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ABSTRACT
The generation of synthetic data is widely considered as viable
method for alleviating privacy concerns and for reducing identifi-
cation and attribute disclosure risk in micro-data. The records in
a synthetic dataset are artificially created and thus do not directly
relate to individuals in the original data in terms of a 1-to-1 corre-
spondence. As a result, inferences about said individuals appear to
be infeasible and, simultaneously, the utility of the data may be kept
at a high level. In this paper, we challenge this belief by interpreting
the standard attacker model for attribute disclosure as classifica-
tion problem. We show how disclosure risk measures presented in
recent publications may be compared to or even be reformulated
as machine learning classification models. Our overall goal is to
empirically analyze attribute disclosure risk in synthetic data and
to discuss its close relationship to data utility. Moreover, we im-
prove the baseline for attribute disclosure risk from the attacker’s
perspective by applying variants of the RadiusNearestNeighbor and
the EnsembleVote classifiers.

CCS CONCEPTS
• Computing methodologies → Supervised learning; • Secu-
rity and privacy→Data anonymization and sanitization;Us-
ability in security and privacy; Privacy protections;
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1 INTRODUCTION
The technological advances of recent years led to an increase in
the collection and storage of large amounts of data. Micro-data, i.e.
data that contains information about e.g. individuals, is collected in
domains such as health care, employment or social media. Similarly,
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there has been an increase in the capability and the interest to
analyse data. Its release and distribution, however, bares the risk of
compromising the confidentiality of sensitive information and the
privacy of affected individuals. To comply with ethical and legal
standards such as the EU’s General Directive on Data Protection
(GDPR), data holders and data providers have to take measures
to prevent attackers from learning sensitive information from the
released data, often referred to as statistical disclosure control (SDC).

In the case of micro-data, two possibilities of disclosure of sen-
sitive information are widely considered. Identification disclosure
happens when an adversary is able to conclude that a certain record
in the dataset belongs to a certain individual. Attribute disclosure
happens whenever the dataset allows the attacker to learn new
information about a specific individual in question, e.g. the value of
a certain attribute. Identification disclosure often leads to attribute
disclosure, as every attacker’s ultimate goal is to gain information
on their victim. However, attribute disclosure can also happen with-
out the attacker uniquely identifying the record of their victim in
the dataset, e.g. by the matching techniques discussed in this paper.

In most cases, it does not suffice to remove directly identifying
attributes (primary identifiers), such as names or social security
numbers, from the data. To minimize disclosure risks, approaches
like Differential Privacy [1] and k-Anonymity [14] have been devel-
oped. The reader may consult the survey [3] for a general overview
on traditional privacy-preserving data publishing methods.

In this paper, we will consider an alternative disclosure control
measure, namely the generation of synthetic data. One of the first
applications is described by Rubin in [11], where multiple imputa-
tion is used to synthetically generate certain columns of datasets.
An overview on more than 20 different scenarios is given in [12].
An evaluation of the utility of synthetic data, generated by various
tools, for supervised machine learning tasks, specifically classifica-
tion tasks, is also given in [4].

In our experiment in Section 4, we use three recently published
synthetic data generation tools: The Synthetic Data Vault has been
developed in 2016 by N. Patki et al. at MIT, and is implemented in
Python. It builds a model based on estimates for the distributions of
each column. In order to preserve the correlation between attributes,
the synthesizer applies a multivariate version of the Gaussian cop-
ula and, subsequently, computes the covariance matrix. For more
details and an utility evaluation conducted by the developers, the
reader may consult the original publication ([7]).

The second tool we use is the DataSynthesizer, proposed in 2017
by H. Ping et al. and also implemented in Python. The user is able to
specify one of three modes, namely ‘random mode’, ‘independent
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attribute mode’, or ‘correlated attribute mode’. If the tool should pre-
serve dependencies between the attributes, the last mode should be
chosen. The tool then generates synthetic data based on a Bayesian
network model learned from the original data. For extended SDC,
DataSynthesizer uses the framework of Differential Privacy and
offers the possibility to determine the amount of injected noise.
More information on this method can be found in [8].

Finally, we use the synthpop [6] package for R, which has been
created by B. Nowok et al. at the University of Edinburgh. Here, the
default synthesis method is a CART (Classification And Regression
Tree) algorithm. However, the user is able to specify a large number
of parameters. Synthpop also contains a function for SDC1, which
may be applied to the resulting synthetic dataset.

Usually, a distinction is made between fully and partially syn-
thetic data. Fully synthetic data means that the whole dataset is
synthesized, whereas partially synthetic data contains a mixture of
synthesized values for sensitive and original values for nonsensi-
tive attributes. In 2009, Reiter and Mitra [9] proposed identification
disclosure risk estimations for partially synthetic data. In this pa-
per, we consider attribute disclosure risks on fully synthetic data.
The notion of identification disclosure is not in our focus, since
fully synthetic records do not relate to original records in terms
of a 1-to-1 correspondence. However, this does not exclude the
possibility of attribute disclosure, for which it is supposed that the
attacker knows the values of certain attributes of their victim (called
the key variables) and wants to learn the value of some sensitive
attribute (called the target variable). Approaches for measuring
the related risk have been proposed by Reiter et al. [10] and by
Taub et al. [15]. The methods differ by the amount of the assumed
background knowledge B = {A, S} of the attacker. A denotes the
attacker’s knowledge about records in the original (unsynthesized)
dataset, and S comprises available information about the process
of generating the synthetic data, like code for the synthesizer or
a description of the used tools. Reiter et al.’s approach assumes
a worst case attacker scenario, in which the adversary knows all
entries in the original dataset except the target attribute value they
want to learn. While the authors admit that this assumption may be
viewed as overly conservative and unrealistic, they suggested that
their measures offer a type of upper bound on the disclosure risks.
Taub et al.’s approach, on the other hand, assume an attacker’s
behavior that does not rely on B at all, and is therefore feasible
for A = S = ∅. The related research question asks for a baseline,
for a lower bound on the attribute disclosure risk: given only the
synthetic dataset and the values of certain key attributes, which
procedures are always available to the attacker that may help him
to learn the value of a certain target attribute? This question is
of great importance for analyzing the general usefulness of data
synthesis as privacy-preserving method.

Our main contribution is the generalization of Taub et al.’s ap-
proach, which is based on the concept of Correct Attribution Proba-
bility. The technique finds those records in the synthetic dataset
which match a certain combination of key variables. For example,
the attacker may know that this set of values belongs to a certain

1https://rdrr.io/cran/synthpop/man/sdc.html

individual in the original data. For the found synthetic records, the
distribution of the value of the target attribute is computed, which
allows to assign a risk probability for the exposure of the real value
of the corresponding individual in the original dataset. However, it
may happen that the distinct combination of key attribute values of
some row in the original data does not occur in the synthetic data.
While the original approach either ignores such non-matches or
assigns probability 0, our generalization allows to extend the risk
analysis to these records. In our evaluation, we demonstrate the
merit of this approach and compare it to machine learning classi-
fiers which the attacker might use to extract information from the
data and obtain a prediction for the target variable of their victim.

The mentioned approaches exploit global, not local properties
of the dataset. While arguments have been brought forward that
for an attacker there is little additional knowledge to be gained
from synthetic data that describes publicly well known correla-
tions in data, we want to stress that the task of estimating attribute
disclosure on fully synthetic data (or on corresponding models) is
particularly relevant whenever the comprised information and the
correlations in the original data are not publicly known. This is
often the case for data about sub-populations and for business data.
In general, our evaluation shows that the attacker is able to gain
knowledge from the synthetic data that increases the accuracy of
their predictions.

The remainder of this paper is structured as follows: In Section 2,
we discuss related work and, on this basis, the relation between data
utility and attribute disclosure risks by considering the attacker’s
situation as classification problem. In Section 3, we improve the
baseline for attribute disclosure risk by generalizing the approach
established in [15]. In Section 4, we evaluate our approach and
compare the performance of several machine learning models on
the attacker’s classification problem. Finally, in Section 5, we will
draw our conclusions and describe ideas for future work.

2 ATTACKER’S CLASSIFICATION PROBLEM
It has already been mentioned that, for fully synthetic data, the no-
tion of identification disclosure is not clear cut. From an attacker’s
perspective, the approach to gain information by linking certain
synthetic records to individuals is not promising, as such links gen-
erally do not exist. Attribute disclosure, on the other hand, does
not necessarily depend on such linkages. There are other ways to
use data and prior knowledge for learning about a sensitive target
attribute value, one of which will be analysed in the next section.
Still, it seems highly unlikely that synthetic data can ever be used
by the adversary to infer information with absolute certainty. In
order to see this, assume that one of the records in the Adult Cen-
sus Income dataset2 belongs to our neighbor. Our prior knowledge
consists of the values of the key attributes ‘age’, ‘gender’, ‘race’,
‘occupation’, ‘marital-status’ and ‘native-country’. We are nosy and
want to know if she earns more or less than $50K a year. Conse-
quently, ‘income’ is our target attribute. We simply search for her
combination of key attributes and find only one record in the whole
dataset that matches all these values. We can be certain that this is
the record of our neighbor, and may obtain the respective target

2https://archive.ics.uci.edu/ml/datasets/census+income
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value. Studies such as [13] have shown that with similar (actually
fewer) attributes, a large majority of 87% of the US-residents can
be identified, so this is a likely scenario. Even if we find more than
one record with this combination, we may still be able to draw
certain conclusions in the case where all of them have the same
‘income’ value (a situation that the concept of l-diversity [5] would
address). If, however, we do not have the original dataset at hand,
but just a synthesized version, the situation is quite different. It
now can happen that no record comprises the values of our known
key attributes. Even if there is a single record matching our prior
knowledge, we cannot be certain about the entry of the ‘income’
attribute. As a result of the data synthesis, this target value - as
well as the values of the other attributes not known by us - might
deviate from our neighbor’s real entries. We again face the same
difficulties we already discussed in the context of identification
disclosure: the record in question is not our neighbor’s, nor is it
our neighbor’s synthesized record. In most cases, it is the product
of randomized draws from a model described by global, not local,
properties of the dataset.

In accordance with these considerations, attribute disclosure
risk in synthetic data is measured by providing probabilities for the
exposure of the real target value of records in the original data. We
give an example by discussing Reiter et al.’s [10] already mentioned
approach. LetD = {(xi ,yi ) : i = 1, . . . ,n} be the matrix comprising
the original database, where xi is the vector of the i-th record’s
values of non-sensitive attributes, and yi is the vector of the i-th
record’s values of sensitive attributes which are subject to synthe-
sis. Note that, for fully synthetic data, X = (xi : i = 1, . . . ,n) is
empty. By Z = (Z (1), . . . ,Z (m)), we denote them synthetic datasets
generated by the data provider. Assume that an attacker wants to
learn the vector yi for some record i in D. Let B = {A, S} be the
background knowledge of the attacker. We recall that A consists of
information about the original data and, for Reiter et al.’s approach,
is set to A = {{(x j ,yj ), for j , i} ∪ xi }. Hence, it is assumed that
the attacker knows the complete original dataset except the tar-
get value(s) of interest. Furthermore, we recall that S comprises
knowledge about the synthesizer. Finally, let Yi denote the ran-
dom variable representing the attacker’s uncertain knowledge of
yi . The sample space of Yi is given by all possible values of yi in
the population. For evaluating a guess y∗ for yi , Reiter et al. as-
sume that the attacker seeks the Bayesian posterior distribution
P(Yi = y∗ | Z ,X ,A, S) which, for a discrete random variable Yi , is
equal to

P(Z | Yi = y∗,X ,A, S) P(Yi = y∗ | X ,A, S)∑
y P(Z | Yi = y,X ,A, S) P(Yi = y | X ,A, S)

,

where the sum in the denominator is taken over all possible values
y ofyi in the population. Depending on the circumstances, a variety
of techniques are proposed for estimating the prior distribution
P(Yi = y∗ | X ,A, S) and the probability P(Z | Yi = y∗,X ,A, S) of
generating Z . For the first, one may either use a discrete uniform
distribution or assume an adversary that already uses A to form
prior beliefs. For the latter, importance sampling techniques are
adopted and coupled with Monte Carlo simulation.

Based on the resulting value P(Yi = y∗ | Z ,X ,A, S), the data
provider is able to compute several risk measures for the released
synthetic dataset(s). One option mentioned by Reiter et al. is to

compute

Ri = [argmaxy P(Yi = y | Z ,X ,A, S) = yi ], (2.1)

where

[p] =

{
1 if p is true,
0 otherwise,

is the so called Iverson bracket. Subsequently, one may want to
evaluate the disclosure risk of the complete dataset by deciding
whether R =

∑n
i=1 Ri/n is acceptably low. Another option would

be to compare P(Yi = y∗ | Z ,X ,A, S) to the prior belief, e.g. by
considering the multiplicative increase.

Correct Attribution Probability ([15]), an idea discussed in Sec-
tion 3, is rather different from the Bayesian Estimate described
above. As mentioned in the introduction, no background knowl-
edge B of the attacker is assumed. Clearly, this also restricts their
possibilities of privacy violations. As a result of computing the
disclosure risk measure, however, the data provider also obtains
a distribution of all possible values of yi and may use the related
percentage scores in the same way as P(Yi = y∗ | Z ,X ,A, S) to
evaluate the overall disclosure risk. We may conclude that, from
the attacker’s perspective, both approaches provide means to solve
the following task.

Attacker’s Classification Problem: Given some background
knowledge B, the synthetic dataset(s) Z and the values of key at-
tributes of some record in the original dataset, obtain a prediction on
the target value of said record.

The goal of this paper is to discuss the possibilities of the attacker
to approach even the most restricted scenario of this problem, that
is, when they have no background knowledge and only a single
published synthetic dataset at hand. The purpose of this viewpoint
is to establish a baseline, a set of tools for privacy invasion that is
available to the adversary under all circumstances and that, on the
flip side, should be always taken into consideration by data holders
and data providers.

Clearly, machine learning models for classification are part of the
attacker’s toolkit, as these are directly applicable to the discussed
situation. The question is: how well do models that are trained on
the synthetic data perform, if they are applied back on the original
data? Notably, a very similar question is often discussed in the
context of the utility of the synthetic dataset. The answer depends
on two factors:

(1) How strong is the correlation between the key attributes and
the target attribute?

(2) To which degree does the synthesizer preserve the global
properties of the original data, that is, the distributions of
attributes and the dependencies between them?

If the correlation between sensitive variables and typical quasi-
identifiers is strong in the original data, the only way to reduce
disclosure risk is to conceal these dependencies in the synthetic
data, e.g. by adding more noise in the process of synthesis. This
will result in the loss of information and, hence, in a reduction of
the utility of the synthetic dataset. For examples and simulations,
we refer the reader to Section 4.



At first glance, the proposed viewpoint might appear counter-
intuitive. The information about the sensitive target attribute of the
individual in question is not disclosed to the attacker by identifying
the corresponding record or using some other local vulnerability
of the data, but by considering and exploiting its global properties.
However, if any tool available to the attacker results in high prob-
ability of exposure of the true target value of certain records, the
privacy of affected individuals is clearly violated. Furthermore, for
reasons already discussed, the focus on global properties lies in
the nature of synthetic data disclosure risk assessment. In order
to corroborate our statements, we will now discuss the relation
between Correct Attribution Probability scores and one of the less
well-known machine learning classifiers, namely the Fixed-Radius
Nearest Neighbor search.

3 CORRECT ATTRIBUTION PROBABILITY
The concept of Correct Attribution Probability (CAP) has been
introduced in [2] and elaborated on in [15] by J. Taub et al. In the
first publication, M. Elliot used CAP to estimate disclosure risks of
datasets generated by the synthpop [6] package in R, which was
developed by the SYLLS Team at the University of Edinburgh. For
assessing attribute disclosure risk, CAP assumes that the attacker
knows the values of a set of key attributes for an individual in the
original dataset, and wants to learn the respective value of some
target attribute. CAPmeasures the disclosure risk of the individual’s
real target value in the case where the adversary has access to the
synthetic dataset. In [15], the method is presented for a situation
where the attributes in the key as well as the target attribute are
all categorical. For the remainder of this section, we will keep this
assumption. The reader is referred to [2] for a variant handling
continuous target variables.

Consider a dataset consisting of micro-data with n records repre-
senting individuals and an unspecified number of attributes in the
columns. For j ∈ {1, . . . ,n}, let Ko, j be the vector representing the
values of the key attributes of the j-th record in the original dataset,
and let To, j be the corresponding value of the target attribute. Sim-
ilarly, we define Ks, j and Ts, j for the synthetic dataset. The CAP
score for record j in the original dataset is the empirical probability
of its target value given its key attribute values, that is

CAPo, j := Po (To, j | Ko, j ) =
∑n
i=1[To,i = To, j ∧ Ko,i = Ko, j ]∑n

i=1[Ko,i = Ko, j ]
.

By indexing the probability Po (•), we indicate that our sample space
is the original dataset. Additionally, we define the CAP score for
the synthetic dataset, that is

CAPs, j := Ps (To, j | Ko, j ) =
∑n
i=1[Ts,i = To, j ∧ Ks,i = Ko, j ]∑n

i=1[Ks,i = Ko, j ]
.

The basic idea is that the attacker is supposed to search for all
records in the synthetic dataset that match the key attribute values
known by them. This subset of data points is often referred to as
equivalence class of Ko, j . Inside this class, they then calculate the
distribution of the occurring values of the target attribute. Clearly,
CAPs, j corresponds to the proportion of the actual target valueTo, j
in this equivalence class. In this sense, CAPs, j measures the risk
of disclosure of this information about the individual represented
by the j-th record in the original data. In order to evaluate CAPs, j ,

the authors of [15] computed the mean value over all the records.
Finally, they compared the result to the mean of CAPo, j as well as
to the mean marginal probabilities of To, j in the original dataset.
The authors also noted that CAPs, j is undefined if the vector Ko, j
does not occur in the synthetic dataset. In their evaluation and in
the calculation of the mean CAP score, they dealt with this scenario
in two different ways:

(1) Coding the corresponding CAP scores as 0
(2) Treating the corresponding CAP scores as undefined

We will discuss both options and their justifications in our subse-
quent analysis of the approach.

It is worth to mention that there is a close relation between CAP
scores and the well-known concepts of k-anonymity and l-diversity
(see [5, 13]).

k-Anonymity: A dataset has the k-anonymity property if, for ev-
ery combination of attributes occurring in the data, the corresponding
equivalence class consists of at least k elements.

(Distinct) l-Diversity: A dataset has the l-diversity property if,
in every equivalence class, the sensitive variable (e.g., the target at-
tribute T) takes on at least l distinct values.

If we restrict our attention to the original dataset and assume that
the k-anonymity property is not satisfied for at least k = 2, there are
records that, for some key, are the only elements in their equivalence
class, and hence there are j ∈ {1, . . . ,n} with CAPo, j = 1. If l-
diversity is not satisfied for at least l = 2 and, therefore, there are
not at least l distinct target values in each equivalence class, the
same is true. In general, if datasets satisfy l-diversity for higher
values of l , the CAP scores of the records are bound to be lower,
and vice versa.

In the remainder of this section, we translate the CAP score
approach into a solution for the attacker’s classification problem.
Moreover, we improve the approach from the attacker’s perspective.
We start by discussing the Fixed-Radius Nearest Neighbor classifier
(FR-NN), which is implemented in the Python scikit-learn machine
learning package scikit-learn3.

Fixed-Radius Nearest Neighbor: Based on a metricm and a
radius r specified by the user, this algorithm classifies data points by
implementing a majority vote among neighbors within r .

This variant of the better known k-Nearest Neighbor classifier
is based on an efficient search for neighboring data points, which,
depending on the circumstances, may be realized by the BallTree
or the KDTree algorithm. In scikit-learn’s implementation, the user
can also specify a label for outlier samples which do not have
neighboring data points within r .

We now reconsider the attacker’s approach that is assumed by
the CAP disclosure risk measure. For a certain attribute key K , the
attacker knows Ko, j for some record j in the original data, and has
access to the synthetic dataset. The adversary then computes the
equivalence class of Ko, j in the synthetic dataset and, subsequently,

3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
RadiusNeighborsClassifier.html
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the distribution of the target attribute T of interest. Now let S
be the synthetic dataset and S

��
K,T the dataset that results from

omitting all attributes but the target T and those in the key K .
Then the attacker’s approach is equivalent to conducting a FR-NN
classification for Ko, j on S

��
K,T . Note that we may choose a variety

of metrics without affecting the result of the classification, since the
attacker only considers neighbors within r = 0 (that is, equal data
points). However, given that the approach is based on matches for
the attributes in the key K , it makes sense to choose the Hamming
Distance form. For two data points (records) a = (a1, . . . as ) and
b = (b1, . . . ,bs ), the Hamming Distance is defined as

∆(a,b) := |{j ∈ {1, . . . , s} : aj , bj }|.

As a result of this application, the attacker obtains percentages for
the possible values of the target T according to their occurrence
in the equivalence class, that is, the r = 0 neighborhood. The per-
centage of the real target value To, j is equal to CAPs, j . It makes
sense to assume that the attacker is interested in both the target
value with the highest percentage, that is, the result of classification
via FR-NN, as well as in all occurring values together with their
percentages.

For several reasons, the discussed approach assumed by the
CAP measure is not optimal for solving the attacker’s classification
problem. For example, it may happen thatKo, j does not occur in the
synthetic dataset, hence does not have any neighbors within r = 0.
CAPs, j is then undefined and, similarly, the FR-NN classifier is not
able to assign a label. It has already been mentioned that the authors
of [15] dealt with this scenario in two different ways, namely by
either coding the corresponding CAP scores as 0 in the calculation
of the mean CAP score, or treating them as undefined, which means
that the respective record does not count towards n. In Section 3.3
of [15], justifications for both options are given. According to these,
the basis for assigning a 0 is that a non-match is considered to have
zero probability of yielding a correct attribution, whereas the logic
behind recording non-matches as undefined is that an adversary is
more likely to stop their attempt with a non-match.

Both options of handling the CAP scores correspond, in some
way, to the inability of the attacker’s FR-NN classifier to provide
a label. However, we now propose an alternative method for the
attacker to handle a non-match, which will lead to an improvement
of the approach from their perspective. Consider the example of
the Adult Census dataset from Section 2. We want to learn if our
neighbor earns more than $50K a year. We know that she is in
the dataset and we gained access to a synthesized version. Further-
more, we know her age, gender, race, occupation, marital-status and
native-country, all of which are attributes in the dataset. A quick
search reveals that no record in the synthetic data is a complete
match for these attribute key values. Instead of giving up, we can
now search for records that match at least 5 of the 6 attributes in
the key. If we do find such records, we proceed by calculating the
distribution of their target attribute values. If not, we try for records
that match at least 4 attributes, and so on. The resulting algorithm
may be implemented as follows.

Algorithm 3.1. Input: A synthetic data set S, a target attribute T
in S and an attribute key K together with a value vector Ko, j of an
original data’s record

Output: A prediction T ∗ for To, j
1: Set N = ∅ and r = 0.
2: while N = ∅ do
3: N ←

{
a ∈ S

��
K,T : ∆

(
Ko, j ,a

��
K

)
= r

}
, where a

��
K omits the

value of T
4: r ← r + 1
5: Choose T ∗ via majority vote among the values of T for the

elements of N

Similarly, we may describe this algorithm as repeated applica-
tion of the FR-NN classifier for r = 0, 1, 2, . . . and the Hamming
Distance. We stop as soon as neighbors are found and a label can be
assigned. The algorithm may easily be adapted to not only return a
prediction T ∗, but also the percentages of the possible values for
the target attribute T . We believe that this procedure is superior
to the approach assumed by the CAP disclosure measure, for the
following reasons:

(1) The methods yield the same result for all Ko, j that appear in
the synthetic data. Only non-matches are handled differently.

(2) Non-matches are more likely to occur for longer attribute
keys. However, the attacker is unlikely to stop her attempt to
learn sensitive information from the synthetic data because
her prior knowledge about the victim is, in this sense, “too
detailed”. Obtaining a prediction based on smaller attribute
keys would be considered better than having no prediction
at all. Moreover, the attacker is still able to use all of her prior
knowledge by not considering one fixed smaller attribute
key, but searching for all records within a certain radius to
the vector of known attribute values.

(3) Synthetic data with high utility preserves certain dependen-
cies between attributes and is therefore also likely to yield
high accuracy scores for our variant of the FR-NN classifier.

The third reason actually applies to all kind of machine learning
classification models. There is nothing special about FR-NN or the
general approach to search for matches of the known attribute
values. The attacker’s classification task may, like any other clas-
sification problem, be solved by a variety of different algorithms.
We compared the original CAP score approach and our procedure
presented above to several algorithms like NaiveBayes, Random-
Forest and LogisticRegression. For the results of our experiments,
we refer the reader to Section 4.

We have now discussed the improved approach from the at-
tacker’s perspective. Additionally, we may define a corresponding
generalized CAP disclosure risk measure that may be used by the
data provider. We therefore conclude this section by extending
CAPs, j to

GCAPs, j :=
∑n
i=1[Ts,i = To, j ∧ ∆(Ks,i ,Ko, j ) = ρ]∑n

i=1[∆(Ks,i ,Ko, j ) = ρ]
,

where ρ := min {r | ∃i ∈ {1, . . . ,n} : ∆(Ks,i ,Ko, j ) = r }. Both
notions coincide for ρ = 0, but GCAPs, j is also defined when
CAPs, j is not.



(a) ‘contraceptive method’ (b) ‘education of husband’

Figure 1: Distribution of target variables

4 EVALUATION
In this section, we compare GCAP to CAP and also apply other
machine learning algorithms to the attacker’s classification prob-
lem. We use the Contraceptive Method Choice dataset4 for our
experiment, which is a subset of the 1987 National Indonesia Con-
traceptive Prevalence Survey. The table consists of 1,473 samples
of married women and 10 attributes. It appeared suitable for our
purposes because the attributes are an interesting composition of
quasi-identifiers and potentially sensitive attributes. Furthermore,
all attributes are either categorical or (in the case of ‘age’) may be
treated as such, which has been assumed in the presentation of the
approach in the last section.

In our experiment, we analyze the following two scenarios. We
consider two subsets of the dataset’s attributes as quasi-identifiers,
and two different target variables:

(1) QI = {‘age’, ‘education’, ‘education of husband’, ‘number of
children’, ‘religion’, ‘nowworking?’, ‘occupation of husband’}
Target = ‘contraceptive method’

(2) QI = {‘age’, ‘education’, ‘number of children’, ‘religion’, ‘now
working?’}
Target = ‘education of husband’

Scenario (1) is based on the fact that the preferred contraceptive
method, as well as whether contraception is used at all, is potentially
sensitive information for the individuals in the original dataset. The
idea behind Scenario (2) is to investigate the possibility of gaining
information about the husbands based solely on knowledge about
the wives. Note that the attribute ‘contraceptive method’ has three
distinct values in its domain, whereas ‘education of husband’ has
four. Figure 1 shows the distribution of the target attributes in the
original dataset.

In order to demonstrate the main difference between GCAP
and CAP, we will use a mixture of smaller and larger key sizes.
In Scenario (1), we use attribute keys of length three and six. To
avoid limiting the analysis to certain subsets of the quasi-identifiers,
we considered all subsets of QI with three and six elements. As a
result, we investigated a large number of situations. For Scenario
(2), we did the same for all attribute keys of length two and four. We
will use the same attacker scenarios to discuss the capabilities of
other machine learning classifiers, as well as the boundaries of our
baseline approach. Let D be the table of the Contraceptive Method
Choice dataset. For both Scenarios (1) and (2) and each key length
k , we performed the following procedure.

4https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice

(1) Generate four synthesized versions of D of equal length:
• The DataSynthesizer without Differential Privacy
• The DataSynthesizer with Differential Privacy (ε = 0.1)
• The Synthetic Data Vault
• The synthpop package in R

(2) Compute all k-element subsets of the quasi identifiers QI
of the respective scenario. Each subset corresponds to an
attribute key used in the following step.

(3) For each dataset, for each attribute key and the target of the
scenario:
• Compute the the CAP scores of all records in D, where
non-matches get CAP score 0.
• Compute the CAP scores of all records in D, and ignore
non-matches.
• Compute the GCAP scores of all records in D.

Note that non-matches do not occur on the original dataset,
hence the notions of GCAP and CAP are equivalent, and the scores
match. As part of our experiment, we also want to compare the
disclosure risks on the synthetic datasets generated by the different
tools. Therefore, we applied all synthesizers with default parameters
to avoid any bias or unintended optimization. One exception is the
Differential Privacy parameter for demonstrating its effect and
the user’s possibilities to influence the risk. In our summary of
the experiment’s results, we included ε = 0.1. Lower values of ε
lead to more distortions in the data, whereas setting ε = 0 means
to turn of Differential Privacy. Putting ε ≫ 0.1, one injects less
noise and therefore observes results that are much closer to those
on datasets produced by the DataSynthesizer without Differential
Privacy. Since these observations agree with the definition of ε-
Differential Privacy, we focused on presenting the results of the
choice ε = 0.1, which is also used in the tool’s documentation.

In Step (3), the scores are computed for each entry in D. As
discussed in Section 2, there are different ways to summarize the
related disclosure risk. For example, one may compute the mean
scores over all records, which is done in [15]. For our purposes, it
seems more appropriate to focus on the measure discussed in the
context of Reiter et al.’s approach in Section 2. Let j be an arbitrary
record in D. In Step (3), we additionally compute the attribution
probability of all occurring target values y, that is

APs, j,y := Ps (y | Ks, j ) =
∑n
i=1[Ts,i = y ∧ Ks,i = Ks, j ]∑n

i=1[Ks,i = Ks, j ]

for the synthetic datasets. APo, j,y is defined similarly. Analogous
to Equation 2.1 in Section 2, we define

Rj := [CAPs, j = argmaxy (APs, j,y )]

and compute R =
∑m
i=1 Rj/m, wherem = 1, 473 is the total number

of records. Note thatR corresponds to the accuracy of the related FR-
NN classifier used by the attacker, and is therefore more interesting
to us than the mean of the scores. However, we want to stress the
fact that the following comparison between CAP and GCAP does
not depend on focusing on accuracy, and we are able to draw similar
conclusions by considering mean scores.

We now consider Table 1, which presents the scores for Scenario
(1) and attribute key length three. The table summarizes the results
of all possible keys amongst the variables in QI, that is,C(7, 3) = 35
different situations. Each cell contains the average of the respective

https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice


0CAP, ICAP and GCAP scores

ConCep 0CAP ICAP GCAP
Original 54.9±7.8 54.9±7.8 54.9±7.8
DS 0 43.4±3.5 45.1±3.8 45.4±3.9
DS 0.1 40.6±5.4 42.4±4.3 43.2±3.9
DV 32.4±4.4 34.7±2.7 35.5±2.5
SP 46.0±2.3 47.4±3.2 47.6±3.3

Table 1: Scenario (1) / KL 3

ConCep 0CAP ICAP GCAP
Original 84.0±7.4 84.0±7.4 84.0±7.4
DS 0 22.6±6.1 45.0±2.3 46.1±2.3
DS 0.1 16.7±8.6 41.9±2.1 44.5±2.1
DV 14.5±4.9 35.5±1.5 35.6±0.7
SP 30.7±4.4 53.2±3.8 51.9±2.0

Table 2: Scenario (1) / KL 6

ConCep 0CAP ICAP GCAP
Original 64.3±3.1 64.3±3.1 64.3±3.1
DS 0 61.2±2.9 61.8±2.4 61.7±2.6
DS 0.1 60.9±3.8 61.5±3.0 61.4±3.2
DV 60.6±3.2 61.7±2.2 61.3±2.1
SP 62.4±2.9 62.7±2.7 62.6±2.7

Table 3: Scenario (2) / KL 2

ConCep 0CAP ICAP GCAP
Original 77.8±7.0 77.8±7.0 77.8±7.0
DS 0 52.5±6.3 62.0±3.3 60.9±2.6
DS 0.1 50.4±9.2 61.7±6.0 60.9±4.8
DV 44.5±8.9 61.2±3.8 59.6±2.3
SP 59.4±5.0 68.4±4.0 66.7±2.9

Table 4: Scenario (2) / KL 4

Non-Match Table 1 Table 2 Table 3 Table 4
DS 0 53 725 14 236
DS 0.1 64 854 16 317
DV 103 865 27 398
SP 42 611 6 190
Table 5: Average number of samples ignored by ICAP

risksR over these 35 attribute keys, as well as the standard deviation.
The table consists of three columns: 0CAP comprises the risk if
non-matches are coded as 0, and ICAP shows the result for ignored
non-matches. In the third column, we have the disclosure risk based
on the GCAP measure. Table 2 presents the results for Scenario (1)
and key length six, whereas the Tables 3 and 4 concern Scenario (2)
with key lengths two and four.

We start by making general observations. GCAP results in a
higher disclosure risk than 0CAP. Since GCAPs, j ≥ CAPs, j holds
for all records j, this is no surprise. The difference is significant
for the larger keys in the Tables 2 and 4, which is also plausible
since larger keys lead to an increasing number of non-matches. We
point out that, in all tables, the risks entailed by GCAP are close to
the risks that result from ICAP. Note again that ICAP just ignores
non-matches and is only taken over matches. The large differences
between 0CAP and GCAP already indicated that the number of
ignored samples is significant in the Tables 2 and 4. Table 5 shows
the average number of samples ignored by ICAP in each situation.
We recall that the original dataset consists of 1,473 samples. Since
ICAP and GCAP coincide on matches, the differences between them
result from the varying scores of GCAP on the ignored samples.
Since these differences are small, this experiment corroborates
our claim that GCAP is a useful extension of the CAP disclosure
risk measure. Whenever CAPs, j is undefined, the computation of
GCAPs, j allows the data provider to give an adequate estimate for
the risk of the respective record. Furthermore, we see that ignoring

a large amount of samples or assigning them risk 0 leads to an
underestimation of the dataset’s total risk.

We now focus on the differences between the synthesizers. For
the DataSynthesizer with disabled Differential Privacy (DS 0) and
the synthetic dataset generated by synthpop (SP), the risk entailed
by GCAP is generally higher than for the Synthetic Data Vault (DV)
and the data generated by the DataSynthesizer with Differential
Privacy (DS 0.1). This result was to be expected, as the latter tools
tend to produce a larger distortion of the data and, therefore, lead to
lower disclosure risks. More interesting is the comparison between
smaller and larger key sizes. Compared to Table 3, the risk entailed
by GCAP decreases in Table 4 for all tools except for synthpop. The
risk development for larger key sizes is interesting and unexpected,
as the attacker’s situation improves due to an increase in prior
knowledge. For example, we observe a substantial disclosure risk
increase on the original dataset. In Scenario (1), the GCAP score
rises from 54.9 to 84.0, which is a consequence of the fact that the
equivalence class for large key sizes often contains only one ele-
ment, namely exactly the record of the respective victim individual.
From the attacker’s perspective, the intuition is that there might
be better ways to exploit longer key sizes on synthetic datasets
than using the classifier related to the GCAP measure. We therefore
continued to study this problem by comparing the performance
of several algorithms suitable for solving the attacker’s classifica-
tion problem related to the Scenarios (1) and (2). In Tables 6-9, we
show the results for Nav̈e Bayes (NB), Support Vector Machine
(SVM), K-NearestNeighbors (KNN), RandomForest (RF), Logistic
Regression (LR) and the variant of the RadiusNearestNeighbor (FR-
NN) classifier described by Algorithm 3.1. As explained earlier, the
accuracy scores of the latter coincide with the GCAP disclosure
risk measure. We utilised the scikit-learn package5 in Python and
employed all algorithms with the standard parameter settings, to
avoid unintended optimization.

5Version 0.20.3



Machine Learning Algorithms Accuracy for the Attacker’s Classification Problem
Contraception Dataset

Table 6: Scenario (1) / KL 3

ConCep NB SVM KNN RF LR FR-NN ENS
Original 47.4±2.8 49.9±3.6 48.5±7.0 54.4±7.5 45.7±2.6 54.9±7.8 51.7±5.1
DS 0 46.6±2.7 46.6±4.1 43.0±4.9 45.3±4.0 43.6±2.2 45.4±3.9 46.8±4.1
DS 0.1 44.7±2.7 45.1±2.8 40.7±4.1 42.4±4.2 42.7±0.6 43.2±3.9 45.2±3.0
DV 39.2±2.4 37.8±3.2 36.2±2.5 35.1±2.7 39.6±2.5 35.5±2.5 39.0±2.4
SP 47.0±2.5 48.7±3.7 44.6±3.7 47.4±3.1 45.7±2.6 47.6±3.3 48.8±3.8

Table 7: Scenario (1) / KL 6

ConCep NB SVM KNN RF LR FR-NN ENS
Original 49.9±1.6 57.7±2.3 64.5±3.1 82.3±7.0 50.9±1.8 84.0±7.4 66.8±4.3
DS 0 50.9±1.9 50.7±3.2 47.3±2.7 47.8±2.9 48.0±1.9 46.1±2.3 51.4±2.8
DS 0.1 47.4±2.3 48.2±1.6 43.5±1.2 43.5±2.7 43.4±0.5 44.5±2.1 47.9±2.3
DV 38.0±0.8 36.1±1.4 35.6±1.3 36.4±1.6 39.5±1.4 35.6±0.7 38.4±1.0
SP 49.4±1.3 54.2±2.3 51.4±1.7 52.2±3.0 50.2±1.6 51.9±2.0 55.0±2.7

Table 8: Scenario (2) / KL 2

ConCep NB SVM KNN RF LR FR-NN ENS
Original 62.6±2.3 63.0±2.1 57.4±7.8 64.2±3.1 62.8±2.1 64.3±3.1 63.2±2.1
DS 0 62.7±2.1 62.8±2.1 53.7±9.1 61.4±2.9 62.8±2.1 61.7±2.6 62.8±2.1
DS 0.1 62.7±2.1 62.2±1.6 52.8±8.7 61.6±2.0 62.4±1.8 61.4±3.2 62.7±2.1
DV 61.6±0.7 61.9±1.2 54.1±10.0 60.8±1.8 61.6±0.7 61.3±2.1 61.7±0.8
SP 62.3±1.9 62.9±2.1 58.9±4.7 62.1±3.1 62.7±2.1 62.6±2.7 62.9±2.0

Table 9: Scenario (2) / KL 4

ConCep NB SVM KNN RF LR FR-NN ENS
Original 64.2±1.7 65.0±1.5 69.4±3.5 77.0±6.6 64.4±1.6 77.8±7.0 67.0±1.9
DS 0 64.1±1.9 64.3±1.7 60.8±3.0 59.9±3.8 64.6±1.7 60.9±2.6 64.4±1.8
DS 0.1 63.4±1.6 63.1±1.1 59.7±4.5 59.3±3.0 64.1±1.6 60.9±4.8 63.6±1.4
DV 62.4±0.7 62.0±0.6 59.6±1.6 58.8±2.4 62.2±0.6 59.6±2.3 62.3±0.7
SP 63.3±1.7 64.7±1.7 63.1±3.9 64.8±3.2 64.4±1.6 66.7±2.9 65.0±1.6

Notably, the performances of NB, SVM, KNN and LR do improve
from Table 8 to Table 9. It appears that the adversary might benefit
from considering not only FR-NN, but different classifiers to solve
their problem. On the other hand, this raises a natural question:
Which classifier should the attacker choose to maximize the ac-
curacy of the prediction? The attacker is not able to perform an
evaluation and then choose the algorithm that yields the highest
accuracy scores. We therefore considered the using an ensemble
classifiers6, denoted as ‘ENS’ in the last column of the tables. The
idea is that the attacker applies each of the six machine learning

6https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
VotingClassifier.html

algorithms to their problem and then picks a prediction by imple-
menting a majority vote on the results of the classifiers. Indeed, we
observe that ENS generally scores above average. On the synthetic
datasets of Scenario (1), ENS even exceeds all other classifiers in
five out of eight cases.

The results indicate that, in addition to GCAP, the accuracy score
of the ensemble classifier is also worth to be considered as possible
disclosure risk measure by the data provider. In Scenario (2), the
accuracy of the ensemble on the synthetic data is relatively close to
the accuracy on the original data. Clearly, the performance on the
real data is an important reference point, as it usually constitutes
an upper bound for the performance on the synthetic data. For the
evaluation of the utility of the ensemble for the attacker, we should

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html


Figure 2: ENS scores in Table 8

also consider lower bounds in terms of the accuracy of dummy
classifiers. A first baseline is given by generating predictions uni-
formly at random. If we suppose that the attacker already uses
the synthetic dataset, the predictions can be generated based on
the target attribute’s distribution. For example, we may consider
a dummy classifier that always predicts the most frequent value
of the target attribute in the synthetic data (sometimes called the
zero-rule classifier).

All four synthetic data generators preserve the distribution of
attributes to some extent. Therefore, the most frequent value of
the target attribute is the same for all datasets, which leads to the
same constant prediction and, therefore, constant accuracy scores
of the dummy classifier. For Scenario (1), this score is 42.7%; for
Scenario (2), it is 61.0%. One might come to the conclusion that the
accuracy scores of the ensemble, and hence the disclosure risk is still
“small enough". On the synthetic datasets, 66% is never exceeded.
However, to evaluate the general usefulness of data synthesis as
privacy-preserving method, we have to consider not the absolute
risk, but the decrease of disclosure risk relative to the original data.
In this sense, the ensemble scores of DS 0 and SP in the Tables 6 to 9
exceed the respective dummy classifier baselines by a substantial
margin, which may become more obvious by taking a look at the
scores on a number line in Figure 2.

On the other hand, all synthetic datasets prevent the attacker
from exploiting larger attribute key sizes for re-identification, which
is the most important reason for the high accuracy of FR-NN on
the real data in Tables 7 and 9. Furthermore, the DataSynthesizer
can be used with Differential Privacy to lower the disclosure risk,
although the results for varying values of ε are rather unstable. The
synthpop package also comes with many possibilities for achieving
more privacy, such as removing replicated statistical uniques from
the generated dataset. All these options, however, will affect the
quality and the utility of the synthetic data, which should also be
considered for assessing the results of the Synthetic Data Vault.
The relation between the utility and the privacy of synthetic data
is best described as trade-off.

It has to be stressed that further experiments on other datasets
are necessary to establish more empirical evidence. We therefore
complemented our detailed experiment on the ContraceptiveMethod
Choice dataset by considering two attacker scenarios for the Fertil-
ity dataset 7. This dataset consists of 100 records of volunteers that
provided semen samples. In ten attributes, it comprises a variety of
sensitive health information, such as whether the patient had child
diseases, accidents, serious trauma, or surgeries. Further features
are the frequency of alcohol consumption, smoking habits and, of
course, the diagnosis of the semen sample. Since only few variables
seemed to be adequate candidates for the set of quasi-identifiers,
we focused on the following two scenarios:

7https://archive.ics.uci.edu/ml/datasets/Fertility

(1) QI = {‘age’, ‘alcohol’, ‘smoking habit’}
Target = ‘accident’

(2) QI = {‘age’, ‘alcohol’, ‘smoking habit’}
Target = ‘surgery’

For both situations, we considered the average of the three attribute
keys of length 2. Knowing only two of the three attributes in QI,
the goal of the attacker is to infer whether their victim had an
accident or surgery in the past. Tables 10 and 11 show the results.
The dummy classifier baseline for the target ‘accident’ in Scenario
(1) is 56%. Again, the ensemble exceeds this value substantially on
DS 0 and SP, as the performance of DS 0 is actually close to the
original data. For Scenario (2), the dummy baseline is 49% for SP
and 51% for DS 0, DS 0.1 and DV. We may draw similar conclusions,
although this is the first situation in which not only the use of DS
and SP, but also of DS 0.1 and DV may lead to privacy breaches
and considerable disclosure risk for certain records. In Figure 3, we
consider the scores of ENS in Table 11 on a number line.

5 CONCLUSION AND FUTUREWORK
In this paper, we considered the problem of establishing a baseline
for attribute disclosure risk on synthetic data. Given some prior
knowledge in form of the values of several key attributes of a
record of the original dataset and at least one synthesized dataset,
what may the attacker infer about the record’s entry for some
sensitive target attribute? First of all, they may employ a zero rule
classifier, which considers the distribution of the target attribute
in the synthetic data and forms the prediction by choosing the
most prominent entry. This straight-forward approach establishes
a first baseline, but is superseded by other methods. We discussed
Correct Attribution Probability, a recently published risk measure
based on a matching mechanism, and generalized it to the GCAP
measure, which also handles non-matches. In the evaluation, we
saw that our approach improves the estimation of the disclosure
risk, since it better reflects the ability of the adversary. Additional
refinement of the accuracy scores is achieved by implementing
several machine learning classifiers and employing an ensemble
classifier, applying a majority vote on the obtained predictions
of several individual classifier. We conducted our experiment by
averaging over all possible attribute keys of certain length for a
predefined set of quasi identifier variables, to provide an estimation
of the average attack risks on all scenarios.

In Section 4, we saw that some of the evaluated synthetic datasets
revealed sensitive information about the individuals in the orig-
inal data. This can be prevented by using the disclosure control
measures available to the user of the discussed tools. The influ-
ence on the quality and utility of the resulting synthetic data is
certainly interesting and worth to be subject of further investiga-
tion. However, we point out that there are conceptual limits to
the pursuit of keeping data utility and simultaneously decreasing
disclosure risk. In the long-key scenario of Table 7, the Synthetic

https://archive.ics.uci.edu/ml/datasets/Fertility


Machine Learning Algorithms Accuracy for the Attacker’s Classification Problem
Fertility Dataset

Table 10: Scenario (1)

Fertility NB SVM KNN RF LR IRNN ENS
Original 60.7±1.9 62.7±2.9 69.0±1.6 75.7±5.0 61.0±2.2 77.0±5.9 69.0±2.2
DS 0 61.3±2.1 60.3±3.1 58.0±2.9 66.0±3.6 63.7±1.7 67.0±0.0 68.7±2.1
DS 0.1 57.7±2.1 61.7±3.4 58.3±1.2 50.3±5.2 56.3±2.5 53.7±8.3 58.7±3.3
DV 56.7±3.3 56.7±0.5 51.7±5.4 54.0±4.2 59.3±2.6 50.7±7.1 55.3±3.3
SP 62.0±3.3 61.7±1.2 65.0±1.4 63.3±6.1 62.7±3.3 63.7±6.6 63.3±3.9

Table 11: Scenario (2)

Fertility NB SVM KNN RF LR IRNN ENS
Original 60.3±5.2 60.3±3.3 65.0±7.1 70.3±8.1 57.7±5.4 71.7±9.0 64.7±4.0
DS 0 58.0±5.0 59.0±5.7 57.0±5.1 61.7±7.9 59.3±5.9 63.0±7.5 59.3±5.9
DS 0.1 57.7±8.3 59.0±5.7 57.3±6.2 56.3±5.4 59.0±7.9 56.7±6.1 58.0±6.2
DV 56.3±3.9 57.7±4.0 55.7±0.9 57.3±4.5 60.3±3.3 52.7±1.2 56.7±5.6
SP 55.3±2.4 56.3±2.9 60.3±1.7 60.7±3.9 58.0±3.6 62.7±3.3 60.7±2.9

Figure 3: ENS scores in Table 11

Data Vault decreased the initially considerable disclosure risk of the
original dataset down to the dummy classifier baseline. Obviously,
this was not possible without also decreasing the utility of the syn-
thetic dataset for training machine learning classifiers to predict the
choice of contraceptive methods. Note that we just described one
fact from two different perspectives. On an abstract level, the same
property of the dataset has been altered by the synthesizer. This
strong conflict between utility and disclosure prevention occurs
whenever the target attribute in the applied classification task is
a sensitive attribute. If the sensitive attribute is among the predic-
tors, the problem is less drastic. In future work, we will therefore
study the optimization problem of keeping data utility high and de-
creasing disclosure risk of sensitive predictor variables. Besides the
mentioned experiments on other datasets, our future research will
also concern the attacker’s possibilities to make better use of prior
knowledge and larger attribute keys. Finally, GCAP and all other
concepts in this paper are only considered for categorical attributes.
A generalization to continuous variables appears feasible.
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