in initial size for their subset of input patterns. For both events, we suggest
considering a mechanism for deleting nodes from the grid.

It is, however, di�cult to decide on when to delete a node. [Bay95] states
that deleting a node when the area of the input space it represents has zero
density, is problematic, as it declares the input data set as training set. Other
existing solutions are to delete nodes that are not adapted during the train-
ing process, or to delete nodes whose function could be ful�lled by other
neurons without loss. The former approach is problematic, as there might be
nodes that were not adapted, but nonetheless contain input patterns - this is
the case when the model vector of the node exactly represented the mapped
input patterns. For the latter approach, [Bay95] states that it is intuitively
the best one, but the computational e�ort is demanding.

However, deleting nodes that have no vectors mapped on them, in other
words, representing an input space with zero density, seems to be a satisfying
approach. Alternatively, one could examine whether the model vector of the
node has a position in the input space with a very low probability density;
this approach is utilised for example in the Growing Cell Structures (see
Section 2.7.1.

In our opinion, deleting nodes makes sense in the �ne-tuning phase only;
this can be explained by a scenario where we might delete the same amount of
nodes we just added during the grid expansion. Then, the map may not grow
in size, and the training process will not lead to minimising the quantisation
errors, or at least will become slower. Therefore, if we consider only the
completely trained map, we will avoid cases like this.

However, similarly to the arguments presented above, when introducing
the concept of deleting nodes, one should also think about the application
the map will be used for. There might be cases where the map is trained
by one sub-set of the data, and then the thus generated structure is used
to visualise di�erent data sets. For example, in our application, one could
train a map with the data-subset of hotels in Salzburg, and then visualise the
input patters from the subset of Niederösterreich. When an application like
this is desired, deleting nodes that represent a region of the input space with
zero density in one data-subset might easily represent a much denser region
in another subset of the data.

In general, however, applications like this might not be very common, and
therefore, deleting nodes to represent the input data more accurately might
make sense in other applications. One solution to combine both aspects
might be to only "virtually" delete nodes, i.e. we just do not show nodes
with no input data mapped onto in the visualisation.

CHAPTER 5. FUTURE WORK 96

5.3 Improvement Degree
In the AHIGG-Algorithm (see Section 3.2), a so-called improvement degree
was introduced as a way to stop the growth process in a stagnation phase.
However, this improvement degree should not only take the last training
cycle into account, but a longer period. This can be explained by (possible)
scenarios where we have only a slight representation improvement, or maybe
none at all, in one cycle, but in subsequent cycles, the quality of the mapping
would still increase reasonably. A scenario like this may be due to facts like a
low number of iterations. To avoid them, we therefore, propose to calculate
the improvement degree over a longer period of, say, two or three cycles.

5.4 Feature Vector Reduction
In the Hierarchical Feature Map, the concept of reducing the input vectors by
omitting some components on lower hierarchical layers, was introduced. The
reason for this was that with clearly hierarchical data (as it was especially
the case with the data used for demonstration in [Mii90]), on lower layers,
where the maps represent clusters and subsets in the data, all the mapped
vectors will have a number of features in common. Therefore, they are not
needed for the organisation process anymore, as you cannot distinguish input
patterns by their common features. This concept resulted in a speed-up of
the organisation process.

Furthermore, it would also improve the explanatory power of the labels
assigned to each node. If we consider that we have a certain number of
components with the same value for all the documents, the quantisation
error for these components would be zero, and therefore these components
have a high likelihood of being selected as labels. However, labelling all the
nodes on one map with the same label does not reveal much information
to distinguish between the inputs mapped onto it. An approach would be
to assign features that are common for all the inputs to the map, and the
node-labels would be generated from the remaining components. To give an
intuitive example, consider all the animals from the species bird in the zoo
data-set from Chapter 4 (see Tables 4.3 and B.1, respectively). All of them
have the same weights for the features toothed, backbone, breathes, venomous,
�ns, hair, feathers, eggs, and milk, while di�erences are only found on the
features airborne, aquatic, and predator. If we have a map with birds only,
and with the goal to immediately see the clusters, it would be advantageous
to have only the distinctive features as labels.

However, when it comes to implementing this strategy, some di�culties

CHAPTER 5. FUTURE WORK 97

might arise. In the two examples stated above, i.e. the zoo data set and
the script data-set in [Mii90], we have discrete values for the component
weights (with the most simple case, namely binary values, in the zoo data-
set), whereas in an example like the tourism data, as presented in Section
4.4, we have continuous values. Then, it might be rarely the case that we
have exactly the same values for all the nodes on one map. It seems rather
necessary to de�ne a similarity measure, maybe an ε environment in which
all component weights must lie in. However, this would mean introducing an-
other parameter. Care must be taken not choose this environment too wide,
to avoid losing components which could actually well distinguish between
input data patterns.

5.5 Algorithm Speed-up
Through its hierarchical structure, where the individual maps are smaller in
size and have a lower number of input patterns, the AHIGG already promises
some speed-ups compared to the SOM. However, for making the model more
usable, additional speed-ups are desirable. Of the improvements described
in Section 2.1.6, however, not all seem to be applicable.

Rapid construction of large maps doesn't seem to be applicable, as, on
the one hand, the AHIGG will not (at least for most applications) have big
maps, the interpolation of an irregular grid, like the IGG is, doesn't seem to
be so easy, and most importantly, we have no a-priori information about the
�nal grid-size. However, the approach presented in Section 5.1 is aimed at
accelerating the growth process.

However, the suggestions for rapid �ne-tuning, like the techniques of ad-
dressing the old winners, or the batch map principle, may be applicable to
the AHIGG. It remains unclear, though, how the concept of connections used
in the AHIGG will comply with these algorithm changes; for addressing the
old winners for example, the question whether to search only in the connected
neighbourhood, or to perform the search regardless of the map's connectiv-
ity, has to be answered. Furthermore, it has to be shown in experiments
how much speed improvement could actually be gained out of these meth-
ods, which were originally designed for large maps, while the map sizes in
the AHIGG remain rather small.

CHAPTER 5. FUTURE WORK 98

V

b

a

Figure 5.3: Mean quantisation error vs. quantisation error: a di�erent
criterion for hierarchical growth.

5.6 Growth Control Measures
In the AHIGG, a mean quantisation error is used as a measure for expand-
ing a single IGG map, as well as for growing hierarchically, while in the
GHSOM, the quantisation error is used. The di�erence between these two
measures can most easily be described by the scenario illustrated in Figure
5.3: A small number of input vectors, which are relatively far away, has been
mapped onto node b, while onto node a, a large number of very similar input
vectors have been mapped. For both nodes, the quantisation error, i.e. the
sum of all the distances between the model vector and the mapped vectors,
will be approximately the same; however, the mean quantisation error, i.e.
the average distance between the model vector and the mapped input vec-
tors, will be much smaller for node a. The consequence is that in cases where
the quantisation error is taken as a measure for the quality of a nodes rep-
resentation, both a and b will need to represent their mapped vectors more
adequately, and therefore will grow a new hierarchical layer. By contrast, if
the mean quantisation error is used as the quality measure, only node b will
be represented on the next hierarchical layer.

An overview over various quantisation error computations was given in
Table 3.1. It can be stated that the mean quantisation error is a more statis-

CHAPTER 5. FUTURE WORK 99

tical measure, while the quantisation error more closely follows the concept
of the SOM, where more output space is provided for areas with a higher den-
sity in the input space [RMD02]. To give a qualitative evaluation about the
di�erent measures, however, is di�cult and would have to be tested through
experiments.

5.7 Connectivity
In the model of the AHIGG, as well as in the IGG, there are only two dif-
ferent statuses for connections between nodes - either they are connected,
or they are not. This approach, however, might be too simplistic: as well
as ignoring inter-cluster similarities, the degree of similarity between nodes
within a cluster also remains unconsidered. An approach to provide better
visualisation of these inter- and intra-cluster similarities was adopted in our
implementation (refer to Section 4.1.2). However, it might be worthwhile
considering these similarities during the training process as well: the adap-
tation of neighbouring nodes could, besides the distance, also be based on
the similarity. So far, in the AHIGG and IGG models, the connectivity sta-
tus determines whether to adapt a node to its full extent (as computed by
neighbourhood function and learning rate), or not at all, when there is no
connection between the nodes. We suggest changing this adaptation scheme
to adapt to the full extent only for highly similar nodes, and for nodes which
are located in di�erent clusters, but still show some similarity to the winning
node, at least perform a small adaptation as well. One could either utilise dis-
crete statuses, like those introduced in the Cluster Connections visualisation
in Section 4.1.2, where nodes would be adapted in discrete steps, depending
on whether they are very similar, similar, or partly similar. Alternatively, a
continuous function of the similarity degree could be utilised. In the event
of using a discrete function, introducing new user-de�ned parameters should
be avoided; rather, an approach like in Section 4.1.2, where we computed
the thresholds out of the already existing connect and disconnect thresholds,
should be adopted.

5.8 Automatic Parameter Fine-tuning
As in any unsupervised neural network model, automatic parameter �ne-
tuning would be a desirable feature. However, this is not easily achieved
without user-feedback (and the AHIGG would not be an unsupervised model
anymore). One approach could be, when the user-de�ned parameters form

CHAPTER 5. FUTURE WORK 100

extremely �at, or extremely deep hierarchies, to adjust the parameters for a
better balance between the sizes of the individual maps, and the hierarchical
depth. However, any approach like this should not abandon the mapping gen-
erated with the initial parameters, but rather provide an additional mapping
with adjusted parameters to the user.

Chapter 6

Conclusion

In this thesis, we have given an overview of unsupervised neural network
models which can be utilised for text mining purposes, and tested some of
them for their usefulness. The models we investigated were based on the Self-
Organizing Map (SOM) [Koh82]; the self organising training process gener-
ates a mapping from a high-dimensional input space to a lower dimensional
space; this output space is in many models a two-dimensional, rectangular
grid of nodes. These nodes, by their so-called model vectors, represent a
certain area of the input space. Input patterns which are similar will be
mapped spatially closely to the nodes in the output space. The SOM is a
powerful tool for data visualisation, as well as for exploratory data analysis.
However, the model of the Self-Organizing Map has some weaknesses: the
size of the output grid has to be pre-de�ned, which in general will require
an a-priori knowledge of the input space, and the SOM does not allow hi-
erarchical structures to be uncovered. Therefore, several di�erent models,
extending the original SOM algorithm, have been proposed.

Some models addressing the problem of the need of an a-priori knowledge
for specifying the network size have been presented in detail in Chapter 2.
The Growing Grid (GG), introduced in [Fri95a], introduces a dynamically
growing grid, where, until a stopping criterion is ful�lled, rows or columns
are inserted around the one node that represents its corresponding input
space most inadequately. Thus, the Growing Grid is capable of dynamically
determining the grid size. The Incremental Grid Growing (IGG) [BM93],
is another model growing dynamically in size; new nodes are added on the
perimeter of the grid, until a certain stopping criterion is ful�lled. However,
here the grid is no longer strictly rectangular, as there might be sparse grid
positions, i.e. grid positions not occupied by any node. Additionally, the
nodes are not fully interconnected; by contrast, connections between nodes
might be deleted when the nodes' model vectors become too dissimilar during

101

CHAPTER 6. CONCLUSION 102

the training process. Thereby, direct cluster visualisation becomes possible.
The Growing Self-Organizing Map (GSOM) [AHS00] is a model similar to the
IGG, also growing nodes at the perimeter. A di�erence can be found in how
the growth is initiated, and in the stopping criterion, which is abstracted from
the input data by a user-de�ned factor determining the desired granularity
level. Additionally, [AHS00] discusses an approach how to (manually) create
an hierarchical structuring of the data.

Then, we have described models that automatically generate a hierarchi-
cally structured mapping. Hierarchies are desired, as on the one hand they
are inherited in many document collections, and therefore a proper repre-
sentation of these collections should also re�ect the hierarchical structure.
On the other hand, for large document collections, the SOM requires an ade-
quately large grid to represent the data properly. This will result in increased
computational e�ort; additionally, a large map does not support explorative
search in a reasonable way. In an hierarchical model, though, a number of
smaller maps, arranged on di�erent hierarchical layers, is su�cient. Maps
on lower hierarchical layers will represent the input data mapped on their
parent nodes in the higher layer in greater detail; the training of these maps
is performed only with the subsets of input patterns mapped on this parent
node. The user thus can "zoom" in to and out of di�erent granularity levels
of the mapping.

From among the existing models, we described the Hierarchical Feature
Map (HFM) [Mii90]; there, several standard SOMs are arranged in multiple
layers. The hierarchy is, however, fully balanced - real-world data will not
necessarily �t into this structure. Moreover, the size of the individual maps,
and the number of hierarchical layers, have to be de�ned in advance, and
therefore will require an a-priori knowledge of the input data space. This
is where the Growing Hierarchical Self-Organizing Map (GHSOM) [RMD02]
comes in: the individual maps are dynamically Growing Grids, and the hi-
erarchical layers are created also dynamically during runtime, depending on
the input data. With these features, the GHSOM can adequately represent
unevenly distributed and unevenly hierarchically structured data.

Additionally, we presented two models that are not two-dimensional, or
not based on a rectangular grid. The Growing Cell Structures [Fri92] and the
Neural Gas [MS91], have been described, as they suggest interesting features
like deleting nodes, and a di�erent approach for the connectivity, respectively.

Finally, the Adaptive Hierarchical Incremental Grid Growing (AHIGG)
[He01] has been described in Chapter 3, as a model combining features of
the GHSOM with the IGG, by replacing the individual GG with IGG maps.
Therefore, clusters become visible as well, and the idea of a completely �lled
rectangular grid is abandoned. We implemented the AHIGG, with slight

CHAPTER 6. CONCLUSION 103

improvements, and tested the model on two demo data sets, as well as an
application from the real-world, using a collection of free-text hotel descrip-
tions. There, the usefulness of the AHIGG has been shown, and advantages
over the SOM and GHSOM have been elaborated. However, the AHIGG,
as well as its basis, the IGG, still remains rather unexplored, and requires
further research.

With the suggestions for future work in Chapter 5, the AHIGG could be
signi�cantly improved, and its value for text mining or other data analysis
applications could increase signi�cantly.

Appendix A

Glossary of terms

AHIGG Adaptive Hierarchical Incremental Grid Growing, see
Section 3

GCS Growing Cell Structures, see Section 2.7.1
GG Growing Grid, see Section 2.2
GHSOM Growing Hierarchical Self-Organizing Map, see Sec-

tion 2.6
GSOM Growing Self-Organizing Map, see Section 2.4
HFM Hierarchical Feature Map, see Section 2.5
IGG Incremental Grid Growing, see Section 2.3
Input pattern An item of the input data set. Sometimes called input

vector.
Iteration One iteration of a SOM training algorithm
Learning rate Decides about how much the model vectors will be

adapted towards the input pattern.
Model vector A vector assigned to a node; sometimes referred to as

weight vector or reference vector.
Neighbourhood
adaptation

Decides which nodes will be adapted besides the win-
ner, and to what extent.

NG Neural Gas, see Section 2.7.2
Node A processing unit in a neural network. Sometimes

referred to as unit or cell.
SOM Self-Organizing Map, see Section 2.1
Winner The node who's model vector is the closest to a pre-

sented input pattern. Sometimes referred to as best
matching node.

104

Appendix B

Zoo data set

105

APPENDIX B. ZOO DATA SET 106
Ta

bl
e
B.
1:

Th
e
zo
o
de

m
o
da

ta
se
t

le
gs

N
am

e
ha

ir
fe
at
he

rs
eg
gs

m
ilk

ai
rb
or
ne

aq
ua

ti
c

pr
ed

at
or

to
ot
he

d
ba

ck
bo

ne
br
ea
th
es

ve
no

m
ou

s
�n

s
2

4
5

6
8

ta
il

do
m
es
ti
c

ca
ts
iz
e

sp
ec
ie
s

aa
rd
va
rk

1
1

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
0

0
1

m
am

m
al

an
te
lo
pe

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

ba
ss

0
0

1
1

0
1

1
1

1
0

0
1

0
0

0
0

0
1

0
0

�s
h

be
ar

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
0

0
1

m
am

m
al

bo
ar

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

bu
�a

lo
1

0
0

1
0

0
0

1
1

1
0

0
0

1
0

0
0

1
0

1
m
am

m
al

ca
lf

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

1
1

m
am

m
al

ca
rp

0
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
1

1
0

�s
h

ca
t�
sh

0
0

1
0

0
1

1
1

1
0

0
1

0
0

0
0

0
1

0
0

�s
h

ca
vy

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
0

1
0

m
am

m
al

ch
ee
ta
h

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

ch
ic
ke
n

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

1
0

bi
rd

ch
ub

0
0

1
0

0
1

1
1

1
0

0
1

0
0

0
0

0
1

0
0

�s
h

cl
am

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

in
ve
rt
eb

ra
te

cr
ab

0
0

1
0

0
1

1
0

0
0

0
0

0
1

0
0

0
0

0
0

in
ve
rt
eb

ra
te

cr
ay

�s
h

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
1

0
0

0
0

in
ve
rt
eb

ra
te

cr
ow

0
1

1
0

1
0

1
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

de
er

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

do
g�

sh
0

0
1

0
0

1
1

1
1

0
0

1
0

0
0

0
0

1
0

1
�s
h

do
lp
hi
n

0
0

0
1

0
1

1
1

1
1

0
1

0
0

0
0

0
1

0
1

m
am

m
al

do
ve

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

1
0

bi
rd

du
ck

0
1

1
0

1
1

0
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

co
nt
in
ue
d
on

ne
xt

pa
ge

APPENDIX B. ZOO DATA SET 107
Ta

bl
e
B.
1:

Th
e
zo
o
de

m
o
da

ta
se
t(

co
nt
in
ue
d
fro

m
pr
ev
io
us

pa
ge
)

le
gs

N
am

e
ha

ir
fe
at
he

rs
eg
gs

m
ilk

ai
rb
or
ne

aq
ua

ti
c

pr
ed

at
or

to
ot
he

d
ba

ck
bo

ne
br
ea
th
es

ve
no

m
ou

s
�n

s
2

4
5

6
8

ta
il

do
m
es
ti
c

ca
ts
iz
e

sp
ec
ie
s

el
ep

ha
nt

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

�a
m
in
go

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

0
1

bi
rd

�e
a

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
1

0
0

0
0

in
se
ct

fr
og

0
0

1
0

0
1

1
1

1
1

0
0

0
1

0
0

0
0

0
0

am
ph

ib
ia
n

ve
no

m
ou

s
fr
og

0
0

1
0

0
1

1
1

1
1

1
0

0
1

0
0

0
0

0
0

am
ph

ib
ia
n

fr
ui
tb
at

1
0

0
1

1
0

0
1

1
1

0
0

1
0

0
0

0
1

0
0

m
am

m
al

gi
ra
�e

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

gn
at

0
0

1
0

1
0

0
0

0
1

0
0

0
0

0
1

0
0

0
0

in
se
ct

go
at

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

1
1

m
am

m
al

go
ri
lla

1
0

0
1

0
0

0
1

1
1

0
0

1
0

0
0

0
0

0
1

m
am

m
al

gu
ll

0
1

1
0

1
1

1
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

ha
dd

oc
k

0
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
1

0
0

�s
h

ha
m
st
er

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

1
0

m
am

m
al

ha
re

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

0
0

m
am

m
al

ha
w
k

0
1

1
0

1
0

1
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

he
rr
in
g

0
0

1
0

0
1

1
1

1
0

0
1

0
0

0
0

0
1

0
0

�s
h

ho
ne

yb
ee

1
0

1
0

1
0

0
0

0
1

1
0

0
0

0
1

0
0

1
0

in
se
ct

ho
us
e�

y
1

0
1

0
1

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
in
se
ct

ki
w
i

0
1

1
0

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

la
dy

bi
rd

0
0

1
0

1
0

1
0

0
1

0
0

0
0

0
1

0
0

0
0

in
se
ct

la
rk

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

le
op

ar
d

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

lio
n

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

co
nt
in
ue
d
on

ne
xt

pa
ge

APPENDIX B. ZOO DATA SET 108
Ta

bl
e
B.
1:

Th
e
zo
o
de

m
o
da

ta
se
t(

co
nt
in
ue
d
fro

m
pr
ev
io
us

pa
ge
)

le
gs

N
am

e
ha

ir
fe
at
he

rs
eg
gs

m
ilk

ai
rb
or
ne

aq
ua

ti
c

pr
ed

at
or

to
ot
he

d
ba

ck
bo

ne
br
ea
th
es

ve
no

m
ou

s
�n

s
2

4
5

6
8

ta
il

do
m
es
ti
c

ca
ts
iz
e

sp
ec
ie
s

lo
bs
te
r

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
1

0
0

0
0

in
ve
rt
eb

ra
te

ly
nx

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

m
in
k

1
0

0
1

0
1

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

m
ol
e

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
0

m
am

m
al

m
on

go
os
e

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

m
ot
h

1
0

1
0

1
0

0
0

0
1

0
0

0
0

0
1

0
0

0
0

in
se
ct

ne
w
t

0
0

1
0

0
1

1
1

1
1

0
0

0
1

0
0

0
1

0
0

am
ph

ib
ia
n

oc
to
pu

s
0

0
1

0
0

1
1

0
0

0
0

0
0

0
0

0
1

0
0

1
in
ve
rt
eb

ra
te

op
os
su
m

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
0

m
am

m
al

or
yx

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

os
tr
ic
h

0
1

1
0

0
0

0
0

1
1

0
0

1
0

0
0

0
1

0
1

bi
rd

pa
ra
ke
et

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

1
0

bi
rd

pe
ng

ui
n

0
1

1
0

0
1

1
0

1
1

0
0

1
0

0
0

0
1

0
1

bi
rd

ph
ea
sa
nt

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

pi
ke

0
0

1
0

0
1

1
1

1
0

0
1

0
0

0
0

0
1

0
1

�s
h

pi
ra
nh

a
0

0
1

0
0

1
1

1
1

0
0

1
0

0
0

0
0

1
0

0
�s
h

pi
tv
ip
er

0
0

1
0

0
0

1
1

1
1

1
0

0
0

0
0

0
1

0
0

re
pt
ile

pl
at
yp

us
1

0
1

1
0

1
1

0
1

1
0

0
0

1
0

0
0

1
0

1
m
am

m
al

po
le
ca
t

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

po
ny

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

1
1

m
am

m
al

po
rp
oi
se

0
0

0
1

0
1

1
1

1
1

0
1

0
0

0
0

0
1

0
1

m
am

m
al

pu
m
a

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

pu
ss
yc
at

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

1
1

m
am

m
al

co
nt
in
ue
d
on

ne
xt

pa
ge

APPENDIX B. ZOO DATA SET 109
Ta

bl
e
B.
1:

Th
e
zo
o
de

m
o
da

ta
se
t(

co
nt
in
ue
d
fro

m
pr
ev
io
us

pa
ge
)

le
gs

N
am

e
ha

ir
fe
at
he

rs
eg
gs

m
ilk

ai
rb
or
ne

aq
ua

ti
c

pr
ed

at
or

to
ot
he

d
ba

ck
bo

ne
br
ea
th
es

ve
no

m
ou

s
�n

s
2

4
5

6
8

ta
il

do
m
es
ti
c

ca
ts
iz
e

sp
ec
ie
s

ra
cc
oo

n
1

0
0

1
0

0
1

1
1

1
0

0
0

1
0

0
0

1
0

1
m
am

m
al

re
in
de

er
1

0
0

1
0

0
0

1
1

1
0

0
0

1
0

0
0

1
1

1
m
am

m
al

rh
ea

0
1

1
0

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
1

bi
rd

sc
or
pi
on

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
0

1
1

0
0

in
ve
rt
eb

ra
te

se
ah

or
se

0
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
1

0
0

�s
h

se
al

1
0

0
1

0
1

1
1

1
1

0
1

0
0

0
0

0
0

0
1

m
am

m
al

se
al
io
n

1
0

0
1

0
1

1
1

1
1

0
1

1
0

0
0

0
1

0
1

m
am

m
al

se
as
na

ke
0

0
0

0
0

1
1

1
1

0
1

0
0

0
0

0
0

1
0

0
re
pt
ile

se
aw

as
p

0
0

1
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

0
0

in
ve
rt
eb

ra
te

sk
im

m
er

0
1

1
0

1
1

1
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

sk
ua

0
1

1
0

1
1

1
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

sl
ow

w
or
m

0
0

1
0

0
0

1
1

1
1

0
0

0
0

0
0

0
1

0
0

re
pt
ile

sl
ug

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

in
ve
rt
eb

ra
te

so
le

0
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
1

0
0

�s
h

sp
ar
ro
w

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

sq
ui
rr
el

1
0

0
1

0
0

0
1

1
1

0
0

1
0

0
0

0
1

0
0

m
am

m
al

st
ar
�s
h

0
0

1
0

0
1

1
0

0
0

0
0

0
0

1
0

0
0

0
0

in
ve
rt
eb

ra
te

st
in
gr
ay

0
0

1
0

0
1

1
1

1
0

1
1

0
0

0
0

0
1

0
1

�s
h

sw
an

0
1

1
0

1
1

0
0

1
1

0
0

1
0

0
0

0
1

0
1

bi
rd

te
rm

it
e

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
1

0
0

0
0

in
se
ct

to
ad

0
0

1
0

0
1

0
1

1
1

0
0

0
1

0
0

0
0

0
0

am
ph

ib
ia
n

to
rt
oi
se

0
0

1
0

0
0

0
0

1
1

0
0

0
1

0
0

0
1

0
1

re
pt
ile

tu
at
ar
a

0
0

1
0

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
0

re
pt
ile

co
nt
in
ue
d
on

ne
xt

pa
ge

APPENDIX B. ZOO DATA SET 110
Ta

bl
e
B.
1:

Th
e
zo
o
de

m
o
da

ta
se
t(

co
nt
in
ue
d
fro

m
pr
ev
io
us

pa
ge
)

le
gs

N
am

e
ha

ir
fe
at
he

rs
eg
gs

m
ilk

ai
rb
or
ne

aq
ua

ti
c

pr
ed

at
or

to
ot
he

d
ba

ck
bo

ne
br
ea
th
es

ve
no

m
ou

s
�n

s
2

4
5

6
8

ta
il

do
m
es
ti
c

ca
ts
iz
e

sp
ec
ie
s

tu
na

0
0

1
0

0
1

1
1

1
0

0
1

0
0

0
0

0
1

0
1

�s
h

va
m
pi
re

1
0

0
1

1
0

0
1

1
1

0
0

1
0

0
0

0
1

0
0

m
am

m
al

vo
le

1
0

0
1

0
0

0
1

1
1

0
0

0
1

0
0

0
1

0
0

m
am

m
al

vu
lt
ur
e

0
1

1
0

1
0

1
0

1
1

0
0

1
0

0
0

0
1

0
1

bi
rd

w
al
la
by

1
0

0
1

0
0

0
1

1
1

0
0

1
0

0
0

0
1

0
1

m
am

m
al

w
as
p

1
0

1
0

1
0

0
0

0
1

1
0

0
0

0
1

0
0

0
0

in
se
ct

w
ol
f

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

m
am

m
al

w
or
m

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

in
ve
rt
eb

ra
te

w
re
n

0
1

1
0

1
0

0
0

1
1

0
0

1
0

0
0

0
1

0
0

bi
rd

Bibliography

[AHS00] Damminda Alahakoon, Saman K. Halgamuge, and Bala Srini-
vasan. Dynamic self-organizing maps with controlled growth for
knowledge discovery. IEEE Transactions on Neural Networks,
11(3):601�614, May 2000.

[Bay95] Harald F. Bayer. Über die Anwendung selbstorganisierender
Karten. Dissertation, Universität Stuttgart, Institut für parallele
und verteilte Höchstleistungsrechner, Germany, Ocotber 1995.

[BM93] Justine Blackmore and Risto Miikkulainen. Incremental grid
growing: Encoding high-dimensional structure into a two-
dimensional feature map. In Proc. ICNN'93, International Con-
ference on Neural Networks, volume I, pages 450�455, Piscat-
away, NJ, 1993. IEEE Service Center.

[BM95] Justine Blackmore and Risto Miikkulainen. Visualizing high-
dimensional structure with the incremental grid growing neural
network. In A. Prieditis and S. Russell, editors, Machine Learn-
ing. Proceedings of the Twelfth International Conference on Ma-
chine Learning, pages 55�63. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1995.

[BYRN99] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[DMB02] Michael Dittenbach, Dieter Merkl, and Helmut Berger. What
customers really want from tourism information systems but
never dared to ask. In Proceedings of the 5th International Con-
ference on Electronic Commerce Research (ICECR-5), Montreal,
Canada, October 23�27 2002.

[DMR00a] Michael Dittenbach, Dieter Merkl, and Andreas Rauber. The
Growing Hierarchical Self-Organizing Map. In S. Amari, C. L.

111

BIBLIOGRAPHY 112

Giles, M. Gori, and V. Puri, editors, Proc of the International
Joint Conference on Neural Networks (IJCNN 2000), volume VI,
pages 15 � 19, Como, Italy, July 24. � 27. 2000. IEEE Computer
Society.

[DMR00b] Michael Dittenbach, Dieter Merkl, and Andreas Rauber. Using
Growing Hierarchical Self-Organizing Maps for Document Classi-
�cation. In Proc of the European Symposium on Arti�cial Neural
Networks (ESANN 2000), pages 7�12, Bruges, Belgium, April 26.
� 28. 2000. D-Facto Publications.

[Fri92] Bernd Fritzke. Growing cell structures�a self-organizing net-
work in k dimensions. In I. Aleksander and J. Taylor, editors,
Arti�cial Neural Networks, 2, volume II, pages 1051�1056, Am-
sterdam, Netherlands, 1992. North-Holland.

[Fri95a] Bernd Fritzke. Growing grid - a self-organizing network with
constant neighborhood range and adaptation strength. Neural
Processing Letters, 2(5):9�13, 1995.

[Fri95b] Bernd Fritzke. A growing neural gas network learns topologies. In
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances
in Neural Information Processing Systems 7, pages 625�632. MIT
Press, Cambridge MA, 1995.

[Fri96] Bernd Fritzke. Growing self-organizing maps�why? In Michel
Verleysen, editor, Proc. ESANN'96, European Symp. on Arti-
�cial Neural Networks, pages 61�72, Bruges, Belgium, 1996. D
facto conference services.

[HA01] Victoria J. Hodge and Jim Austin. Hierarchical growing
cell structures: Treegcs. Knowledge and Data Engineering,
13(2):207�218, 2001.

[He01] Hui Shao He. Analyziny the topology of high-dimensional
data using the adapative hierarchical imcremental grid growing.
Diplomarbeit, Technische Universität Wien, Austria, 2001.

[KHKL96] Teuvo Kohonen, Jussi Hynninen, Jari Kangas, and Jorma Laak-
sonen. SOM_PAK: The Self-Organizing Map program package.
Report A31, Helsinki University of Technology, Laboratory of
Computer and Information Science, January 1996.

BIBLIOGRAPHY 113

[KKK98] Samuel Kaski, Jari Kangas, and Teuvo Kohonen. Bibliography of
self-organizing map (SOM) papers 1981-1997. Neural Computing
Surveys, 1(3&4):1�176, 1998.

[KKL+00] Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salo-
järvi, Jukka Honkela, Vesa Paatero, , and Antti Saarela. Self-
organization of a massive document collection. IEEE Transac-
tions on Neural Networks, 11:574�85, 2000.

[KM98] Monika Köhle and Dieter Merkl. Experiments in gait pattern
classi�cation with neural networks of adaptive architecture. In
L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceedings of
ICANN98, the 8th International Conference on Arti�cial Neural
Networks, volume 1, pages 293�298. Springer, London, Septem-
ber 2-4 1998.

[Koh82] Teuvo Kohonen. Self-organizing formation of topologically cor-
rect feature maps. Biological Cybernetics, 43(1):59�69, 1982.

[Koh90] Teuvo Kohonen. The self-organizing map. In Proceedings of the
IEEE, volume 78, pages 1464�1480, September 1990.

[Koh97] Teuvo Kohonen. Exploration of very large databases by self-
organizing maps. In Proceedings of ICNN'97, International Con-
ference on Neural Networks, pages PL1�PL6. IEEE Service Cen-
ter, Piscataway, NJ, 1997.

[Koh98] Teuvo Kohonen. Self-organizing map. Neurocomputing, 21(1):1�
6, 1998.

[Mer97] Dieter Merkl. Exploration of text collections with hierarchical
feature maps. In Research and Development in Information Re-
trieval, pages 186�195, 1997.

[Mer98a] Dieter Merkl. Self-organizing maps and software reuse. In Witold
Pedrycz, W. Pedrycz, and J. F. Peters, editors, Computational
Intelligence in Software Engineering, pages 65�95. World Scien-
ti�c Publishing Co., Inc., River Edge, NJ, 1998.

[Mer98b] Dieter Merkl. Text classi�cation with self-organizing maps: Some
lessons learned. Neurocomputing, 21(1-32), 1998.

BIBLIOGRAPHY 114

[MHDR03] Dieter Merkl, Shao Hui He, Michael Dittenbach, and Andreas
Rauber. Adaptive hierarchical incremental grid growing: An ar-
chitecture for high-dimensional data visualization. In Proceedings
of the 4th Workshop on Self-Organizing Maps, Advances in Self-
Organizing Maps, pages 293�298, Kitakyushu, Japan, September
11-14 2003.

[Mii90] Risto Miikkulainen. Script recognition with hierarchical feature
maps. Connection Science, 2(1&2):83�101, 1990.

[MR97] Dieter Merkl and Andreas Rauber. Alternative ways for clus-
ter visualization in self-organizing maps. In Proceedings of
WSOM'97, Workshop on Self-Organizing Maps, Espoo, Finland,
June 4-6, pages 106�111. Helsinki University of Technology, Neu-
ral Networks Research Centre, Espoo, Finland, 1997.

[MS91] Thomas Martinetz and Klaus Schulten. A "Neural-Gas" net-
work learns topologies. In T. Kohonen, K. Mäkisara, O. Simula,
and J. Kangas, editors, Proc. International Conference on Arti�-
cial Neural Networks (Espoo, Finland), volume I, pages 397�402,
Amsterdam, Netherlands, 1991. North-Holland.

[OKK03] Merja Oja, Samuel Kaski, and Teuvo Kohonen. Bibliography of
self-organizing map (SOM) papers: 1998-2001 addendum. Neural
Computing Surveys, 3:1�156, 2003.

[RB99] Andreas Rauber and Harald Bina. A metaphor graphics based
representation of digital libraries on the world wide web: Using
the libViewer to make metadata visible. In DEXA Workshop
1999, pages 286�290, 1999.

[RDM00] Andreas Rauber, Michael Dittenbach, and Dieter Merkl. Auto-
matically detecting and organizing documents into topic hierar-
chies: A neural-network based approach to bookshelf creation
and arrangement. In J. Borbinha and T. Baker, editors, Proceed-
ings of the 4. European Conference on Research and Advanced
Technologies for Digital Libraries (ECDL2000), number LNCS
1923 in Lecture Notes in Computer Science, pages 348�351, Lis-
boa, Portugal, September 18. - 20. 2000. Springer.

[RM99a] Andreas Rauber and Dieter Merkl. Somlib: A digital library
system based on neural networks. In Proceedings of the 4th ACM

BIBLIOGRAPHY 115

Conference on Digital Libraries (DL'99), Berkeley, CA, August
11 - 14 1999. ACM.

[RM99b] Andreas Rauber and Dieter Merkl. The SOMLib digital library
system. In European Conference on Digital Libraries, pages 323�
342, 1999.

[RM01] Andreas Rauber and Dieter Merkl. Automatic labeling of self-
organizing maps for information retrieval. Journal of Systems
Research and Information Systems (JSRIS), 10(10):23�45, De-
cember 2001.

[RMD02] Andreas Rauber, Dieter Merkl, and Michael Dittenbach. The
growing hierarchical self-organizing map: Exploratory analysis of
high-dimensional data. IEEE Transactions on Neural Networks,
13(6):1331�1341, November 2002.

[Sal89] Gerald Salton. Automatic text processing � The Transformation,
Analysis, and Retrieval of Information by Computer. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[Spe96] Heike Speckmann. Dem Denken abgeschaut: Neuronale Netze im
praktischen Einsatz. Friedr. Vieweg & Sohn Verlagsgesellschaft
mbH, Braunschweig/Wiesbaden, 1996.

