
Ontologies for Describing the
Context of Scientific Experiment Processes

Rudolf Mayer, Tomasz Miksa

SBA Research

Vienna, Austria

Andreas Rauber

Vienna University of Technology & SBA Research

Vienna, Austria

Abstract—The re-usability and repeatability of e-Science exper-
iments is widely understood as a requirement of validating and
reusing previous work in data-intensive domains. Experiments
are, however, often complex chains of processing, involving a
number of data sources, computing infrastructure, software tools,
or external and third-party services, rendering repeatability a
challenging task. Another important aspect of many experiments
is in the social and organisational dimension – very often,
knowledge on how experiments are performed is tacit and
remains with the researcher, and the collaborative and distributed
aspects especially of larger collaborative experiments adds to this
challenge. Therefore, a number of approaches have tackled this
issue from various angles – initiatives for data sharing, code
versioning and publishing as open source, the use of workflow
engines to formalise the steps taken in an experiment, to ways
to describe the complex environment an experiment is executed
in, e.g. via Research Objects. In this paper, we present a model
that has a specific focus on the technical infrastructure that is the
basis of the research experiment. We demonstrate how this model
can be applied to describe e-Science experiments, and align and
compare it to Research Objects.

I. INTRODUCTION

The repeatability of data and computational intensive exper-

iments is a key aspect in making their results more trustworthy,

and thus also of higher relevance to other researchers in the

community. Repeatability is however difficult to achieve, due

to the complexity of many of the research investigations un-

dertaken. Often, these experiments involve several researchers

from different organisations, working with a multitude of data

sets, on distributed computing environments, composed of

a multitude of different hardware and software components.

Thus, ways to formalise the execution of these experiments

are required, and workflows have been proposed as one means

to orchestrate and describe the chains of data processing in e-

Science experiments. Furthermore, models such as Research

Objects have been proposed as a means to describe the

interlinking between data resources and processing steps, and

the documents that are an output of the research process,

such as reports and publications. This allows to not only

formalise the execution orchestration, but to also attribute

how multiple experiments are connected to each other, and on

which resources the scientific analysis is based on. All these

are a step towards repeatability.

However, there is still relatively little efforts in towards also

preserving the execution environments scientific research pro-

cesses are embedded in. As such, many models lack in expres-

siveness in regards to describing the hardware and software

setup, and the interdependencies between those components.

Todays data-intensive experiments do, however, often depend

on a number of services and aspects of the process beyond

the control of the workflow system, or even the researcher

himself, as reported e.g. in [1].

In this paper, we therefore present the TIMBUS Context

Model, a model that has similar aims as e.g. Research Objects,

but has a specific focus as well on the technical infrastructure

that is the basis of the research experiment. Our model origi-

nated from the domain of the digital preservation of processes,

which aims at enabling redeployment (re-enactment) of a

process even when the technical environment has changed.

We then provide a in-depth comparison between these two

models, and show how they can be aligned with each other.

This allows for each of the models to complement the other

approach, and to refine some of their concepts. We also give

two examples of use case applications of the model.

The remainder of this paper is organised as follows. Sec-

tion II reviews related work in the area of digital preservation

and models to describe scientific experiments. Section III

then introduces the TIMBUS Context Model, followed by

a comparison to and integration with Research Objects in

Section IV. Section V describes the example application of the

Context Model on two use cases, before Section VI provides

conclusions and an outlook on future work.

II. RELATED WORK

We will review related work from several different, com-

plementary areas that influenced the model presented in

this paper. Digital Preservation, as defined in the UNESCO

Guidelines for the Preservation of the Digital Heritage [2] is

the process of preserving data of digital origin. Its goal is

that digital objects remain accessible, usable and interpretable

in an authentic manner, opposing changing technologies or

designated user communities that would derogate these goals.

To this end, it uses preservation action strategies such as

migration [3] and emulation [4] to especially counter tech-

nological changes. When different user communities need

to work with the digital objects, provision of meta-data is

often the preferred solution. This is a scenario very similar

to many of the repeatability and reproducibility concerns in

experimental sciences, where researchers not involved in the

2014 IEEE 10th International Conference on eScience

978-1-4799-4287-9/14 $31.00 © 2014 IEEE

DOI 10.1109/eScience.2014.47

153

initial scientific process need to work with the experiment

environment.

While digital preservation has been traditionally driven by

cultural heritage and memory institutions [2], it is increas-

ingly recognised that it is a problem affecting all organisa-

tions that manage information over time. As such, it also

affects scientific research, where information systems and

data processing play an ever-increasingly role, notably in e-

Science experiments. The DCC Curation Life Cycle Model

[5] elongates the traditional scope of preservation to include

curation. The Curation phase might involve the creation of

new information or the access and reuse of already existing

information and its appraisal and selection. The Preservation
phase involves the application of preservation actions, and the

storing of that information. During the two phases, activities

such as preservation planning take place in order to keep

descriptive metadata and representation information up to date.

The SHAMAN Information Life Cycle [6] suggests phases

that aim at the capturing of the context of production of the

object, and the preparation of the retrieved digital objects so

that its information contents can be used. The Work by the

CASPAR project on Preservation Networks [7] focuses on

the capturing of the dependencies of complex digital objects

through the usage of entity-relationship-like models, although

business and organisational aspects are left out of it. This

approach is similar to ontology-based representations of the

process environment.

Workflow-Centric Research Objects [8] (ROs) are a means

to aggregate or bundle resources used in a scientific inves-

tigation, such as a workflow, provenance from results of its

execution, and other digital resources such as publications,

data-sets. In addition, annotations are used to further describe

these digital objects. The model of Research Objects is in the

form of an OWL ontology, and incorporates several existing

ontologies. At its core, the Research Object model extends the

Object Exchange and Reuse model (ORE) [9]1 to formalise the

aggregation of digital resources. Annotations are realised by

using the Annotation Ontology (AO) [10], which allows e.g.

for comment and tag-style textual annotations. Specifying the

structure of an abstract workflow is enabled by the wfdesc
ontology. Finally, the provenance of a specific execution of a

workflow is described using the wfprov ontology. Research

objects have also been presented as a means to preserve

scientific processes [11], proposing archiving and autonomous

curation solutions that would monitor the decay of workflows.

Enterprise architecture (EA) takes a holistic point of view

on enterprise analysis, design and planning. It regards aspects

such as business, information, process and technology, and

does not address any specific domain-dependent concerns. It

rather cuts across the whole organisation running the process,

[12]. EA is thus a major driver when designing a holistic model

of a process, including the social, legal, organisational and

technical environment it is embedded in.

1http://www.openarchives.org/ore/1.0

III. PROCESS CONTEXT META-MODEL

Our process context meta-model was driven by requirements

to preserve and re-execute complete processes, from the busi-

ness or scientific domain. Preservation of business processes

is of key importance for companies for issues such as liability

cases, where e.g. a company needs to prove that it executed

its processes correctly, and faults did not occur because of

their manufacturing. In the scientific world, experiments and

their results need to be verifiable by others in the community.

They need to be preserved as researchers need to be able to

reproduce and build on top of earlier experiments to verify

and expand on the results.

As a basis for the preservation of processes, we designed

a meta-model that would capture the context this process is

embedded in. This context can range from immediate and

local aspects such as the software and hardware supporting

the process, to aspects such as the organisation the process is

executed in, the people involved, service providers, and even

laws and regulations. The exact context can differ significantly

depending on the domain the process stems from.

Therefore, the main guiding principle for designing the

meta-model was for it to be modular and extensible to new

aspects a use case might require. The meta-models must fol-

low the principles of high-cohesion and low-coupling, which

contributes to expressiveness and extensibility. It is especially

important that adding new domain-specific aspects does not

interfere with the concepts already present. Ontologies were

identified as a suitable means to author the meta-model, and

we decided to adopt the Web Ontology Language (OWL) [13],

a Semantic Web language designed to represent rich and

complex knowledge about things, groups of things, and rela-

tions between things. The architecture of the proposed context

model is thus based on the following concepts (cf. Figure III):

• A core model describing generic concepts of processes

• Extensions describing specific aspects regarding digital

preservation of processes

• Extensions describing use case domain specific aspects

• Ontology Integration

• Model Transformation

The Core ontology, also referred to as Domain Independent

Ontology (DIO), represents a neutral, domain-independent

language that is able to represent the core concepts of the

context model. It is designated domain-independent since it

does not address any specific domain-dependent concerns, but

rather cuts across the whole organisation running the process,

in a similar manner as for example enterprise architecture

frameworks model businesses[12]. In ontology engineering

such an ontology is referred to as an “upper level ontology”.

An extension ontology represents a more specific language

that addresses particular concerns, e.g. details on software,

hardware, licenses, or file formats. Extensions might be ar-

ranged in hierarchies, where e.g. software licenses are de-

scribed in more detail for both free and open source and

commercial licenses, each having different sets of properties.

The ontology integration described above makes use of model

154

Fig. 1. Mappings between Core (generic) and extension (specific) ontologies

Fig. 2. The ArchiMate Framework ([16])

transformation to relate an extension to the Core, or to

relate multiple extensions to each other. Model transformation

entails defining a mapping strategy from a source model to a

destination model ([14], [15]).

A. Core (Domain-Independent) Ontology

To ground our approach to context modelling and address

the aforementioned principles, we decided to use the Archi-

Mate 2.0 language ([16]) as a basis for our Core ontology.

ArchiMate is an international standard that covers the domain

of enterprise architecture. The ArchiMate modelling language

includes a minimum set of concepts and relationships and the

framework includes a minimum set of layers and aspects to

enable modelling of the majority of cases ([16]). Therefore,

it can be considered a domain-independent language in the

setting of enterprise architecture. The motivation to select the

ArchiMate is that its design principles largely overlap with

those of the context model.

The framework organises the modelling language concepts

in a 3 × 3 matrix: the rows capture the enterprise layers,

i.e., business, application, and technology, and the columns

capture cross layer aspects, i.e., active structure, behaviour

and passive structure. Figure 2 depicts this organisation of

Fig. 3. The ArchiMate meta-model language concepts [16]

the framework. Figure 3 depicts the main concepts provided

by ArchiMate, the colours of the elements corresponding to

the categorisation into active structure, behaviour and passive

structure. The business layer is concerned with products and

(external) services, realised by the business processes of the

organisation. The application layer deals with the application

services, which support the business layer and are realised by

software applications. The technology layer finally describes

the infrastructure services offered to applications, realised by

hardware and system software. Regarding aspects, the active

structure contains entities capable of performing behaviour;

the behaviour, contains elements defined as units of activity

performed by one or more active structure elements; and

the passive structure contains objects on which behaviour is

performed.

The possible relationships between concepts can be either

inter-layer dependencies between two layers, which are usually

fulfilled by the “Used By” relationship, where the lower-level

layer usually provides a service which is used by elements

at the higher level layer, when an element at a higher layer

is realised by an element at a lower layer, or when a lower

layer element is assigned to a higher layer element. Intra-layer

relations normally define dependencies, e.g. between different

Software components, or from Software to Hardware.

B. Extension Ontologies

The core ontology of the Context Model described above

is augmented through a set of specific extension ontologies,

each of which tailored to address explicit modelling con-

cerns. Wherever possible, the extension ontologies are based

on already existing languages, for which then the ontology

mapping to the core ontology was provided. However in some

cases, new ontologies had to be developed, based on existing

vocabularies. Through the analysis of several use cases in

and outside of the TIMBUS project, a number of categories

of information aspects were identified, the most important of

which are described below.

1) Software Dependencies: This category involves aspects

an dependencies between different types of software, including

information on which versions are compatible or conflicting

with each other. It is for example important to know that, and

which version of, a Java Virtual Machine is required to run

a specific Software, or that a certain application is required

to view a digital object. This is important when considering

preservation actions on specific parts of the software stack

utilised in the process, where also the question on what

alternative software application are equivalent might be of

importance. Technical dependencies on software and operating

systems can be captured and described via the Common Up-

gradeability Description Format (CUDF) [17]. CUDF defines

two concepts (package and virtual package), and a number of

relations between these – among others depends, recommends,

conflicts, and provides. Further, a number of data properties are

provided. This allows to describe in detail the current software

setup on a system, and to analyse the impact of potential

changes to elements of the software stack. The ontology can

155

be used for different types of software, e.g. Linux packages,

or Windows Dynamic Link Libraries (DLLs)

2) Data Formats: In a business or scientific process, a

number of digital objects are created, modified or read. This

category includes information on which data format these are

described in. This type of information is the main concern

of traditional digital preservation activities, and thus a tight

interlinking to previous results is aimed for. Information on

the format of these objects is crucial for digital preservation

actions to be carried out, as e.g. migration to a different format

might require changes in the rest of the process.

File formats are among the main concerns of traditional

digital preservation activities, and thus it is easy to identify

suitable, existing ontologies. We adopted the PREMIS Data

Dictionary [18], which is also available in the form of an

ontology. The data dictionary defines five types of entities:

Intellectual, Object, Event, Agent, and Rights. It then defines

45 concepts belonging to these types, as well as relations and

data properties. To integrate PREMIS in our meta-model, we

map the File entity to an ArchiMate Artifact, and can then

utilise the PREMIS elements of Format and FormatRegistry
to further describe them. Also, Storage, ContentLocation and

Software, as well as Agents are mapped to the core ontology.

Further, we are considering mappings of Rights to both the

core and the legal extension ontologies, which are described

below.

3) Hardware: This category includes aspects related to

hardware, from desktop systems, computational and storage

server infrastructure, to specialised hardware optimised for

certain tasks. Even though in many processes the hardware

employed to host the software applications might be standard

commodity hardware, its exact specifications can still influence

the run-time behaviour of a process. This might be critical

in certain circumstances, such as execution speed, or when

specific functionalities and characteristics of the hardware such

as precision limits, analog/digital conversion thresholds etc.

are part of the computation. Further, certain processes might

utilise certain hardware capabilities for computation, such as

using graphical processing units (GPUs) for large-scale experi-

ments in scientific processes. These types of hardware, and the

software that can work upon them, are not yet as standardised

and abstracted, thus an exact description is needed in many

cases. The ontology described in [19], developed with the

aim of describing persuasive and context-aware computing,

includes as main concepts Device and Resource, which can be

mapped to elements in the core ontology (Device and Node).

4) Legal: This category includes all legal requirements

imposed on the processes and surrounding context. For exam-

ple, this can be about whether certain elements are eligible

for preservation. This includes reproduction of copyright-

protected data and software, as well as intellectual-property

materials, e.g. software. It is, therefore, crucial that legal

aspects are considered when performing digital preservation

of processes, which include software and data alike. While

the domain is very extensive, we consider the following fields

of specific importance.

a) License: This category includes all aspects related

to licenses, and concentrates initially on software licenses.

Relevant aspects are e.g. the types of licenses under which

software was made available, and the clauses they contain.

These license clauses then pose restrictions on what can be

performed with the software. Licenses are a specialisation

of legal requirements, but of high importance for digital

preservation aspects, thus they are described in detail in

their own model. A suitable candidate for this domain was

identified in a section of “The Software Ontology”2 (SWO),

which is an ontology for describing software tools, their types,

tasks, versions, provenance and associated data. One of its

components is dedicated to licenses, and models two important

concepts: Software licenses, and License clauses. License

clauses define properties and restrictions on what can be done

with the software, e.g. whether redistribution is allowed, and

in what form (with or without notice), or whether there is a

restriction on the number of users that can use the software.

Software licenses are a composition of clauses. The ontology

pre-defines a set of these, others can be added as needed. The

mapping of both Clause and License to the Core ontology is

to the Constraint concept.

b) Patents: This category contains aspects on patents,

e.g. who is the owner of a specific patent, what the patent

covers, or when it was granted. Patents also imply a restriction

on how a software, hardware or method can be used. If this

is the case, it could have implications on whether, or to

what level of completeness, the preservation of the processes

could be performed. Again, these are a specialisation of legal

requirements considered to be of high importance, and are thus

described with their own set of concept. A suitable candidate

is a result of the EU-funded PATExpert project3. PATExpert

defined a suite of ontologies that describe patent documents,

covering aspects such as the structure of documents and

content they provide.

5) Performance and Provenance: Information on the

actual execution or enactment of a process is of importance

especially for verifying repeatability of two different runs.

Therefore, such information is also important for the process

context model. We based this extension on the Janus

model [20], which provides a semantic provenance model and

was designed around the Taverna workflow model. As such, it

is relatively similar in structure to the Research Objects model

for provenance. Janus itself is an extension of the PROVENIR

ontology, which provides an upper-level reference description

languages for provenance modelling that can be extended

to represent provenance in multiple domains [21]. Janus

then adds concepts specific for workflows. The three top

level concepts are agent, data and process. Process consists

of a workflow spec, which specifies the orchestration of

one or more processor spec, which represents a process

step. Subsumed under data are the concepts of port and the

port value. The former represent the input and output data

2http://theswo.sourceforge.net/
3http://cordis.europa.eu/ist/kct/patexpert synopsis.htm

156

Fig. 4. Overview on extensions and their relation to the core ontology

of the process, while the latter stores the process execution

data. The integration to the core ontology is towards Business
Objects and Process, respectively aggregation of Processes.

It is important to note that the ontology mapping between

the extensions and the core ontology is not 1:1. In most cases,

there is an excess of concepts in the extension ontology, i.e.

some concepts map to none of the concepts in the target model.

These concepts are mostly of such nature as that they describe

constructs that are mapped to the core ontology in more detail,

and thus this excess of concepts is desired.

An overview on the current extensions available and their

mapping to the core ontology and other extension ontologies

is depicted in Figure 4. Different alternatives were analysed

for creating the mappings between the extensions and the

core ontology, including OWL equivalentTo statements, which

intuitively would be a clear candidate. However, in most cases

the extensions define only one possible specialisation of a

core concept, and thus subClass statements were employed

on the mappings. The set of extension ontologies currently

available is not complete for all possible scenarios, but the

extension mechanism is easily applicable to provide other

domain specific ontologies that may be needed for capturing

the context of other use cases. More details on the generic

architecture of the Context Model, including aspects on the

ontology integration, and an in-depth discussion on reasoning

aspects on the ontology can be found in [22]. The ontologies

are available from the TIMBUS project website4.

IV. COMPARISON TO AND ALIGNMENT WITH

RESEARCH OBJECTS

In this section, we will give an analysis of how the Context

Model and Research Objects complement each other, and

propose an alignment that allows to integrate both models.

This alignment is possible in both directions, meaning that the

Context Model can be augmented by (parts of) the Research

Object model, and vice-verca, (parts of) the Context Model can

be used to refine some of the concepts in Research Objects.

We base our comparison on the currently available version

of the Wf4Ever Research Object Model Specification 1.05.

Schematic overviews on these ontologies are given in Fig-

ure IV. The Context Model provides more powerful concepts,

and integrates especially aspects on the technology supporting

4http://timbusproject.net/resources/publications/ontologies
5http://wf4ever.github.io/ro/2013-11-30/

the workflow or process execution. However, Research Objects

are a prominent concept that has seen wide-spread discussion

in the e-Science community, thus a detailed comparison and

evaluation of the two models seems required.

The business layer of the Context Model Core ontology

contains as most prominent concept a Process, which repre-

sents a single task. A set of process tasks can be aggregated

to form a sub-process (sequence). The Process concept is thus

equivalent to the Process in Research Objects (RO), while

the RO concept of a WorkflowTemplate is equivalent to an

aggregation of Processes in the Context Model. Processes pro-

duce or consume data and information, which is represented

by the Business Object. Contrary to ROs, there is no specific

distinction between Input and Output data, but the semantic

differentiation is defined by the direction of the relation they

are connected to with Process elements. Thus, Object can be

considered to be a super-concept of the ROs Input and Output.
In the Context Model, there is no specific concept equivalent

to the Parameter in Research Objects. However, as parameters

are a specific type of inputs, Business Object can be seen as

a superclass and used for that purpose as well.

wfdesc:Artifact is described as “used to provide informa-

tion about a class of artifacts. For example, it can be used

to specify the datatype of a dataset or the structure of a

document.”. An similar concept in the Context Model can be

found in the PREMIS extension ontology (cf. Section III-B2)

in the premis:Format. While PREMIS is mostly oriented

towards well-known data formats which can be queried from

premis:FormatRegistry, the premis:FormatDesignation also al-

lows to specify any custom format or structure a digital object

might adhere to, and can thus be considered equivalent to

wfdesc:Artifact.
The concepts of the RO workflow provenance model are

in general equivalent to concepts in the Context Model Per-

formance and Performance extension. wfprov:WorkflowRun is

matched by janus:workflow run, and wfprov:ProcessRun by

janus:processor exec. wfdesc:Artifact, which is defined as “a

data value or item”, is equivalent to an core:Artifact. An

Artifact, a concept on the technology layer in the Context

Model, is the manifestation of an abstract Business Object on

the business layer. They are linked to each other via Data
Objects on the application layer.

No equivalent mapping can currently be identified for the

wfprov:WorkflowEngine class, which has is the agent responsi-

ble for enacting a workflow definition. The closest concept in

the Context Model is the core:SystemSoftware, which gener-

ally describes executables and runtime environments, such as a

web server, or a Java virtual machine (JVM). There is currently

work in progress to more precisely define different categories

for system software, e.g. in Database Systems, Compilers, or

the before-mentioned web server and runtime environments

for code in general (JVM, Perl interpreter, etc.). Workflow

engines will likely form a dedicated category at the same level,

pending final dependency analysis to Database Systems and

interpreters.

In the Wf4Ever model, the wf4ever:WebServiceProcess,

157

(a) (b)

(c) (d)

Fig. 5. Research Object Ontologies5: (a) Core model, (c) Workflow description model, (b) Workflow provenance model, (d) Workflow4Ever specific model

defined as a wfdesc:Process description, the enactment of

which gives rise to a web service call”, is similar to the

notion of Service in the Context Model. However, there is

no direct equivalence, only a rough equivalence to a Service
that is usedBy a Process. In addition, an Interface object can

be used to narrow the type of service to a specific interface,

which allows to describe a WebService call.

wf4ever:Dataset, wf4ever:Document, wf4ever:File, and

wf4ever:Image are all specific sub-classes of core:Artifact. If

core:Artifact is further refined by a premis:Format, however,

an equivalence to the wf4ever types can be inferred.

Regarding the Core RO ontology, the similarities between

the Context Model and ROs are less obvious. Several con-

cepts deal with aggregations and annotations thereof, such as

ro:AggregatedAnnotation, ro:Folder, ro:FolderEntry and the

ro:ResearchObject itself. The closest relative to this in the

Context Model is enabled by the aggregation relationship, a

structural relationship that “indicates that a concept groups

a number of other concepts“. Also the composition relation-
ship, which ”indicates that an object is composed of one or

more other objects“, might be applicable in some cases. A

ro:Resource is a very broad concept in ROs, and has no direct

equivalence in the Context Model; it is thus mapped as a super-

class of e.g. core:Artifact.
An overview of identified mappings is given in Table I. In

summary, it can be noted that many aspects of the Context

Model and Research Objects are similar, and have been

integrated in the model to tackle similar requirements. An

important difference is that the Research Objects put more

emphasise on different types of artifacts and how they are

aggregated to form new units of information. On the other

hand, the Context Model, coming from the domain of digital

preservation, has a stronger focus on technical aspects, such as

precise information on the software setup and dependencies,

data formats interlinked with format registries, and aspects

such as licenses and other legal issues. Due to the mod-

ularity of both models, each can integrate certain parts of

the other to augment its expressiveness. The Context Model

has more expressive power especially in aspects of hardware

and software technology, file formats, and legal requirements

and constraints. It is thus more suitable especially for digital

preservation aspects, when the aim is to preserve the com-

puting context the research process is executed in, to prepare

for a later re-enactment. With the mapping provided above,

Context Models and Research Objects can be augmented by

each other, thus providing one modelling approach to focus

both on technical aspects as well as the specific roles of

information objects in a research process.

V. USE CASES

To show the applicability of the Context Model, we are de-

scribing two use case applications. The first use case addressed

is a process of model building and analysis in the domain of

sensor networks; specifically, the use case is dealing with data

from large civil engineering structures such as dams. statistical,

physical and mathematical models are built to predict and

explain the behaviour of these structures.

The “Business” section of Figure 6 details a multiple linear

regression sub-process used in dam safety monitoring. The

sub-process is part of larger process, but has been isolated for

demonstration purposes. Business Objects are utilised to depict

both parameters to the specific steps, as well as data exchanged

between them. Overall, it is composed of the following five

steps:

1) Extract data: based on a set of extraction parameters, this

process generates the sensor data that will be used in the

multiple linear regressions (MLR) model

2) Generate regression: Based on a set of regression parame-

ters (e.g. equation to estimate the hydrostatic effect), this

process generates the regression controls that configure

the parameters for the MLR model

158

TABLE I
EQUIVALENCE MAPPING BETWEEN CONTEXT MODEL (CM) AND RESEARCH OBJECTS (RO)

Concept in CM Concept in RO Mapping Type
core:Process wfdesc:Process Equivalence
core:Aggregation of Processes wfdesc:WorkflowTemplate Equivalence
core:Business Object wfdesc:Input, wfdesc:Output Equivalence (inferred)
core:Business Object wfdesc:Parameter Super-class
premis:Format wfdesc:Artifact Equivalence
janus:workflow run wfprov:WorkflowRun Equivalence
janus:processor exec wfprov:ProcessRun Equivalence
core:Artifact wfprov:Artifact Equivalence
core:SystemSoftware wfprov:WorkflowEngine Super-class
core:Process & core:Service & core:Interface wf4ever:WebServiceProcess Equivalence (inferred)
core:Artifact (& premis:Format) wf4ever:Dataset / wf4ever:Document / wf4ever:File / wf4ever:Image Superclass / Equivalence (inferred)

3) Execute regression: This process executes the regression

parametrised in the regression control, using the data-set

generated in the extract data process

4) Generate aggregation: since a dam has a large number of

sensors and a regression is used for each physical quantity

associated with each sensor, we need to run hundreds or

thousands of regressions. Thus, the process aggregates all

MLR executions into one report. This step generates the

controls that define how this data is aggregated

5) Produce report: collects all the results and compiles them

into a single report

Fig. 6. Structural safety data analysis process

The “Technology” section of Figure 6 depicts the technolog-

ical infrastructure that supports the execution of this process,

using only concepts from the core ontology of the Context

Model. We can identify two different computing platforms, a

server running the “GestBarragens” application that collects

and stores the data, and a Desktop workstation that is used

for the data analysis. A web service provides the data, and the

“TimbusClient” is utilised to connect to it, and generate scripts

based on the downloaded data. The client needs the .NET

4.0 framework, which itself requires Windows; in our specific

example this is satisfied by using Windows XP. The scripts

for model building are executed in the “R” environment,

specifically version 3.0.1 is utilised. Finally, the report is

generated using Latex, provided by “TeX Live 2013”, and the

a specific style file.

The second use case is a scientific experiment in the

domains of machine learning and music information retrieval.

The experiment performs an automatic classification of music

into a set of predefined categories, and evaluates the per-

formance of this classification against a ground-truth (gold

standard). The experiment involves several steps:

1) Music data is acquired from online content providers.

2) For this music data, genre assignments (the ground-truth)

are obtained from websites such as Musicbrainz.org.

3) A web-service is employed to extract numerical features

describing certain characteristics of the audio files.

4) The numerical description and the genre assignments are

combined, and a machine learning model is trained and

employed to predict genre labels for unknown music.

5) Finally, the performance of this prediction is assessed.

Besides these steps, several scripts are used to convert data

formats and for other similar tasks. The use case is described

in more detail in [23]. The specific instance of the use

case was originally executed in a Linux environment issuing

commands via the system shell, with the researcher ensuring

the correct orchestration of steps in the correct order. For

various analysis purposes, this workflow has been converted

to an implementation using the Taverna workflow engine,

and has also been converted into a research object [24]. A

model of the process using the core concepts of the Context

Model is depicted in Figure 7. Regarding technology, we can

observe the Taverna workflow engine, which depends on a

Java Virtual machine 6.0, which in turn has been executed

on version 11.04 of Ubuntu Linux on a 64-bit workstation.

We further see license and patent information for the software

components. Figure 8 then depicts a section of the technology

layer, augmented by elements from the PREMIS, Software

License and Patents ontology. We can identify details on the

data formats of the artifacts, such as MP3 or ARFF.

159

Fig. 7. Music classification process – core concepts

Fig. 8. Music classification process – usage of extension ontologies

VI. CONCLUSION

In this paper, we presented the TIMBUS Context Model for

process preservation, the architectural principles and the core

and extension ontologies. We presented a detailed analysis

of the similarities and differences, and expressive power of

Research Objects and the Context Model, and demonstrated

how one can be transformed into the other. This is the basis for

a more tighter integration of the two approaches, to augment

and refine their respective concepts. We finally showed how the

Context Model can be applied to two use cases in the domain

of data analysis. Future work will focus on providing examples

how existing instances of each model can be refined and

augmented in their description and expressiveness by utilising

the mapping between the model and detailing the concepts in

the other ontologies. A range of tools is under development

to automate parts of the creation of a Context Model, e.g.

by detecting installed software and their licenses, hardware

specifications, or communication to external services.

REFERENCES

[1] J. Zhao, J. M. Gómez-Pérez, K. Belhajjame, G. Klyne, E. Garcı́a-Cuesta,
A. Garrido, K. M. Hettne, M. Roos, D. D. Roure, and C. A. Goble,
“Why workflows break - understanding and combating decay in taverna
workflows,” in 8th IEEE International Conference on E-Science (e-
Science 2012), Chicago, IL, USA, October 8-12, 2012. IEEE Computer
Society, 2012, pp. 1–9.

[2] C. Webb, Guidelines for the Preservation of Digital Heritage, S. In-
formation Society Division United Nations Educational and C. O.
(UNESCO), Eds. National Library of Australia, 2005.

[3] D. B. Marcum, “The preservation of digital information,” The Journal
of Academic Librarianship, vol. 22, no. 6, pp. 451 – 454, 1996.

[4] S. Granger, “Emulation as a digital preservation strategy,” D-Lib Mag-
azine, vol. Vol. 6 (10), 2000.

[5] S. Higgins, “The DCC curation lifecycle model,” The International
Journal of Digital Curation, vol. 3, pp. 134–140, 2008.

[6] H. Brocks, A. Kranstedt, G. Jaschke, and M. Hemmje, Smart Infor-
mation and Knowledge Management. Springer, 2010, ch. Modeling
Context for Digital Preservation, pp. 197–226.

[7] E. Conway, B. Matthews, D. Giaretta, S. Lambert, and M. Wilson,
“Managing risks in the preservation of research data with preservation
network,” International Journal of Digital Curation, vol. 7, 2012.

[8] K. Belhajjame, O. Corcho, D. Garijo, et. al, “Workflow-centric research
objects: First class citizens in scholarly discourse,” in Proceedings of
Workshop on the Semantic Publishing, (SePublica 2012) 9th Extended
Semantic Web Conference, May 28 2012.

[9] H. Van de Sompel and C. Lagoze, “Interoperability for the Discovery,
Use, and Re-Use of Units of Scholarly Communication,” CTWatch
Quarterly, vol. 3, no. 3, August 2007.

[10] P. Ciccarese, M. Ocana, L. Garcia Castro, S. Das, and T. Clark, “An
open annotation ontology for science on web 3.0,” Journal of Biomedical
Semantics, vol. 2, no. Suppl 2, p. S4, 2011.

[11] D. De Roure, K. Belhajjame, P. Missier, J. Manuel, R. Palma, J. E. Ruiz,
K. Hettne, M. Roos, G. Klyne, and C. Goble, “Towards the preservation
of scientific workflows,” in Procs. of the 8th International Conference
on Preservation of Digital Objects, Singapore, 2011.

[12] M. Lankhorst, Enterprise architecture at work: modelling, communica-
tion, and analysis. Springer, 2005.

[13] W3C, “OWL 2 Web Ontology Language Structural Specification and
Functional-Style Syntax (Second Edition),” Tech. Rep., December 2012.

[14] G. Guizzardi, Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology, 2005.

[15] M. Rosemann, P. Green, and M. Indulska, “A reference methodology for
conducting ontological analyses,” in Conceptual Modeling–ER 2004, ser.
Springer Lecture Notes in Computer Science, 2004, vol. 3288.

[16] T. O. Group, ArchiMate 2.0 Specification. Van Haren Publishing, 2012.
[17] R. Treinen and S. Zacchiroli, “Description of the CUDF Format,” Tech.

Rep., 2008, http://arxiv.org/abs/0811.3621.
[18] PREMIS Editorial Committee, “Premis data dictionary for preservation

metadata,” Tech. Rep., March 2008.
[19] D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole,

T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and K. De Bosschere,
“Towards an extensible context ontology for ambient intelligence,” in
Ambient intelligence. Springer, 2004, pp. 148–159.

[20] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,
A. Williams, T. Oinn, and C. Goble, “Taverna, reloaded,” in Proceed-
ings of the 22nd international conference on Scientific and Statistical
Database Management. Springer, June 2010.

[21] S. S. Sahoo and A. Sheth, “Provenir ontology: Towards a framework
for escience provenance management,” Wright State University, Tech.
Rep., 2009.

[22] G. Antunes, M. Bakhshandeh, R. Mayer, J. Borbinha, and A. Caetano,
“Using Ontologies for Enterprise Architecture Integration and Analysis,”
Complex Systems Informatics and Modeling Quarterly, no. 1, 2014.

[23] R. Mayer and A. Rauber, “Towards Time-resilient MIR Processes,” in
Proceedings of the 13th International Society for Music Information
Retrieval Conference, Porto, Portugal, October 8-12 2012, pp. 337–342.

[24] K. R. Page, R. Palma, P. Hołubowicz, G. Klyne, S. Soiland-Reyes,
D. Garijo, K. Belhajjame, and R. Mayer, “Research objects for audio
processing:capturing semantics for reproducibility,” in Proceedings 53rd
AES Int. Conference on Semantic Audio, London, January 2014.

160

