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ABSTRACT

We present a cartesian ensemble classification system that
is based on the principle of late fusion and feature sub-
spaces. These feature subspaces describe different aspects
of the same data set. The framework is built on the Weka
machine learning toolkit and able to combine arbitrary fea-
ture sets and learning schemes. In our scenario, we use it
for the ensemble classification of multiple feature sets from
the audio and symbolic domains. We present an extensive
set of experiments in the context of music genre classifi-
cation, based on numerous Music IR benchmark datasets,
and evaluate a set of combination/voting rules. The results
show that the approach is superior to the best choice of a
single algorithm on a single feature set. Moreover, it also
releases the user from making this choice explicitly.

1. INTRODUCTION AND RELATED WORK

Classification of music into different categories is an im-

portant task for retrieval and organization of music libraries.

Previous studies reported about a glass ceiling reached us-
ing timbral audio features for music classification [1]. Our
approach is based on the assumption that a diversity of mu-
sic descriptors and a diversity of machine learning algo-
rithms are able to make further improvements. We created
an ensemble learning system with these two dimensions
(feature sets, learning schemes) as input and train models
for each combination of those two input dimensions. We
call our approach a cartesian ensemble system.

Our original motivation has been to combine multiple
approaches from the music information retrieval (MIR) do-
main in order to improve (the reliability of) genre classi-
fication results based on the assumption that the various
music descriptors are complementary [12]. In our previ-
ous work we combined spectrum-based audio features that
cover timbral and rhythmic aspects of the sound with sym-
bolic descriptors, based on note and chord sequence statis-
tics. A polyphonic transcription system has been presented
as the “missing link” that transcribes audio data into a sym-
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bolic notation. In this approach the combination of mul-
tiple features from the audio and symbolic domains was
performed by a concatenation of feature vectors, jointly
used as input to a classification algorithm (early fusion).
In a previous comparison of employing MIR algorithms on
Western vs. ethnic music [10] we included a time decom-
position approach, which was already a first ensemble-like
approach, applying one learning scheme on multiple input
features from different segments of a piece of music and
using four different combination (voting) rules to make the
final prediction.

The Autonomous Classification Engine ACE [13], by
contrast, is a general framework for model selection. In
machine learning, model selection is the task of selecting
one classification model from a pool of models. ACE trains
arange of classifiers, with different parameters, and feature
selection methods, and then selects the most fitting ones for
the current task at hand. ACE is built on top of Weka [20]
and thus provides the ensemble techniques implemented
in the toolkit, most prominently boosting and bagging, but
is not capable of handling feature subspaces, or weighted
methods as the ones described in Section 3.

The combination of different segments extracted from
the same song is studied in [2]. The approach is based on
grouping and aggregating non-overlapping blocks of con-
secutive frames into segments. The segments are then clas-
sified individually and the results are aggregated for a song
by majority voting. Three different ensemble methods and
their applicability to music are investigated in [7]. The first
method is based on a one against all scheme, i.e. for each
class, a classifier is trained on the class and its complement.
A second method is based on building a classifier for each
pairwise combination of classes. The third method investi-
gates in training different classifiers on different subsets of
the feature space. In all methods, the final class label is de-
termined by the probabilities of the individual classifiers.

The approach presented in this paper is a cartesian en-
semble classification system, which trains a matrix of mod-
els built from the combination of a range of individual fea-
ture sets and a number of classification algorithms. Our
system builds on the Weka machine learning toolkit [20] in
an open and flexible way. In contrast to ACE no preselec-
tion of classification algorithms has been made — any clas-
sification algorithm available can be used with arbitrary pa-
rameters in the ensemble. Further, an arbitrary number of
feature files can be used. We provide a number of com-
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Figure 1. Framework of the cartesian ensemble system

bination and voting rules, which are employed to obtain
the final prediction of the classifier ensemble. Our frame-
work is not limited to MIR applications. With regard to our
original motivation and our research background, however,
we focus on the scenario of music classification into genre
categories, in order to show the applicability of the system
and the progress in our domain.

The overall scheme of our proposed ensemble classifi-
cation system is shown in Figure 1. It includes our sce-
nario of a music classification system that processes dif-
ferent descriptors from the audio and symbolic domains
(c.f. Section 2). Audio feature extraction algorithms are
applied directly to the audio signal data. There is an inter-
mediate step for the symbolic descriptors: A polyphonic
transcription system converts the audio information into a
symbolic notation (i.e. MIDI files). A chord inference al-
gorithm is applied to provide information about the poly-
phonic structure of the note stream. Finally, a symbolic
feature extractor is applied on the resulting representation.
The feature extraction stage provides multiple viewpoints
on music objects, called feature subspaces. There are sev-
eral ways of combining them for building a music classi-
fication system. Early fusion concatenates all feature sub-
spaces to produce so called superinstances, including all
features at hand. Then a suitable classification scheme is
used to learn categories from such data. This approach was
used in our previous work [12]. Late fusion combines clas-
sifier outcomes rather than features. This is the approach
employed in our proposed framework.

Section 3 describes the general architecture of our en-
semble framework. In Section 4, we evaluate our approach
on numerous well-known reference music datasets and show
the applicability of the approach. It includes also prelimi-
nary research on the use of audio segmentation for generat-
ing extended feature subspaces. Finally, Section 5 provides
conclusions and an outlook on future work.

2. MUSIC DESCRIPTION

We use two sources of input to our ensemble music classifi-
cation approach: audio features extracted from audio files
and symbolic music descriptors derived from MIDI files
that are generated from audio files through a transcription
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system. We employ features that proved well in our previ-
ous works [5, 10—12], also in order to be able to compare
progress and results of the new ensemble approach with
previous findings. We emphasize, however, that arbitrary
feature sets can be used with our classifier ensemble ap-
proach presented in Section 3.

2.1 Audio Features

All the following descriptors are extracted from a spectral
representation of an audio signal, partitioned into segments
of 6 sec. Features are extracted segment-wise, and then ag-
gregated for a piece of music computing the median (RP,
RH) or mean (SSD, MVD) from features of multiple seg-
ments. We describe the feature extraction algorithms very
briefly, please refer to the references for further details.

Rhythm Pattern (RP) The feature extraction process for
a Rhythm Pattern is composed of two stages. First, the
specific loudness sensation on 24 critical frequency bands
is computed through a Short Time FFT, grouping the re-
sulting frequency bands to the Bark scale, and successive
transformation into the Decibel, Phon and Sone scales. This
results in a psycho-acoustically modified Sonogram repre-
sentation that reflects human loudness sensation. In the
second step, a discrete Fourier transform is applied to this
Sonogram, resulting in a spectrum of loudness amplitude
modulation per modulation frequency for each critical band.
After additional weighting and smoothing steps, a Rhythm
Pattern exhibits magnitude of modulation for 60 modula-
tion frequencies on the 24 critical bands [11].

Rhythm Histogram (RH) A Rhythm Histogram (RH)
aggregates the modulation amplitude values of the critical
bands computed in a Rhythm Pattern and is a descriptor for
general rhythmic characteristics in a piece of audio [11].

Statistical Spectrum Descriptor (SSD) The first part of
the algorithm, the computation of specific loudness sen-
sation, is equal to the Rhythm Pattern algorithm. Subse-
quently at set of statistical values ' are calculated for each
individual critical band. SSDs describe fluctuations on the
critical bands and capture both timbral and rhythmic infor-
mation very well [11].

Modulation Frequency Variance Descriptor (MVD) This
descriptor measures variations in the critical bands for a
specific modulation frequency of the Rhythm Pattern ma-
trix, representing the amplitudes of 60 modulation frequen-
cies on 24 critical bands. The MVD vector is computed by
taking statistics ! for each modulation frequency over the
24 bands [10, 12].

Temporal Features (TRH, TSSD) Feature sets are fre-
quently computed on a per segment basis and do not incor-
porate time series aspects. We introduced therefore TRH
and TSSD features that include a temporal dimension de-
scribing variations over time.

For TRH, statistical measures ' are computed over the
individual Rhythm Histograms extracted from the individ-
ual 6-second segments in a piece of audio. Thus, change
and variation of rhythmic aspects in time are captured.

! mean, median, variance, skewness, kurtosis, min and max
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TSSD analogously capture timbral variations and changes
over time in the spectrum on the critical frequency bands.
Hence, a change of rhythmics, instruments, voices, etc.
over time is reflected by this feature set [10].

2.2 Transcription from Audio to MIDI

A multiple fundamental frequency (f) estimation method
is used to convert the audio files to MIDI files. This is a
joint estimation approach, which experimentally obtained
a high accuracy with a low computational cost. It extends
a previous work [16] by adding information about neigh-
boring frames to get a smooth temporal estimation.It does
not separate instruments, therefore producing single track
MIDI files without any timbral information.

2.3 Symbolic Features

A set of statistical descriptors is extracted directly from
transcribed notes. This set is based on the features de-
scribed in [5], well suited for monophonic classical/jazz
classification, and on features described in [17], used for
melody track selection in MIDI files. Overall statistics,
such as the average number of notes per beat, the occupa-
tion rate (non-silence periods with respect to song length)
and polyphony rate (proportion of sounding note periods
with more than one note active simultaneously) are com-
puted. Further, note pitches, pitch intervals, note durations,

silence durations, Inter Onset Intervals (IOI) and non-diatonic

notes are analyzed; each property is described by min and
max values, range, average, standard deviation, and a nor-
mality distribution estimator. Other features include the
number of distinct pitch intervals, pitch interval mode, and
an estimation of the number of syncopations in the song.

Most of these features are somewhat *melody-oriented’
(e.g., interval-based features). In order to capture rele-
vant information about the polyphonic structure of the tran-
scription, a chord sequence is extracted from it, using the
algorithm from Pardo and Birmingham [14], and subse-
quently analyzed. The different kinds of chord extracted
are: major triad, major 7th, dominant 7th, dominant sus-
pended 7th, dominant 7th (sharp 5th), dominant 7th (flat
5th), minor 7th, half diminished and fully diminished chords.
The relative frequencies of these chords in a chord sequence
are computed as symbolic features. A total of 61 statisti-
cal descriptors are therefore provided to the system as a
symbolic feature subspace.

3. CARTESIAN ENSEMBLE SYSTEM

Our approach is name a cartesian ensemble because the
set of models used as base classifiers is the cartesian prod-
uct of D feature subspaces by C classification schemes. A
model is build by training classification scheme c; on fea-
ture subspace d;. This produces a total of D x C' base mod-
els as the ensemble. The aim of this approach is to obtain
a sufficiently diverse ensemble of models that will guaran-
tee, up to a certain degree, an improvement of the ensemble
accuracy over the best single model trained. Moreover, the
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ensemble abstracts from the selection of a particular classi-
fier and feature set to use for a particular problem. Select-
ing sufficiently different schemes (different classification
paradigms, methods,...) the ensemble provide results that
are at least comparable to the best single scheme.

Model diversity is a key design factor for building ef-
fective classifier ensembles [9]. This has been empirically
shown to improve the accuracy of an ensemble over its
base models when they are numerous enough. For se-
lecting the most diverse models within the ensemble the
Pareto-optimal selection strategy is applied in order to dis-
card models not diverse or not accurate enough.

When a new music instance is presented to the trained
ensemble, predictions are made by selected models, which
are then combined to produce a single category prediction
outcome. A number of decision combination (or label fu-
sion) rules, can be used for this final prediction.

The cartesian ensemble system is built on the Weka
toolkit [20]. The ensemble is a Weka classifier itself, so
it can be plugged into any system using this toolkit.

3.1 Pareto-optimal Classifier Selection

This strategy for selecting the best set of models is based
on finding the Pareto-optimal set of models by rating them
in pairs, according to two measures [9]. The first one is the
inter-rater agreement diversity measure x, defined on the
coincidence matrix M of the two models. The entry m,. ¢
is the proportion of the dataset, which model h; labels as
L, and model h; labels as Ls. The agreement between
both classifiers is given by

kakk—ABC
iy = 1
Fij 1— ABC M

where ABC is agreement-by-chance

ABC=>"(>"m, > mayr) @)

The second one is the pair average error, computed by

Q; +
2
where «; and o; are the estimated accuracy of the two

models, computed as described in Section 3.3. The Pareto-

optimal set contains all non-dominated pairs. A pair of
classifiers is non-dominated iff there is no other pair that is
better than it on both criteria.

3)

eij:1—

3.2 Combination Rules

The combination rules implemented in the system are both
weighted and unweighted majority voting rules. A sum-
mary of weighted and unweighted combination rules is
presented in Table 1, where P(Lyg|x;) is the posterior prob-
ability of instance x to belong to category Ly, given by
model h;. x; is what h; knows about x, i. e., feature val-
ues that correspond to the feature subspace h; was trained
on. Unweighted combination rules are described in [8§],
and used through their implementation in Weka.
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Figure 2. Model weight computation: RSWV (left),
BWWYV (center), QBWWYV (right), giving the model au-
thority aj as a function of the estimated number of errors
e made by model hj on a validation set. IV is the number
of instances in the set, M is the number of class labels.

All weighted rules multiply model decisions by weights
and select the label L, that gets the maximum score. Model
weights are based on the estimated accuracy «; of the trained
models. The authority a; of each model h; is established
as a function of a;, normalized, and used as its weight w;.
Weighted methods discussed in [6] have been used in this
work. SVW computes weights as described. Weight func-
tions for rules RSWV, BWWYV and QBWWYV are shown
in Figure 2. There, ep is the lowest estimated number of
errors made by any model in the ensemble on a given vali-
dation dataset, and ey is the highest estimated number of
errors made by any of those classifiers. WMV is a theoret-
ically optimal weighted vote rule described in [9], where
model weights are set proportionally to log(c; /(1 — «;)).

Table 1. Summary of combination rules.
Rule mnemonic [ Description
Unweighted rules

MAJ Majority vote rule
AVG Average of P(L|x;)
MAX Maximum of P(Ly|x;)
MED Median of P(Lg|x;)

Weighted rules
SWV Simple Weighted Vote
RSWV Rescaled Simple Weighted Vote
BWWV Best-Worst Weighted Vote
QBWWYV Quadratic Best-Worst Weighted Vote
WMV Weighted Majority Vote

3.3 Inner/Outer Cross Validation

The classification results presented below are estimated by
cross-validating the ensemble. The accuracy of individual
ensemble models («;), used to compute model weights for
combining their outputs, is also estimated through cross-
validation. In order to avoid using test data for the ensem-
ble for single model accuracy estimation, an inner cross-
validation, relying only on ensemble training data, is per-
formed. The number of folds for the ensemble (outer) and
the single models (inner) cross-validation are parameters.

Inner train

Outer
train

Inner test

Outer test

Figure 3. Inner and outer cross-validation scheme.

282

4. EVALUATION

We performed an extensive evaluation of our ensemble ap-
proach on a range of well-known MIR benchmark datasets
in order to show both the feasibility and generality of our
approach. Classification results are presented as accuracy
values with standard deviations.

4.1 Datasets

A dataset overview is given in Table 2. Either full songs or
30 second excerpts were available. 9GDB is originally a
MIDI collection, but was synthesized to wav for our exper-
iments and re-transcribed to MIDI to obtain symbolic fea-
tures. For all other collections audio files were transcribed
to MIDI. The GTZAN collection was assembled and used
in experiments by G. Tzanetakis [19]. The ISMIRgenre
and ISMIRryhthm collections were compiled for the genre
and rhythm classification tasks, respectively, of the ISMIR
2004 Audio Description contest [3] and used frequently
thereafter by Music IR researchers. ISMIRgenre consists
of 6 popular music genres and ISMIRryhthm comprises
8 Latin and Ballroom dances. The Latin Music Database
comprises 10 Latin music genres [18]. The African col-
lection is a sub-set of 1024 instances of the audio archive
of the Royal Museum of Central-Africain Belgium, digi-
tized in the course of the DEKKMMA project [4]. Various
meta-data categories are available for this set, including 27
different functions, 11 different instrument families, 11 dif-
ferent countries and 40 ethnic groups [10]. The number of
files varies according to number of meta-data available in
each category.

Table 2. Datasets used in experiments

dataset files | genres | file length | ref.
9GDB 856 9 | full [15]
GTZAN 1000 10 | 30sec [19]
ISMIRgenre 1458 6 | full [3]
ISMIRrhythm 698 8 | 30sec [3]
LatinMusic 3225 10 | full [18]
Africa 1024 var. | full [4]

4.2 Classification Schemes and System Parameters

For our experiments, we set the system to perform 10-fold
outer cross-validation and 3-fold inner cross-validation. As
for the classification schemes, a selection of classifiers from
the Weka toolkit has been made, aiming at choosing schemes
from different machine learning paradigms. We chose Naive
Bayes, Nearest Neighbor (IB1 2 with Euclidean distance,
3-NN with Manhattan distance (IBk), the RIPPER rule learner
(JRip), the C4.5 (J48) decision tree learner, the REPTree,
a fast decision tree learner, Random Forest, a forest of ran-
dom trees, and three Support Vector Machines, the first
with a linear kernel, the second with a quadratic one and
the third with the Puk kernel, a Pearson VII function-based
universal kernel with parameter values C = 4, w = 3.2,
o = 13. Please consult [20] for further reference on these
methods.

2 Weka names for these classifiers in parenthesis.
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4.3 Ensemble Classification Results

Table 3. Best results on individual classification of feature
sets and classifiers on different datasets

Dataset Classifier Featureset | Accuracy
9GDB SVM-Puk | TSSD 78.15
GTZAN SVM-lin SSD 72.60
ISMIRgenre SVM-quad | TSSD 81.28
ISMIRrhythm SVM-lin RP 87.97
LatinMusic SVM-Puk | TSSD 89.46
Africa/country SMO-quad | SSD 86.29
Africa/ethnic group | SVM-lin TSSD 81.10
Africa/function 1-NN SSD 51.06
Africa/instrument SVM-Puk | TSSD 69.90

To have a baseline for the cartesian ensemble, we trained
all the classification schemes described in Section 4.2 on
all the feature sets described in Section 2, i.e. one model
for each cell in the cartesian set D x C. Table 3 gives an
extract of the accuracies achieved with these single models
— due to space limitation, only the best combination of an
algorithm and a feature set are given. It can be observed
that there is no clear trend, neither for a classifier, nor a
feature set. While SVMs clearly dominate the results, the
choice of the kernel is not obvious, and results can vary by
several percent points. Also the feature sets do not show a
clear trend — in approximately half of the cases, TSSDs are
the best set to use, while also SSD and RP features some-
times yield clearly better results. These results nourish the
hypothesis that ensemble classifiers may provide means to
release the user from the difficult choice of the proper fea-
ture set and classifier combination.

The accuracy results for the classifier ensembles are shown

in Table 4, with the best single classifier as our assumed
baseline to improve on. Note that achieving the baseline
result would require to know the best combination of fea-
ture set and classifier in advance. On each of the datasets,
we can observe higher classification accuracies with the
ensembles than with the baseline. The improvements are
three percent points on average. The highest gains are on
the GTZAN dataset, with five percent points, while the im-
provements on the ISMIRrhythm dataset are of 1.14 per-
cent point. However, the baseline on this dataset is already
very high, at approx. 88%.

Out of the nine classification tasks, the QBWWYV rule
was five times the best, followed by WMV which is three
times the best performing rule. AVG and BWWYV are both
once the highest ranked combination rule. In the tasks
where QBWWYV is not the rule with the highest accuracy,
the relative difference to the top rule is minimal — the largest
margin is 0.7 percent points, or 0.86% relative difference.

4.4 Segmentation Ensemble Approach

A logical next step for ensemble classification is the use of
individual features from different segments of an audio file
as an input to classification. We conducted an experiment
segmenting each audio file into 3 equal-sized segments,
and extracting individual features from each of those seg-
ments. Note that for audio collections with 30 second ex-
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cerpts we did not do this for TSSD and TRH features, as
there would be no temporal variation within a segment,
given the feature algorithm’s segment-window-length of 6
seconds (c.f. Sec. 2.1). In those cases we used TSSD and
TRH features from the full song, as in the previous exper-
iments. Also the symbolic features were used from full
songs. Our hypothesis was that with more (detailed) infor-
mation about the audio content, results would be improved
in the ensemble setting. However, results of this segmen-
tation approach were in general inferior compared to us-
ing features aggregated over entire songs, as seen from the
bottom two lines of Table 4. As the performance decrease
was independent of the combination rule applied, we in-
cluded only the results of the two best combination rules
(QBWWYV and WMYV) for space reasons.

Even though the results of this first experiment did not
improve the ensemble approach, we will further pursue this
strategy and refine it in multiple ways: First, we will extend
the segmentation also to symbolic features. Then we will
conduct research on different classifier model combination
strategies. Instead of a combination of all classifier/feature
set models into one ensemble, a two-tier approach is envis-
aged, where a decision is made by an ensemble of features
from different segments first and then the decisions of mul-
tiple different feature sets and classifiers are combined on
a second level. Further future work will be the experimen-
tation with different degrees of segmentation of an audio
file. Moreover, instead of using equally sized segments, a
structural audio segmentation algorithm for segmentation
into chorus, verse etc. could be used for semantic segmen-
tation, aiming at an enhanced diversity of the features and
the knowledge of the content.

5. CONCLUSIONS

In this paper, we presented a framework for automatic clas-
sification of music data. Our system builds ensembles of
classifiers in two ways — first, several different algorithms
(and parameter variations) are used, and secondly, a set of
different features, describing different aspects of the same
dataset. We have demonstrated the power of this approach

on the classification task for six different datasets and achieved

improvements on the classification accuracies in each sin-
gle task. When comparing the results of the ensemble to
the single feature sets, we could observe that there is no
clear trend on which classification algorithm, and which
feature set to use for a specific dataset. The advantage
of the ensemble approach is that the user is released from
this task. The ensemble approach delivers superior results
through adding a reasonable amount of feature sets and
classifiers. Even though we did not discover a combina-
tion rule that always outperforms all the others, relying on
the QBWWY rule seems feasible.

Future work will include an even wider set of exper-
iments on more datasets, also involving other modalities
such as song lyrics. Another area is the above mentioned
ensemble of different segments from the same song.
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Table 4. Results of the ensemble classification on different datasets (Standard deviations are given in parentheses). The
lower section of the table shows the results of the segmentation approach.

ISMIR ISMIR Latin Africa Africa Africa Africa
Rule 9GDB GTZAN genre rhythm Music country ethnic group function instrument
Single best | 78.15@225) | 72.603.92) | 81.28@3.13) | 87.97 428) | 89.461.62) | 86.29 230) | 81.10 241 | 51.066.63) | 69.90 4.69)
MAJ 79.56 @.78) | 72.60331) | 77.78 2.15) | 88.25.08) | 89.33 (155 | 85.31 404y | 71.863.41) 37.37 736) | 59.63 (579
MAX 60.05 6.67) | 44.006.60) | 60.97 671y | 54.87 895 | 50.64 2.06) | 77.67 ©9.16) 73.16 (6.40) 40.38 (7.10) | 61.32 (5.88)
MED 7430132 | 5590384 | 72.02@274) | 77.79 @27 | 73.64237) | 83.84377 | 70.71 G.62) 39.49 522) | 60.34 @.67)
AVG 81.66 3.96) | 68.40 237 | 79.70(3.35) | 86.82429) | 86.85(1.96) | 87.662.28) | 78.21 (3.50) 53.73 535 | 70.60 3.82)
SwWVv 81.31 332 | 77.103.98) | 78.33 248) | 88.97 5390 | 92.001.34) | 86.97 298) | 75.47 362y | 46.83 444) | 67.09 3.99)
RSWV 80.96 326) | 77.40@22) | 79.22238) | 88.97 494y | 92.251.16) | 87.17 27171 75.47 3.62) 48.39 5.63) | 68.35 4.22)
BWWV 81.54 G171 | 77.40@22) | 82.031.83) | 89.11 1462 | 92.250.16) | 88.34222) | 79.37G9s) | 52.61 76 | 72.71 G4
QBWWV 80.96 2.94) | 77.50 430) | 84.02(1.50) | 88.97 3.86) | 92.710.99) | 89.03 (1.63) 82.68 3.18) | 54.84 629) | 72.86 (352
WMV 80.84 290) | 76.10@20) | 84.022.02) | 87.97 392) | 92.591.29) | 88.931.76) | 82.97 3300 | 51.28 693 | 73.00 4.25)
QBWWYV 81.31 278 | 76.803.33) | 76.953.28) | 88.25@39) | 91.661.17) | 88.44 275 | 78.354.08) 50.95 6.62) | 71.03 3.99)
WMV 80.49 240) | 74.50 @453 | 81.48 301 | 87.683.74) | 91.56(129) | 88.05@2.12) | 80.23 335 | 44.83@54) | 72.29 (4.45)
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