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ABSTRACT
With the recent advances and increasing activities in data mining
and analysis, the protection of the privacy of individuals is crucial.
Several approaches address this concern, from techniques like data
anonymisation to secure, non-disclosive computation, all of which
have their specific strengths and weaknesses, depending on the spe-
cific requirements. A slightly different approach is the generation
of synthetic data, which tries to preserve the overall properties and
characteristics of the original data without revealing information
about actual individual data samples. The promise is that, for most
purposes, models trained on the synthetic data instead of the real
data do not show a significant loss of performance. In this paper, we
give an overview on currently available approaches for synthetic
data generation, and empirically evaluate the utility of the gen-
erated synthetic data by testing them on a number of supervised
machine learning tasks on several publicly available datasets.
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• Computing methodologies → Supervised learning; • Secu-
rity and privacy→Data anonymization and sanitization;Us-
ability in security and privacy; Privacy protections;
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1 INTRODUCTION
Due to technological advances both in collection and storing of data,
an ever increasing amount of micro-data, i.e. data that contains
information about individuals, is collected. This includes domains
such as health care, employment, or social media. Along with these
developments, rapid advances in data analysis entail an increasing
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interest in accessing and mining micro-level data. This is a serious
threat to the privacy of the individuals affected. If not for ethical
reasons, several regulations, such as the EU’s General Directive
on Data Protection (GDPR), which came into effect in May 2018,
put restrictions on how data can be collected, shared and utilised.
However, it is still often required to publish data bases, either to
a limited number of recipients, or generally to the public, espe-
cially in research settings. Traditional approaches to comply with
data protection and privacy aspects in these settings often include
anonymisation of data before publishing or processing, such as
in the approaches of k-anonymity [11] or differential privacy [3].
For a detailed overview on privacy-preserving methods, see [2, 4].
K-anonymity has been shown to be still prone to linkage attacks,
when adversaries have background knowledge and access to other
data sources. Differential privacy, when applied to the model or
the output of the model, on the other hand is not applicable for
all types of analysis techniques. Both approaches distort the data
records to some extend, which has potentially negative effects on
the utility of the data and the models subsequently trained upon,
as e.g. demonstrated in [5]. An alternative to anonymisation is the
generation of synthetic data. This is data that has been generated
from an original dataset (that cannot easily be shared), with the
aim of preserving the global properties and relations between the
attributes in the dataset without revealing the individuals described
by the data. This allows the synthetic data to be shared much more
easily, while in theory it should remain possible to train machine
learning models on the synthetic data that ultimately achieve ef-
fectiveness comparable to models trained on the real data. In this
paper, we will provide an analysis of the effects on utility of the
synthetic data, as well as the privacy implications.

The remainder of this paper is structured as follows. Section 2
will provide an overview on related work and will describe our
selected, publicly available approaches for generating synthetic
data. After explaining our experiment setup in Section 3, we discuss
the utility and privacy aspects in our evaluation in Section 4. Finally,
we provide conclusions and an outlook on future work in Section 5.

2 RELATEDWORK
One of the earliest usages of synthetic data was in the partial syn-
thetic data approach by [9], where certain columns are generated
synthetically. An overview on more than 20 approaches is given
in [10], categorising the approaches into fully or partially syn-
thetic, as well as identifying whether they are based on the original
data. Commercial solutions for data synthetisation also gain mo-
mentum, e.g. by mostly.ai 1. Due to licensing issues, we could not

1https://mostly.ai/synthetic-data-engine.html
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include commercial tools in our evaluation. Naturally, details about
the synthetisation process are not so readily available in this case.
However, specifically for mostly.ai, it is stated to be built on neural
network models, such as auto-encoders (see e.g. [8] for a discussion
on auto-encoders). One other example of the use of auto-encoders
for synthetic data is reported in [1]. They have also been used
extensively in the generation of synthetic image data, e.g. [12].

For selecting the synthetic data generation tools included in
our analysis, we focused on recent methods that are open-source
implementations and utilise a powerful generative model to ensure
high-quality data. Both approaches we identified, the Synthetic
Data Vault and the DataSynthesizer, are developed in the Python
programming language.

2.1 Synthetic Data Vault
The Synthetic Data Vault (SDV) has been developed by Patki et al.
in 2016 [6]. The source code and documentation of the package
can be found at 2. The modelling and sampling process of SDV
consists of three steps. First, the DataNavigator extracts all relevant
information from the dataset and transforms the contents into
numerical values. The Modeler then creates generative models of
the input, and is subsequently passed to the Sampler for generating
synthetic rows of data. Prior to this process, the user has provide
the data in Comma-Separated-Value (CSV) files. Furthermore, basic
information about its structure and data types should be specified,
in a Javascript-Object-Notation (JSON) file.

While the SDV is able to build models for relational databases
with multiple tables, we use the standalone table model for the
purposes of the present paper. The descriptive model of such a table
is obtained from the distribution of the values of each column and
the covariances between the attributes. In order to find a good esti-
mate for the distribution of a column, a Kolmogorov-Smirnov test
is applied. This test returns p-values for the likelihood that the data
matches common distributions, such as the truncated Gaussian, the
uniform, the beta or the exponential distribution. The highest p-
value determines the shape of the chosen Cumulative Distribution
Function (CDF) for the column. Next, the covariance between the
columns is calculated. In order to prevent the shape of different
distributions from influencing the covariance estimates, a multi-
variate version of the Gaussian Copula is applied. The synthetic
data is then generated via the resulting model, which consists of the
parameters for the column distributions and the covariance matrix
of the table after the transformation by the copula.

2.2 DataSynthesizer
The DataSynthesizer (DS) has been developed by Ping et al. in 2017.
We briefly describe the approach and available implementation, and
refer the reader to [7] for additional information. The source code
is publicly available at 3. The approach of the DS is based on earlier
work by [13].

The high-level system architecture of the DS consists of two
modules, namely the DataDescriber and the DataGenerator. The
DataDescriber takes a dataset in first normal form as input (in the
form of a CSV file), and infers both the data types and the domain

2https://github.com/HDI-Project/SDV
3https://github.com/DataResponsibly/DataSynthesizer

of the attributes. However, the system also allows the users to spec-
ify data types. The DataDescriber creates a description file of the
distributions and types of attributes in the input table. TheDataGen-
erator then samples synthetic data based on the description. Both
the DataDescriber and the DataGenerator may be invoked in one of
three modes. In ‘random mode’, the tool generates type-consistent
random values for each attribute. In ‘independent attribute mode’,
the DataSynthesizer performs a frequency-based estimation and
preserves the unconditioned probability distribution of each at-
tribute, but not the dependencies between them. In ‘correlated
attribute mode’, a Bayesian network is constructed to model the
correlated attributes. The user may specify the maximum number
of parents of each node, which may become a runtime (efficiency)
requirement for large datasets. Data privacy concerns are addressed
by providing ε-differential privacy (cf. [3]). The user of the DS is
able to determine the value of ε and may also set it to 0 for disabling
differential privacy completely.

3 EXPERIMENT SETUP
In this section, we discuss the datasets used in our experiment as
well as our methods and the strategy for the utility evaluation. Our
main goal in the experiments is to provide an unbiased evaluation,
for both the models trained on the original baseline, as well as
the models on the synthetic data. Therefore, we refrained from
overly optimising certain aspects (such as parameter settings for
the models and data generation, data preparation, etc.) for specific
models.

3.1 Datasets
Our experiments are based on a total of five standard benchmark
datasets, taken from the UCI repository4and Kaggle5 (see Table 1).

Table 1: Dataset characteristics

Dataset # Features # Instances # Classes

Adult6 (Census Income7) 15 48,842 2
Banknote Authentication8 5 1,372 2
Iris9 5 150 3
Social Network Ads10 5 400 2
Titanic11 12 891 2

We included datasets with personal identifying information as
well as sensitive data (e.g., ethnicity and salary), as these are typical
cases which require data privacy. However, we also included some
other benchmark datasets for further analysis and comparisons. We
aimed at a diverse set of characteristics in the dataset, from a range
of different domains. The Social Network Ads dataset is used to
predict if a user bought a certain product, based on their gender, age,
and estimated salary. The Adult (sometimes called Census Income)
4http://archive.ics.uci.edu/ml
5https://www.kaggle.com/
6https://archive.ics.uci.edu/ml/datasets/Adult
7https://archive.ics.uci.edu/ml/datasets/census+income
8http://archive.ics.uci.edu/ml/datasets/banknote+authentication
9https://archive.ics.uci.edu/ml/datasets/iris
10https://www.kaggle.com/rakeshrau/social-network-ads
11https://www.kaggle.com/c/titanic/data
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dataset shows whether a person’s income exceeds $50,000 per year,
according to census data such as age, work class, and education.
The Titanic dataset tells if a passenger survived the sinking of the
Titanic and provides passenger information such as ticket class,
gender, age, and family members on board. In addition, we added
the Banknote Authentication dataset for the task of identifying
forged banknotes and the Iris dataset with three types of plants.

3.2 Data Generation
For each of the datasets, we performed the following procedure to
synthesise and prepare the data for the utility evaluation.

(1) We deleted columns as part of standard feature cleaning.
(2) To ensure reliable results, we performed a repeated holdout

method, i.e. we randomly generated ten different splits of
the table into training and test data, such that the size of the
latter is 20% of the original table.

(3) For each split, we applied the tools discussed in Section 2 to
the training dataset to generate synthetic training data of
equal length.

Since we wanted to investigate the effect of differential privacy for
the Data Synthesizer, the tool is applied twice in Step 3. For each
of the splits generated in Step 2, we therefore obtain the following
data files: The test data, the original training data, the training
data synthesised by the SDV, and two synthetic training data files
from the DS, one with and one without differential privacy. The
described procedure is applied to each original dataset except the
Adult Census dataset, for which we adhered to the split published
in the UCI repository.

We used the SDVwith the default model type copulas.multivariate.-
Gaussian Copula for the Modeler. The DS is applied in correlated
attribute mode to preserve correlations in the synthetic data, which
is important for realistic machine learning models. We used both
the SDV and the DS with default settings and as explained in the
respective GitHub repositories. We intentionally did not optimise
the approaches for the selected datasets, as we wanted to investi-
gate their general performance. The only parameter we changed
was ε for differential privacy in the DS — its influence on the data
generation will be discussed in Section 4.

3.3 Utility Analysis
When sanitising a dataset via anonymisation, synthetisation or
other approaches, some sensitive information at the level of individ-
ual records is invariably removed [2]. The utility of such a dataset
for researchers, economists or other data analysts, can thus be mea-
sured by the extent to which it preserves aggregate and statistical
information. Given a candidate for synthetic data, a utility metric
quantifies the utility of this release candidate (resp. the information
loss due to the synthetisation process). There are in general two
approaches for such an evaluation. One is to utilise one or more
quantitative measures of information loss (see [2] for an overview).
Given that these measures do not necessarily reflect the final utility
of a machine learning model, we will employ the second approach,
which is to directly use the synthetic dataset as an input to the
model building, and evaluate the quality of the model.

We approached the classification tasks by applying five machine
learning algorithms, namely Naïve Bayes, Support Vector Machines,

K-Nearest Neighbours, Random Forests and Logistic Regression.
All classifiers are implemented in the Python sklearn package12,
and we used standard parameters to avoid introducing bias. For
each dataset and each split setup consisting of the files described
in the previous subsection, we performed the following procedure:

(1) On the original training and test data, we applied label en-
coding and, if necessary, one-hot encoding. Subsequently,
we used sklearn’s StandardScaler for feature scaling.

(2) We fitted the model to the training data and predicted the
results on the test data.

(3) We repeated Step 1 and 2 for all synthesised training datasets.
We present the resulting accuracy scores in the following tables of
size 4×5 (number of different training datasets× number of different
classifiers). As the procedure is repeated for every random split
generated in the previous step of the experiment, this yields a total
of ten such results. We aggregate those by reporting the average
results plus the standard deviation per dataset (see Section 4.2).

4 EVALUATION
In this section, we discuss the results of our experiments and present
them together with an analysis of differences between the original
and the synthetic data.

4.1 Comparison of Original to Synthetic Data
The first step of our evaluation is a statistical comparison of the
synthesised and the original training data. For each of the datasets,
we performed the following steps.

• For each attribute, we generated a histogram visualising both
the distribution of the real and the synthetic data.

• We computed the correlation coefficients and generated a
heat map to visualise dependencies between attributes.

• Wemeasured the distance between the real and the synthetic
data via row-by-row computations of nearest neighbours.

For the sake of brevity in this paper, we limit the presentation
of the results to some exemplar and key findings. In the following,
we discuss several aspects related to the Adult Census dataset, as
representative for general tendencies. We first compare the heat
maps in Figure 1. As can be seen in the Figure 1c and Figure 1b,
the sign of the correlation coefficient is, in general, preserved both
by the SDV and the DS. For this comparison, we did not inject
any noise in form of differential privacy in the DS, i.e. ε = 0. The
degree of preserved correlation between the attributes is notably
higher for the DS. As a consequence, the SDV constructs data
with larger differences to the original, which can also be observed
by comparing histograms for the attributes. As an example, we
visualise the distributions for the feature ’occupation’ in Figure 2,
which has a domain consisting of 14 categories. Synthesised datasets
with larger differences to the original dataset will clearly affect both
the data privacy and the performance of machine learning models.
It is expected that there is a trade-off between these two.

No formal model for evaluating the privacy of synthetic datasets
has yet been proposed. We thus employ a statistics analysis. Our
basic assumption is that privacy is endangered if individuals like
the ones in the original dataset appear also in the synthetic dataset.

12https://scikit-learn.org/stable (specifically, we used version 0.20.3)
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(a) Original (b) DS (c) SDV (d) DS with DP

Figure 1: Heat maps for the Adult (Census Income) dataset

Figure 2: Distributions of ‘occupation’ attribute

Therefore, we require some kind of distance measure between
datasets. We want to identify whether there are any individuals
(i.e. rows) in the original dataset that also appear in the synthesised
datasets. We are interested in both exact fits as well as similarities,
as those might still contain some information that could lead to
a privacy breach. For each row in the synthesised datasets, we
therefore computed the nearest neighbour in the original, that is,
the row to which the euclidean distance is minimal. To transform
categorical attributes into comparable numerical values, we used
a combination of label- and one-hot encoding, followed by a step
of feature scaling. The results for Adult Census are summarised
in Figure 3, where we can see the euclidean distance on the x-
axis and the amount of rows on the y-axis (with bin size of 40).
We observe that the dataset synthesised by the DS is significantly
closer to the original compared to the dataset synthesised by the
SDV. We can influence that by enabling differential privacy and
setting, e.g., ε = 0.05 in the DS. We then obtain the graphs in
Figure 1d and Figure 3c, respectively. The heat map now shows
significant differences in the dependencies between attributes, and
the correlations appear to be much weaker in general. We also see
that the mean minimum distance to points in the original dataset
has significantly shifted to the right, and now more resembles the
distribution of distance that can also be observed in the Synthetic
Data Vault, though still with a higher number of samples that exhibit
a very low distance.

4.2 Utility on Machine Learning Tasks
The final step of our experiment is to train machine learning models
on the real and the synthesised training datasets, and to evaluate

these models by comparing their prediction scores on the test data.
We computed the accuracy scores of all models, which is the relation
between true predictions and all predictions that have been made.

Let us start with the results of the Social Network dataset. The
columns show the scores for the classifiers we used, i.e. Naïve Bayes
(NB), Support Vector Machine (SVM), K-nearest neighbour (KNN),
Random Forest (RF) and Logistic Regression (LR). As described in

Table 2: Classification results on the Social Network dataset

SocNet NB SVM KNN RF LR

Real 89.6±2.5 83.6±3.1 90.6±2.1 88.6±2.7 84.0±2.9
DS 0 88.7±2.8 84.2±2.4 89.4±2.8 88.6±3.5 85.6±2.4
DS 0.1 87.6±2.5 83.4±3.4 85.1±3.4 81.3±5.7 83.3±3.3
SDV 77.9±5.8 74.5±8.6 75.1±5.3 73.1±5.3 78.9±5.1

Section 3.3, the scores in this table are the arithmetic means of
the accuracy scores for ten different random splits of the original
data. Additionally, the standard deviation is included. We can see
that the values of the DS, without differential privacy, are high for
each of the five models, sometimes even higher than the scores of
the model trained with the original data. In this context, we have
to stress the fact discussed in Section 4.1, namely that the dataset
synthesised by the DS with ε = 0 is much closer to the original than
the dataset synthesised by the SDV. Not surprisingly, the values
of the DS are generally higher. Hence, we decided to also conduct
the experiment with enabled differential privacy, and the third row
shows the results for ε = 0.1. It has to be mentioned that, for ε > 0,
we observed unstable performance scores of the DS, depending
on its own random seeds utilised for differential privacy, which
cannot be controlled by the user. The results range from scores
as good as for ε = 0 to scores below those of the SDV. Therefore,
the performances of DS with ε > 0 displayed in this table and in
the following ones have to be interpreted with caution. Further
investigation of this behaviour will be a subject for future work.

We continue with discussing the Adult (Census Income) dataset,
and recall that these are the results for the single split published
by UCI. For this table, we computed both the accuracy and the

Table 3: Classification results on the Adult (Census Income) dataset

Adult NB SVM KNN RF LR

Real 79.7 | 41.5 81.0 | 41.4 81.4 | 56.2 82.2 | 57.3 82.3 | 53.3
DS 0 81.1 | 38.4 79.5 | 23.6 79.4 | 47.4 80.0 | 47.6 81.7 | 47.3
DS 0.1 78.8 | 36.8 79.4 | 39.7 77.6 | 46.6 78.4 | 41.8 79.4 | 44.9
DS 0.05 78.8 | 20.3 76.4 | 0.0 75.8 | 39.1 76.1 | 30.3 77.7 | 20.8
SDV 77.2 | 7.1 76.4 | 0.0 76.9 | 11.6 76.4 | 2.0 77.0 | 5.7
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(a) SDV (b) DS (c) DS with DP

Figure 3: Minimum distances for the Adult (Census Income) dataset

F1 score, the latter of which is the harmonic mean of precision
and recall. Note that each cell is of the format ‘Accuracy | F1-Score’.
Furthermore, we included the results for DSwith ε = 0.05 to observe
the effects of varying degrees of differential privacy. Also, ε = 0.05
is the parameter choice that has been investigated in Figure 1d and
Figure 3c. At first glance, it appears that both the accuracy scores
of DS and SDV are close to the original dataset. We can see the
repeating behaviour that the DS without differential privacy scores
better than the SDV. The difference is smaller than one might expect
after the analysis of the two datasets in the Section 4, in particular
after comparing the two graphs in Figure 3. However, this can be
explained by taking a closer look at the distribution of the target
variable ‘income’ in the training data and themetrics of SDV besides
the accuracy score. A dummy classifier that always predicts the
most frequent class of the ‘income’ attribute (sometimes referred
to as the "Zero Rule" classifier) already achieves 76.4% accuracy.
Considering the scores of the Synthetic Data Vault, we can see
that they are only slightly better for NB, KNN and LR. Indeed, an
inspection of the confusion matrices reveals that the models trained
on the training data synthesised by SDV tend to strongly prefer the
more frequent class over the less frequent one. As a consequence,
the SDV shows rather low F1 scores.

Table 4: Classification results on the Banknotes dataset

Bank NB SVM KNN RF LR

Real 83.7±2.4 98.5±0.5 100.0±0.1 98.4±0.7 98.3±0.5
DS 0 83.7±3.0 97.3±0.9 95.5±2.6 93.5±1.9 95.7±0.8
DS 0.1 70.0±4.1 87.5±7.4 85.8±3.6 81.6±4.7 80.2±6.9
SDV 81.3±1.0 96.7±0.9 92.8±1.6 92.1±2.4 96.9±1.2

Table 5: Classification results on the Iris dataset

Iris NB SVM KNN RF LR

Real 93.7±5.1 97.7±2.6 96.0±3.6 94.4±4.0 96.0±4.2
DS 0 93.0±6.4 97.0±2.8 95.4±4.0 95.0±4.8 95.3±5.0
DS 0.1 67.3±19.3 49.3±17.5 72.7±9.9 63.7±8.5 50.3±14.6
DS 0.25 88.7±3.4 83.7±10.3 88.3±7.8 86.0±6.3 79.0±10.4
SDV 94.0±4.7 96.0±3.9 92.0±5.6 90.7±4.9 95.0±4.3

Better results of the SDV may be observed on the Banknotes and
the Iris datasets. In particular, the results for Naïve Bayes, SVMs and
LR are very close to the model trained on the real dataset, while for

k-NN and Random Forests, there is a noticeable difference. These
datasets have a structural similarity, as they both have five attributes
of the same type, namely a continuous variable. However, there are
still differences. The Banknotes dataset is significantly larger, while
the task on Iris is non-binary, as there are three different classes.
On Iris, enabling differential privacy causes the DataSynthesizer to
achieve rather poor and unstable results with high standard devi-
ation. For this dataset, we considered a value of 0.25 for ε , which
means that the amount of noise injected by differential privacy is
in fact less than the amount of ε = 0.1 we have used as a reference
point in all other experiments. This might be due to the rather com-
pact range of feature values and the small number of instances per
class. Of course, the Iris dataset itself doesn’t contain any personal
or sensitive information; still, the data synthetisation is agnostic of
that, and is not expected to work worse on non-sensitive data.

Larger differences between DS and SDV, more similar to those
in the Social Network dataset, can be observed for the Titanic
dataset. Here, the results on the SDV data are 12% off from the
performance on the real data for the SVM, k-NN and Random
Forests. The DataSynthesizer achieves much better results, even
with differential privacy enabled.

Table 6: Classification results on the Titanic dataset

Titanic NB SVM KNN RF LR

Real 76.6±3.0 77.6±3.1 78.9±2.9 79.9±2.9 79.1±3.6
DS 0 73.9±5.0 77.5±3.0 74.6±2.7 72.5±2.8 76.9±3.7
DS 0.1 72.7±4.3 75.6±7.2 73.0±4.3 72.5±4.5 75.5±6.1
SDV 71.8±4.7 65.3±7.7 66.8±5.2 66.0±6.4 71.8±5.3

(a) Original (b) DS (c) SDV

Figure 4: Heat maps for the Social Network dataset

For Social Network and Titanic, the differences between the
DS with ε = 0 and the SDV are rather significant. SDV’s loss
of accuracy of 10% or more can be explained by taking a closer
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Figure 5: K-NN model on the Social Network dataset: Original (left), DS (middle), SDV (right)

look at certain correlations. For example, let us consider the heat
maps for the Social Network dataset in Figure 4. Here, the most
important observation is that the SDV does not preserve the positive
correlation between the attributes ‘EstimatedSalary’ and ‘Age’. Let
us consider the effect on the performance of K-Nearest Neighbours
by generating a scatter plot. We try to predict the class ‘Purchased’
(‘0’ and ‘1’) based on the mentioned features. Each point represents
an individual, where the x-axis shows the age and the y-axis the
estimated salary; note that both features already have been scaled
to standard normal. Individuals who purchased are represented by
orange points, the others by blue cross marks. The regions are also
coloured orange and blue depending on what the model has learned
for points in the respective area.

In Figure 5 we observe that, for the original data, the model does
well for separating the two classes on the training data, obtaining
an accuracy score of 92.5% on the test data for the specific one of
the ten splits we worked with to generate the graphs. The scatter
plot for the DS and, in particular, the colouring of regions looks
rather similar, and the accuracy score is 90%. For the SDV, however,
we can see that the distribution of points is different in general,
and so are the regions learned by the model on the training data.
Of course, this affects the accuracy score on the test data, which is
72.5% in this case. This particularly drastic example demonstrates
the general effect of noises injected by the SDV.

5 CONCLUSIONS AND FUTUREWORK
We may conclude that the data synthesised by DS with disabled
differential privacy is very much suitable for classification tasks
in supervised machine learning. However, the analysis in Section
4.1 raises privacy concerns. For sensitive data, it is definitely rec-
ommended to use the SDV or the DS with a small value for ε . On
the Banknotes and the Iris dataset, the SDV produces synthetic
data with relatively large differences to the original tables’ records,
whereas the loss of utility for machine learning is comparably small.
The latter does not appear to be true for the Social Network, the
Adult and the Titanic dataset. We plan to investigate the reasons for
this in greater detail, as well as the effect of the size of ε for the DS. A
further aspect of future research will be in defining and quantifying
the privacy levels and guarantees achieved by synthetic data. We
have the impression that, in current work, it is rather assumed than
shown that privacy will be preserved by synthetic data generation.
We thus will compare synthetic data with other privacy-preserving
methods, such as anonymisation.
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