
1

A Modular Ontology for
the Enterprise Architecture Domain

Marzieh Bakhshandeh†,Gonçalo Antunes †, Rudolf Mayer‡, José Borbinha∗†, and Artur Caetano∗†

{marzieh.bakhshandeh, goncalo.antunes, jose.borbinha, artur.caetano}@ist.utl.pt, rmayer@sba-research.at
∗Instituto Superior Técnico, Technical University of Lisbon, Portugal

†INESC-ID - Information Systems Group, Lisbon, Portugal
‡Secure Business Austria, Vienna, Austria

Abstract—Enterprise architecture supports the analysis, design
and engineering of business-oriented systems through multiple
views. Each view expresses the elements and relationships of a
system from the perspective of specific system concerns relevant
to one or more of its stakeholders. As a result, each view
needs to expressed in the architecture description language that
best suits its concerns. Therefore, an enterprise architecture
may be described using a set of different languages. However,
current enterprise architecture modelling languages display two
issues in this setting. First, they lack mechanisms to integrate
multiple architecture description languages. This issue hinders
the specification of views using different languages. Second,
enterprise architecture models lack quantitative analysis support.
This paper describes an ontology-based approach in order to
have a modular ontology for the enterprise architecture do-
main, to specify and integrate multiple architecture modelling
languages and to analyse the resulting integrated models. The
approach relies on transformations between an upper-domain
ontology based on the ArchiMate language and on a set of
domain-specific ontologies to deal with the specific architecture
modelling languages. The resulting models are quantifiable in
the sense they provide the means to assess the consistency of the
enterprise architecture models and to analyse their structure. The
applicability of the approach is shown through a case study and
the correctness of the ontology is shown by a set of competency
questions.

Keywords—enterprise architecture, ontology, integration, modu-
lar ontology, ArchiMate, OWL.

I. INTRODUCTION

Enterprise Architecture is a set of descriptive representations
relevant for describing an enterprise so that it can realize man-
agement requirements and be maintained over the period of its
useful life [1]. According to the ISO/IEC/IEEE 42010 standard
[2], the usage of multiple views is fundamental to describe an
architecture of a system. A system has multiple stakeholders,
each with specific interests on the system. An architecture
description should aggregate multiple views, materialized in
a set of models, that are formulated according to viewpoints
expressing the concerns of the stakeholders of the system-
of-interest [15]. Stakeholders play a fundamental role in the
development of enterprise architecture, as they have interest
in reflecting their concerns on the architecture of the system.
As such, enterprise architects need to conceive views from the
viewpoint of the stakeholders and to address their concerns

and requirements. However, the existence of semantic gaps
between architects and stakeholders may produce conceptual
misalignments which can negatively affect the architecture [3].
Technical level evaluations are sometimes performed, but are
still not enough for addressing the issue. Hence, an evaluation
method should be in place so that the concerns of the different
stakeholders and the requirements that they expect to be
fulfilled are all answered.

Enterprise architecture covers a broad range of aspects, from
the infrastructure layer, through software applications running
on top of the infrastructure, to business processes supported
by these applications. Within each of these layers and also
the relations between the layers analysis techniques can be
applied, which require detailed models with semantically rich
definitions as input [4].

This paper applies ontologies and model transformation
for the specification and integration of enterprise architecture
models in order to have a Modular Ontology for the Enterprise
Architecture Domain. Modular Ontology refers to a method-
ological principle in ontology engineering. Modularization [5]
in itself is a generic concept that is intuitively understood as
referring to a situation where simultaneously a thing (e.g. an
ontology) exists as a whole but can also be seen as a set of
parts (the modules). Hence, in the perspective of ontologies
a module is a sub-ontology that can be connected to other
sub-ontologies by integration and would be able to interact
among each other. This ontological modularity strategy will
help to reduce the complexity of designing and to facilitate
ontology reasoning, development, and integration. This paper
describes an ontological modularity approach to specify and
integrate multiple architecture modelling languages and to
analyse the resulting integrated models. The concepts are
described on an upper-domain ontology (UDO) containing
the fundamental concepts of an enterprise architecture, which
can be assumed as a module. Where, each set of specific
concerns are represented using domain-specific ontologies that
would also assume to be modules, that are linked to the other
module by integration. Logical reasoning is applied to check
the inconsistencies on the models and for inferring different
dependencies between different elements of enterprise models,
which can be used for analysing the impact of changes on
architectural elements. Furthermore, this approach contributes
in filling in the semantic gap between stakeholders and IT
architect by integrating domain-specific ontologies.



2

The outline of this paper is as follows. Section II describes
the related work. Section III presents the ontological modu-
larity approach and the architecture of the proposal for model
architecture analysis. In section IV the proposal architecture
is applied to enterprise architecture. In section V, a validation
through a case study has been done to prove that the proposal is
applicable and satisfiable in enterprise architecture modelling
languages. Finally VI presents our conclusions and discusses
future work.

II. RELATED WORK

A number of different approaches for evaluating EA models
have been described in the past few years. In [6], and [7], the
authors have implemented a tool for analysing EA models,
which guides the creation of enterprise information system
scenarios in the form of enterprise architecture models and
generates quantitative assessments of the scenarios as they
evolve. In [8], the authors propose an uniform approach for
capturing quality attribute requirements and analysing system
and software architecture. However, such approach did not
considered the business architecture[9].

In [10], the author presents an approach for quantitative
analysis of layered, service-based enterprise architecture mod-
els, which can be used as an analysis framework where
existing methods for detailed performance analysis,based on,
e.g., querying models, Petri nets or simulation, can be plugged
in. In [11], a semantic model is defined by the author, which
is formal interpretation of the symbolic model which provides
a formal approach to the design of architectural description
languages and a general mathematical foundation for the use
of formal methods in enterprise architectures analysis.

Some works have dealt with the adoption of an ontology-
based approach for Enterprise model analysis. In [12], the
author presents a core ontology for Business Process Analysis
(BPA). The ontology builds upon a Time Ontology and is
structured around the process, resource, and object perspectives
as typically adopted when analysing business processes. The
ontology has been extended and validated by means of an
Events Ontology.

Ontologies have been used for the analysis of modelling
languages. In [13], the author presents a framework which
verifies how clear and expressive a modelling language is, by
focusing on its notation. The proposed framework is based
on the construction of an ontology to describe the conceptual
domain of discourse. This ontology is then used as a type of
‘mirror’ for the modeling language, i.e. for verifying how well
this modelling language is able to represent the concepts and
relations represented in the ontology [14]. This foundational
ontology has been used with success in a set of Enterprise
Modelling approaches such as ARIS framework [15], and in
[16] which provides a semantic foundation for role-related
concepts in enterprise modelling.

III. ARCHITECTURE

An ontology describes a domain model by associating
meaning to its terms and relations. According to Gruber[17]
a formal ontology is an ontology with structure which tries

to provide a domain and application independent view on
reality and remain consistent with increasing content and
also context independence. In particular, formalized enterprise
models can support new methods and tools for various fields
such as business model design, business strategy, information
systems alignment and enterprise architecture. Therefore, dif-
ferent concerns of different stakeholders which have different
vocabularies can be integrated by the use of two kind of
ontologies: a domain ontology that will describe the sources
of a problem domain, and an Enterprise ontology, that will
present the fundamental concepts of enterprise architecture.
The integrated ontology will be able to answer more com-
prehensive set of questions about organizations, and will also
able us to analyse and evaluate the models more precisely
by reasoning the stakeholders questions and concerns in the
integrated ontology.

The ontological modularity architecture is grounded on the
following concepts:
• Upper domain ontology (UDO).
• Domain-specific ontology (DSO).
• Ontology integration.

these concepts will be explained in detail, in the next subsec-
tions.

A. Upper-domain Ontology
This kind of ontology tries to describe the concepts generally

and in a high level among the domains. It can also facilitate
the semantic interoperability between a set of domain specific
ontologies, which are built under the upper ontology. The
UDO has the capability to provide the fundamental concepts
upon the domain-specific ontologies, which will provide ex-
tensibility for adding more domain-specific ontologies. These
concepts span the domain of enterprise architecture. As such,
the UDO represents a minimum set of concepts pertaining
to enterprise architecture,but yet comprehensive enough for
describing the majority of the cases. The UDO is designated
domain-independent since it does not address specific domain-
dependent concerns.

B. Domain Specific Ontologies
These ontologies, specialised in detail a set of concepts

introduced in the upper ontology. Domain ontologies are able
to capture the knowledge of specific domains by defining
the reusable vocabularies in the domain concepts and the
relationships among these concepts [18]. So a domain-specific
ontology (DSO) represents a domain-specific language that
addresses a particular set of concerns. For example, a Soft-
ware Licensing DSO would describe the concepts required
to model the universe of licenses, and may include concepts
that cover licensing models, licensing agreement, copyrights,
license types (e.g. free software, open source), etc. The UDO
will generalises a set of DSOs. Each DSO should be designed
with the minimum set of concepts required to describe a given
domain. The model should also be easily extended so that an
additional DSO is added to the model without affecting the
existing DSO.



3

C. Ontology Integration

Ontology integration is the process of building new on-
tologies by finding common concepts between two (or more)
ontologies, which is categorized by three basic processes:
• Ontology Mapping which, is the process of building a

new ontology by finding common concepts between two
(or more) concepts belonging to two (or more) different
ontologies.

• Ontology Alignment which, is the process of building
a new ontology by identifying correspondences between
all the concepts of two ontologies, which are said to be
equivalent.

• Ontology Merging which, is the process of building
a new ontology by merging several ontologies into a
single one, that will create a will create a more general
ontology about a subject.

In the proposed architecture, the ontology mapping process
has been selected in order to deal with the combination of
the different ontologies in such a way that the overall UDO
is consistent and able to address the domains covered by
each ontology. In the simplest case, each DSO needs to be
mapped with some of the core concepts represented in the
UDO. Several DSO can be also be integrated in order to add
more expressive power to specific domains, which will help
the architecture to be able to represent the domain concepts
without ambiguity. This entails defining the minimum set of
types and relationships to describe a domain. For instance,
Figure 1 depicts a scenario where a DSO integrates with two
more specific DSOs, this approach facilitates layering multiple
DSO according to the modeling needs.

UDO
(Core Concepts)

DSO 1

DSO 3

DSO 2

DSO 1.2

DSO 1.1

DSO 2.1

DSO 2.2DSO 4

maps to

Fig. 1. UDO-DSO integration Architecture

The ontology mapping described above makes use of model
transformation to relate a DSO to the UDO or to relate multi-
ple DSOs. Model transformation entails defining a mapping
strategy from a source model to a destination model [13],
[19].This mapping may create different types of representa-
tional deficiencies. The basic assumption is that any deviation
from a 1:1 relationship between the constructs in the target
representation model and the corresponding constructs in the

source modeling language leads to a situation of representa-
tional deficiency in the language, potentially causing confusion
for its users. Two principal evaluation criteria may be studied:
ontological completeness and ontological clarity. The study of
ontological completeness is the analysis of the extent to which
a modeling language has a deficit of constructs mapping to the
set of constructs proposed in the Bunge-Wand-Weber (BWW)
representation model [20]. The study of ontological clarity
involves the analysis of the extent to which the modeling
language constructs are deemed overloaded (i.e. they map to
two or more constructs in the BWW model), redundant (i.e.
two or more language constructs map to the same construct
in the BWW model), or excess (i.e. they map to none of the
constructs in the BWW model).

The ontology architecture is designed to adhere to the
principle of high cohesion and low coupling. High cohesion
means that each architectural module deals only with a set
of related domain-specific concerns. Low coupling means that
the number of dependencies between architectural modules
is designed to be minimum. Together, these two properties
promote modularization along with the ability to incremental
extend the architectural modules. The ontology architecture
comprises an UDO. This upper ontology is able to provide
a high-level description of a system and to support inference
around the core structure, behaviour and consistency.

A DSO can be related to the high-level concepts of the UDO.
Creating these relationships implies transforming the concepts
and relationships of the DSO to the concepts and relationships
of the UDO. This transformation process is straightforward
when there is a one-to-one relationship or map between the
concepts of the DSO and the UDO. As a result of this
approach, each DSO relates to the UDO through one map. A
DSO can also be mapped to another DSO through a map. Each
map is actually an ontology that specifies the transformation
rules from the source to the target ontology.

D. Reasoning
One of the advantages of having a formal ontology is that it

can be processed with logical reasoning mechanism. By using
a Description Logic reasoner services, such as consistency
checking, inferring dependencies,completeness of models it
will be possible to validate the correctness of an ontology.
It can be assumed that the upper ontology comprises three
layers, i.e., business, application and technology. The classes
and properties of each DSO are mapped to the classes and
properties of the UDO. This allows for the following reasoning
configurations:
• UDO reasoning which, inference is exclusively based on

the UDO concepts. Considering the three layers of the
UDO, two options exist:
(1) Intra-layer UDO reasoning, when inference is limited
to the concepts of just on the UDO layers.
(2) Inter-layer UDO reasoning, when inference concepts
related to two or three UDO layers.

• DSO reasoning which is, similar to UDO reasoning
but inference is exclusively based on a single DSO.
Whenever transformations between two or more DSO



4

exist, then reasoning may span several DSO without
interfering with the UDO.

• UDO-DSO reasoning which, inference is based on the
UDO concepts plus the concepts of one or more DSO.
Requires a transformation map between each UDO-DSO
pair. In this case, the resulting reasoning may span more
than one UDO layer, depending on the transformation
map.

Figure 2 shows the following reasoning configurations.

UDO [OWL]

Business Layer

Application Layer

Technological Layer

DSO-1
[OWL]

DSO-2
[OWL]

Intra-layer UDO reasoning
in

te
r-

la
ye

r 
U

D
O

 r
e

as
o

n
in

g

UDO-DSO 
reasoning

DSO reasoning

Fig. 2. Reasoning configurations

IV. APPLICATION TO ENTERPRISE ARCHITECTURE

The ArchiMate 2.0 language [21] was decided to be used
as the core of the the UDO. ArchiMate is a standard from The
Open Group 1 that covers the domain of enterprise architec-
ture. This language includes a minimum set of concepts and
relationships and the framework includes a minimum set of
layers and aspects to be able to model the majority of cases.
The motivation to select the ArchiMate language as the core
of the UDO is that provides a high-level of abstraction, is
concern-oriented and viewpoint-orientated and, was designed
with extensibility in mind.

ArchiMate helps stakeholders to design, assess and com-
municate the consequences of decisions and changes within
and between business domains[4]. In order to achieve this,
ArchiMate provides a set of viewpoints that can be used to
accommodate different concerns. The viewpoints act as filters
on the model and are used to highlight different aspects that
matter to different stakeholders. Some viewpoints display intra-
layer concepts and dependencies, while others display cross
layer concepts and relationships. The framework organizes the
modeling language in a three by three matrix: the lines capture
the enterprise layers, i.e., business, application, and technology,
and the columns capture cross layer aspects: active structure,
which contains entities capable of performing behavior; be-
havior, which contains elements defined as units of activity

1http://www.opengroup.org/

performed by one or more active structure elements; and
passive structure, which contains objects on which behavior is
performed , therefore, it can be considered an Upper Domain
Ontology in the setting of enterprise architecture. Therefore,
the ArchiMate language meta-model was converted to an
ontology representation as the UDO, so that inference can
be applied to its models. The transformation process uses (1)
an OWL representation of the ArchiMate meta-model and (2)
OWL representations of ArchiMate models.

The ArchiMate meta-model representation results from an
analysis of the its concepts, relationships and constraints, as
a result, a set of transformation rules maps each element
from the ArchiMate meta-model into the corresponding OWL
representation. Each concept is transformed into an OWL
Class. After the concepts and relationships are represented
as classes and object properties, the ontology constraints
still need to be included, these constraints are required so
that derived relationships can be correctly inferred through
logical reasoners. Relationship cardinalities were also added
to make the ontology compliant with ArchiMate meta-model.
The resulting core ontology is extended through a set of DSOs
tailored to address explicit modeling concerns.

Next, an analysis of the mapping process between Archi-
Mate meta-model and models to OWL was performed, from
two important criteria: completeness and clarity. This analysis
is based on the ontological analysis method as described by
Bunge-Wand-Weber (BWW) representation model [20]. From
the perspective of the completeness criteria, all concepts from
the ArchiMate can be mapped to OWL concepts. Therefore, the
mapping is complete. This means that any ArchiMate concept
can always be mapped to OWL concepts. Next for the Excess
criteria, all of the main elements of OWL classes, properties,
instances of classes, and relationships between these instances
for mapping from ArchiMate to OWL were used. Therefore
the main elements of OWL have no excess concepts in term
of mapping from ArchiMate to OWL. In some cases, different
ArchiMate concepts map into the same OWL concept. This
situation is known as overload. For example, this situation
occurs in the case of junction, Instances which both will be
represented as individuals in OWL, and also access types and
relation will both be represented as object properties. None
of the overloaded concepts had cause problems. Finally, there
are no situations, that ArchiMate has more than one concept
suitable to represent a single OWL concept. This situation is
known as redundancy.

After that three DSO, were selected to integrate with the
current ArchiMate UDO. The transformation map between the
concepts and relationships of the three DSO and the UDO was
produced. This transformation map is an ontology that defines
the rules that relate each DSO concept to the relevant DIO
concept. Figure 3 shows the following relationship between
UDO, DSO and transformation maps in the context model ar-
chitecture. Each relationship indicates the mapping of concepts
from a source to a target ontology.

A. ArchiMate Upper Domain Ontology
ArchiMate itself is grounded in the entity-relation paradigm,

providing specialization of these generic concepts into en-



5

UDO(ArchiMate)
[OWL]

DSO1
(Patent)
[OWL]

UDO-DSO1
Transformation 

Map
[OWL]

UDO-DSO2
Transformation 

Map

DSO2
(Software Licences)

[OWL]

UDO-DSO3
Transformation 

Map

DSO3
(PREMIS)

[OWL]

Fig. 3. Relationship between UDO, DSO and transformation maps in the
architecture. Each relationship indicates the mapping of concepts from a source
to a target ontology

terprise architecture concepts and also into domain-specific
concepts. The OWL format of the ArchiMate UDO, was
imported to an ontology editor called Protege 2 figure 4 depicts
an OWL representation of the UDO.

Fig. 4. OWL representation of the ArchiMate(UDO)

The first column shows the classes of the ArchiMate(UDO),
the second column shows the constraints of the classes and
column the relationships.

B. Domain Specific Ontologies
In order to test the proposed architecture through a specific

case study, three DSOs were selected to integrate with the
UDO, the Patent, Software Licenses and PREMIS DSO. In the

2http://protege.stanford.edu/

approach of extending the DSOs, it was decided to reuse the
existing domain specific ontologies whenever available and fit.
This allows for a greater interoperability of UDO and decreases
the overall risks in engineering an ontology for each domain
from scratch.

The Patent DSO covers aspects on patents, e.g. who is
the owner of a specific patent, what the patent covers, or
when it was granted. Patents also imply a restriction on
how a software, hardware or method can be used. The most
suitable candidate patent DSO that was identified was from
the PATExpert project3.

PATExpert defined a suite of ontologies that describe patent
documents, covering aspects such as the structure of docu-
ments and content they provide. An important class in the
ontology is the PatentDocument, including the subclasses
PatentPublication and GrantedPatent. For the initial version of
the mapping, a simple approach was selected that considers
the GrantedPatentDocument class to be a specialised version
of a Constraint class in the UDO, which is indicated in the
UDO by the property hasType:Patent. Figure 5 depicts an a
screenshot of the mapping between the two ontologies.

Fig. 5. Mapping of the GrantedPatent class to the Constraint class of the
UDO

The Software Licenses DSO deals with software compo-
nents and their relations to each other. These relations describe
which other software components are required to run a certain
software, or which software is conflicting. The license in this
case is a specific kind of contract that grants certain rights to
the license taker regarding the usage of the software, e.g. as
a component his own applications use. It defines for example
whether the customer can get access to the source code, modify
it, redistribute the software, etc. The most suitable candidate
Software Licenses DSO that was identified was from the
Software Ontology (SWO)4.

The SWO is an ontology for describing software tools,
their types, tasks, versions, provenance and associated data.
SWO was originated in a project between the European Bio
informatics Institute and the University of Manchester. The
ontology models two important concepts software licenses,
and License clauses. License clauses define properties and
restrictions on what can be done with the software, e.g.
whether redistribution is allowed, and in what form (with or

3http://cordis.europa.eu/ist/kct/patexpert synopsis.htm
4http://theswo.sourceforge.net/



6

without notice), or whether there is a restriction on the number
of users that can use the software. Software licenses are then a
composition of these clauses. The ontology mapping is relative
straightforward, and allows both a software license and a
License clause to be specified as a subclass of a constraint class
in the UDO. This way, it can take profit from the predefined
standard licenses in case one uses such a license, but can easily
define their own license as a composition of clauses.

The PREMIS DSO5 deals with storing provenance infor-
mation in the context of digital long-term preservation which
includes five important concepts for digital preservation pur-
poses: Intellectual Entities, Object, Event, Agent, Rights. For
the ontology mapping, intellectual entity was mapped to the
business object in UDO, the object was mapped to the data
object, and the agent was mapped to the business actor.

V. CASE STUDY

ArchiSurance has been selected as a case study to analyse
the current ontology. ArchiSurance [21], is a fictitious insur-
ance company used throughout the ArchiMate 2.0 specification
as a case study to illustrate modeling of strategy, business,
applications and technology. The example was converted to
the OWL to be represented as the instances of the Archi-
Mate(UDO), this example in this section is used to illustrate
the capabilities of reasoning, by validating the correctness of
the ontology. A set of predefined competency questions were
used in order to validate ontology.

According to [22] the competency questions should be
defined in a stratified manner, with higher level questions
requiring the solution of lower level questions However, in
this work we elaborated a single-level list of questions since
our purpose is to validate that we are able of answering a
more comprehensive set of questions that interrelate a greater
number of concept rather than the ability of answering more
complex questions.

The set of competency questions defined to validate the
integrated ontology is composed by the following questions:
• What Business Services are used by the Customer Busi-

ness Role?
• What Business Processes are used by the Customer?
• What ArchiMate concepts belong to the Application

Layer?
• What ArchiMate concepts are Behavioural Aspects?
• What are the licenses required to execute software

application?
Figure 6 below represents a view that shows the Business

Services that are used by a specific Business Role and the
Business Processes that realize each of the aforementioned
Business Services. In this particular example the Customer
business role uses four business services that in turn are
realized by a total of four business processes (e.g. the Insurance
Application Service is realized by the Close Contract process).

Figure 7 and Figure 8 shows the query result, Note that
the Customer does not directly use any business process.
The resulting relationship is a derived relationship because

5http://premisontologypublic.pbworks.com/w/page/45987067/FrontPage/

Fig. 6. Archisurance ArchiMate example: service realization viewpoint

Fig. 7. What Business Services are used by the Customer Business Role?

the customer is transitively related to a business process
through a business service. This example shows how derived
dependencies can be inferred from models.

In Figure 9 and Figure 10 which is exclusively based on
the UDO concepts, the concepts of a specific layer and a
specific aspect in ArchiMate(UDO) is shown.The inference is
exclusively based on the UDO concepts.

A UDO-DSO reasoning, which is based on the UDO con-
cepts plus the concepts of the Software Licenses DSO is shown
in Figure11 . Software licenses, is a concept,that is not possible
to model in the UDO with the desired level of detail. But, it
can be captured in an increased level of detail through the use
of the Licenses DSO.

VI. CONCLUSION AND FUTURE WORK

In this paper, a modular Ontology for the enterprise architec-
ture domain was presented. Ontology technique were applied,
to be used for the analysis and design of enterprise architecture
models, specifically for inconsistency checking on the models
and dependency analysis between the different elements of the
enterprise architecture. To this end, a model architecture was
proposed which includes a core enterprise ontology named
Upper domain ontology that will present the fundamental
concepts of enterprise architecture, and could be extended to
Domain Specific Ontologies, that describes in detail a set of
concepts introduced in the upper ontology and then in order
to integrate the UDO and DSOs a mapping strategy has to
be define between them. Next, to implement and evaluate the
proposal architecture, the ArchiMate 2.0 was converted to the
OWL language.

The resulting artefact is the UDO. A set of DSO were
selected along with the corresponding transformation maps to
test the mapping technique and to evaluate the UDO. This
proposed architecture was validated by a set of competency



7

Fig. 8. What Business Processes are used by the Customer?

Fig. 9. What ArchiMate concepts belong to the Application Layer?

questions,which can act as benchmarks for any ontology.
This validation was processed with reasoning methods. The
reasoning was performed on different types of analysis on the
UDO and DSO for checking the consistency and dependencies
between different elements of the architecture models. Our
formal integrated enterprise ontology approach was able to
successfully answer all the competency questions and facilitate
the analysing of Enterprise architecture models. In further
research, the integrated ontology will be extended with more
DSOs. New scenarios and more rules and constrains will be
defined on the core ontology, and also will be evaluated with
different types of description logic reasoners.

ACKNOWLEDGMENTS

This work was supported by national funds through FCT -
Fundação para a Ciência e a Tecnologia, under project PEst-
OE/EEI/LA0021/2011 and the grant (SFRH/BD/69121/2010)
to Gonçalo Antunes, by COMET K1, FFG - Austrian Research
Promotion Agency, and by the European Commission under
the 7th Framework Programme for research and technological
development and demonstration activities (FP7/2007-2013)
under grant agreement no. 269940 (TIMBUS project).

REFERENCES

[1] J. A. Zachman, “Enterprise architecture: The issue of the century,”
Database Programming and Design, vol. 10, no. 3, pp. 44–53, 1997.

[2] ISO, “ISO/IEC/IEEE 42010:2011 - systems and software engineering -
architecture description,” International Organization for Standardization,
International Electrotechnical Commission and Institute of Electrical
and Electronic Engineers, 2011.

[3] D. E. Jenz, “Business process ontologies: Speeding up business process
implementation,” Jenz & Partner GmbH, 2003.

[4] M. Lankhorst, Enterprise architecture at work: Modelling, communica-
tion and analysis. Springer, 2009.

[5] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, Modular Ontolo-
gies: Concepts, Theories and Techniques for Knowledge Modulariza-
tion. Springer, 2009, vol. 5445.

Fig. 10. What ArchiMate concepts are Behavioural Aspects?

Fig. 11. What are the licenses required to execute software application?

[6] P. Johnson, E. Johansson, T. Sommestad, and J. Ullberg, “A tool
for enterprise architecture analysis,” in Enterprise Distributed Object
Computing Conference, 2007. EDOC 2007. 11th IEEE International.
IEEE, 2007, pp. 142–142.

[7] M. Buschle, J. Ullberg, U. Franke, R. Lagerström, and T. Sommestad,
“A tool for enterprise architecture analysis using the prm formalism,”
in Information Systems Evolution. Springer, 2011, pp. 108–121.

[8] A. SoS, “A uniform approach for system of systems architecture
evaluation,” 2009.

[9] J. Klein and M. J. Gagliardi, “A workshop on analysis and evaluation
of enterprise architectures,” 2010.

[10] M.-E. Iacob and H. Jonkers, “Quantitative analysis of enterprise archi-
tectures,” in Interoperability of Enterprise Software and Applications.
Springer, 2006, pp. 239–252.

[11] F. De Boer, M. Bonsangue, J. Jacob, A. Stam, and L. Van der
Torre, “Enterprise architecture analysis with xml,” in System Sciences,
2005. HICSS’05. Proceedings of the 38th Annual Hawaii International
Conference on. IEEE, 2005, pp. 222b–222b.

[12] C. Pedrinaci, J. Domingue, and A. K. A. de Medeiros, “A core ontology
for business process analysis,” in The Semantic Web: Research and
Applications. Springer, 2008, pp. 49–64.

[13] G. Guizzardi, Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology, 2005.

[14] R. Guizzardi, X. Franch, and G. Guizzardi, “Applying a foundational
ontology to analyze means-end links in the i* framework,” in Research
Challenges in Information Science (RCIS), 2012 Sixth International
Conference on. IEEE, 2012, pp. 1–11.

[15] P. S. Santos Jr, J. P. A. Almeida, and G. Guizzardi, “An ontology-based
semantic foundation for aris epcs,” in Proceedings of the 2010 ACM
Symposium on Applied Computing. ACM, 2010, pp. 124–130.

[16] J. P. A. Almeida, G. Guizzardi, and P. S. Santos Jr, “Applying and
extending a semantic foundation for role-related concepts in enterprise
modelling,” Enterprise Information Systems, vol. 3, no. 3, pp. 253–277,
2009.

[17] T. R. Gruber et al., “A translation approach to portable ontology
specifications,” Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[18] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda, “Task ontology for
reuse of problem solving knowledge,” Towards Very Large Knowledge
Bases: Knowledge Building & Knowledge Sharing, pp. 46–57, 1995.



8

[19] P. Green, M. Indulska, and M. Rosemann, “A reference methodology
for conducting ontological analyses,” 2004.

[20] M. Bunge, Treatise on Basic Philosophy: Volume 5: Epistemology &
Methodology I: Exploring the World. Springer, 1983.

[21] M. Iacob, H. Jonkers, M. Lankhorst, E. Proper, and D. Quartel,
“Archimate 2.0 specification: The open group,” 2012.

[22] M. Fox and M. Gruninger, “Enterprise modeling,” AI magazine, vol. 19,
no. 3, p. 109, 1998.


