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Abstract. Anomaly detection is an important task to identify rare
events such as fraud, intrusions, or medical diseases. However, it often
needs to be applied on personal or otherwise sensitive data, e.g. business
data. This gives rise to concerns regarding the protection of the sensitive
data, especially if it is to be analysed by third parties, e.g. in collabo-
rative settings, where data is collected by different entities, but shall be
analysed together to benefit from more effective models.
Besides various approaches for e.g. data anonymisation, one approach for
privacy-preserving data mining is Federated Learning – especially in set-
tings where data is collected in several distributed locations. A common,
global model is obtained by aggregating models trained locally on each
data source, while the training data remains at the source. Therefore,
data privacy and machine learning can coexist in a decentralised system.
While Federated Learning has been studied for several machine learning
settings, such as classification, it is still rather unexplored for anomaly
detection tasks. As anomalies are rare, they are not picked up easily by
a detection method, and the representation in the model dedicated to
recognise them might be lost during model aggregation.
In this paper, we thus study anomaly detection task on two different
benchmark datasets, in supervised, semi-supervised, and unsupervised
settings. We federate Multi-Layer Perceptrons, Gaussian Mixture Mod-
els, and Isolation Forests, and compare them to a centralised approach.
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1 Introduction

Increasingly, organisations are collecting large volumes of data such as logs,
product information, and personal information on clients or customers. The in-
creasing demand for analysing and extracting anomalies, patterns, and possible
correlations of these data spurred unprecedented interest in the analysis of this
data, propelling some methods to higher effectiveness and efficiency. Alongside,
the demand for data sharing and exchange between different parties holding data
is increasing, often because different data sets complement each other. Collabo-
rative analysis of data can be beneficial, e.g. to learn from misuse patterns such
as fraud that other parties have been exposed to, or in the medical domain.
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However, especially when data contains personal information, regulatory, eth-
ical, and security concerns can restrict the potential to fully leverage data, as dis-
tribution and exchange are limited. Thus, means to enable collaborative analysis
are required. Federated Learning (FL) [1] is a collaborative learning approach
that trains models locally across multiple nodes, which each hold their data.
This data never leaves the node, and is thus not exposed to the network and
possible attacks. The objective of FL is to obtain models with an effectiveness
similar as if trained from centralised data. Anomaly detection is an important
task in many domains and applications, and users can benefit from exchanging
knowledge on their observed anomalies via collaborative learning. However, FL
has not yet received much attention in FL research.

In this paper, we thus investigate whether anomaly detection from distributed
data via FL can indeed achieve results comparable to a setting where data is
centralised. Differences in how unsupervised, semi-supervised, and supervised
learning algorithms are affected by federating are investigated. To this end, we
analyse the performance of these approaches on two benchmark datasets, from
the medical and fraud detection domain. We consider a setting where data is
gathered by multiple organisations, and each has a sizeable number of data
records. [2] calls this cross-silo federated learning, as each of these organisation
operates its own data silo. Data is generated locally, and remains decentralised.
Regarding the number of clients in cross-silo FL, [2] e.g. talks about 2–100 clients.

We investigate anomaly detection in tasks in health care for detecting dis-
eases, and in identifying fraudulent behaviour in financial transactions such as
credit card payments. These two application areas are prototypes for the im-
portance of privacy and confidentiality of the data analysed, as both medical as
financial data contain individual data, and are highly sensitive. Further, these
two domains are often characterised by individual data silos collecting parts of
the overall available data, and hurdles to exchange or centralise it – either due to
regulatory, or also due to reservations for sharing sensitive business data. Thus,
they are prime candidates for addressing this task in a federated learning setup.

The remainder of this paper is organised as follows. Section 2 discusses related
work, before Section 3 describes the federated anomaly detection algorithms we
use. Section 4 details the evaluation setup, and Section 5 then discusses the
results. Finally, we provide conclusions and future work in Section 6.

2 Related Work

Anomaly detection is the process by which data points, events, and observations
that differ from he normal behaviour within a dataset are identified [3]. Although
researchers define an anomaly differently based on the application domain, one
widely accepted definition is that of Hawkins[4]: ’An anomaly is an observation
which deviates so much from other observations as to arouse suspicions that a
different mechanism generated it.’ Anomalies can point out significant, but rare,
events such as technical malfunctions, accidents, or client behaviour changes.
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Anomalies may be caused by variations in machine behaviour, fraudulent
behaviour, mechanical defects, human error, instrument error and natural devi-
ations in populations [5]. Anomalies in data lead to important actionable infor-
mation in many application domains, making it a critical task. An unusual traffic
pattern in a computer network, for example, could indicate that a hacked com-
puter is transmitting confidential data to an unauthorised recipient. Anomaly
detection is employed e.g. in cybersecurity intrusion detection, defect detection
of safety-critical devices, health care, fraud detection, or robot behaviour [3].

Anomalies fall into three main categories [3]. A point anomaly is an individ-
ual data instance that is anomalous with respect to the rest of data. Contextual
anomalies are data instances that are anomalous in a specific context (of other
data, but not otherwise), while a collective anomaly denotes a collection of re-
lated data instances that are anomalous with respect to the entire data set. In
this paper, we address point anomalies.

Anomaly detection can also be distinguished by the availability of labels in
the training data [6]. If we consider two types of instances in the data, namely
anomalies and normal (regular) data, then we have the following characteristics
of training data. In a supervised task, we have labels for both anomalies and
regular data; this is most often approached with supervised machine learning
(classification). If labels are available only for the regular data, we deal with a
semi-supervised task, where a model is learned for the normal class, and anoma-
lies are those that deviate from that model. If there are no labels available at
all, then we deal with a unsupervised tasks. In this work, we consider all cases.

The output of an anomaly detection method can be either directly a label
(anomaly or normal data), or a score that measures the degree of anomaly, which
is then normally compared to a threshold to arrive at a decision.

The privacy and confidentiality of the training data (resp. the individuals
represented by it) has been recognised as an important aspect, and thus, privacy-
preserving data mining (PPDM) methods are studied. In [7], PPDM techniques
are classified into four main categories: (i) data collection privacy, which refers
to data randomisation strategies, before they are sent to a data collector, (ii)
Privacy-Preserving Data Publishing (PPDP), (iii) Data Mining Output Privacy
(DMOP) and (iv) distributed privacy. PPDP often distorts the data, and in-
cludes techniques such as k -anonymity, or ϵ-differential privacy. Data syntheti-
sation, which has been studied for various tasks (e.g. [8]), including anomaly
detection [9], can also be seen as a form of PPDP. DMOP, on the other hand,
which operates on original, unabridged data, relies on ensuring that the com-
putation does not require the exchange of input data. Federated Learning can
be considered a distributed DMOP method: FL allows to let data remain dis-
tributed at the site where it is created, e.g. on mobile devices, respectively where
it is initially gathered. However, it still allows to learn a common model from
these data, based on aggregating models learned by local training at each site
[10]. The idea of local training is relevant for settings where data sharing brings
various regulatory, privacy and technical issues, such as the medical domain, or
also when sharing business data, e.g. in a collaborative fraud detection setting.
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FL is increasingly used in several domains. In [11], the authors showed that
federated learning on medical image data can reach a performance, similar as to
when data is centralised before training. For structured data, [12] showed that
FL is comparable to centralised learning in several settings. In [13], a framework
for applying federated learning to biomedical data was presented. In [14] the
authors considered Federated Learning for IoT, and optimised the Federated
Averaging algorithm of [10] for Edge Computing.

Several forms of collaboration have been investigated in domains that rely
on anomaly detection. Collaborative intrusion detection systems (CIDSs) [15]
address limitations of conventional systems in terms of scalability and massively
parallel attacks, CIDSs comprise several monitoring components in a hierar-
chical structure that collect and exchange data, to eliminate bottlenecks of a
centralised approach. [15] identify privacy as one of the requirements of a suc-
cessful collaborative approach – alerts and data exchanged may contain sensitive
information that should not be shared. Exchanging only learned knowledge as
e.g. in federated learning would be one approach to mitigate these risks.

Exchanging learned knowledge can also be performed by employing trans-
fer learning and domain adaptation, which knowledge learned in one setting is
exploited to improve generalisation in another setting [16]. It can leverage in-
formation from labelled examples in one domain to predict labels in another
domain. This means that models that are useful for one organisation can be
transferred to other, similar cases. Transfer learning shows promising results for
several task, but for anomaly detection, an open research question is the degree
of transferability[17]. The authors of [18] motivate transfer learning as candidate
for detection of unknown attack types, and conclude that semi-supervised meth-
ods transfer better than supervised ones, but identified a need for improvement.
Opposed to FL, transfer learning generally allows only a one-way transfer from
a source to a target, and not collaborative learning.

3 Federated Anomaly Detection Algorithms

We use the following algorithms for federated anomaly detection: Multi-Layer
Perceptron (for supervised anomaly detection), Gaussian Mixture Model (for
semi-supervised anomaly detection) and Isolation Forest (for unsupervised anomaly
detection). We describe these and their federated version below.

Multi-Layer Perceptrons (MLPs), a type of Artificial Neural Network (ANN),
consist of several neurons that are arranged in layers. Each neuron computes an
activation from its inputs and weights. MLPs are feed-forward, i.e. activations
are only passed to the next layer, but not backwards. During training, the weights
are updated (learned) iteratively, to minimise the error on the training set, by
layer-wise back-propagating the gradient of the error and adapting the weights,
e.g. via stochastic gradient descent (SGD). If an MLP contains at least two
hidden layers, it is a Deep Neural Network (DNN) (though the term DNN can
denote any ANN with more than one hidden layer, not just MLPs).
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It is relatively straightforward to federate an MLP – the FedAvg algorithm
[10] e.g. performs averaging of the locally trained models. First, a (global) model
is initialised, i.e. the weights are randomly set. They are then sent to each client,
where they train the model weights further, each with their local training dataset.
Subsequently, the clients send their model parameters updates to the central
aggregator. FedAvg combines the updates from the clients by averaging, and
replaces the previously randomly initialised model with the new weights. This
cycle is normally repeated several times, to allow the model to converge. The
local training of the same, randomly initialised model at different clients fol-
lowed by aggregation and averaging was shown to achieve substantially lower
loss compared to independently training models on each subset of the data.

In our evaluation, a hyper-parameter optimisation showed that an MLP with
two hidden layers achieves best results on the anomaly detection tasks.

Gaussian Mixture Models (GMM) represent a parametric probability density
function as a weighted sum of Gaussian component densities [19]. They are
commonly used for e.g. clustering purposes. GMM parameters (means, µ, and
variances, σ2, of the Gaussians) are estimated from training data using e.g. the
Expectation-Maximisation (EM) algorithm by maximum likelihood estimation
techniques that maximise the likelihood of a given data sample with the model
parameters. Calculating the solution analytically can be mathematically impos-
sible; expectation maximisation is an iterative algorithm and has the property
that the maximum likelihood strictly increases with each subsequent iteration,
i.e. it is guaranteed to approach a local maximum or saddle point.

Training mixture models does not require having class labels for the data
points. A GMM can thus be used in an anomaly detection task when no anomaly
cases are known, i.e. in a semi-supervised algorithm. The model then recognises
patterns representative of the normal behaviour. When an anomaly sample is to
be predicted, the model will likely not group it in any of the identified clusters,
since the clusters were created from the normal samples.

We transfer GMMs to federated Gaussian Mixture Models for anomaly de-
tection as follows. First, the the parameters of the global model are randomly
initialised for the number of desired Gaussian mixtures (components), and sent
to the clients. At each client, the model is trained with the local data, either for
a defined number of epochs, or until the certainty of each sample not being part
of the assigned cluster is at most a given threshold δ. The averaging to the global
model then consists of two steps - finding matching components from each local
client, and eventually averaging their parameters.

Isolation Forests (IF) [20]are an unsupervised anomaly detection algorithm. It
differs from other approaches, as it is based on isolating anomalies, instead of the
more common approach of learning a representation of the normal samples. They
are based on two assumptions. First, that anomalies are a minority, with very
few samples within the dataset. Secondly, that anomalies are different – their
values differ notably from normal samples. An Isolation Forest is an ensemble
of Isolation Trees, which are binary trees arranging samples by attribute values.
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While a Decision Tree, a supervised algorithm, splits data into subsets based on
maximising a certain measure (e.g. Information Gain), an Isolation Tree splits
based on a random value in the value range of a randomly selected attribute. The
number of partitions required to isolate a point is calculated as the length of the
path from the root to reach a leaf node. When the Isolation Tree construction is
finished, each sample is isolated at a leaf node. Intuitively, anomaly samples are
those with a shorter path length in the tree. Based on this, an anomaly score is
computed for each instance, and if it is above a predefined threshold (e.g. 0.5),
then the sample is labelled as anomaly. The Isolation Forest algorithm has a low
linear time complexity, and can be trained with or without anomalies, and in an
unsupervised manner [21].

The federated Isolation Forest is implemented as an ensemble of the locally
trained Isolation Forests, in a similar manner as in [22].

4 Evaluation Setup

In this section, we describe the setup of our evaluation, including the datasets.

4.1 Datasets

We evaluated our federated anomaly detection algorithms on two benchmark
datasets that are frequently used for anomaly detection in centralised settings.

Credit Card Fraud 3 is a dataset that contains 284,807 credit card transactions
made by European cardholders over two days in September 2013. Out of the
284,807 transactions, only 492 transactions (0,17%) are fraudulent, making the
dataset heavily skewed. The dataset contains 30 features: the amount and time
of the transactions, and 28 features obtained via a PCA on the original input
data. There are no missing values. Most fraudulent transactions are very small
expenditures, probably unnoticed to the cardholders, while the normal samples
exhibit all possible values in the range. For preprocessing, the variable ”amount”
was scaled via a standard scaler to be in line with the other attributes.

Ann-Thyroid 4 is a medical dataset with 3,772 training and 3,428 testing sam-
ples, described by 15 categorical and six numerical attributes. There are three
possible target values for each instance, namely normal (92.583% of the to-
tal samples), hyperfunction (5.111%) and subnormal functioning (2.306%). The
hyper function and subnormal classes are treated as the anomaly classes. For su-
pervised detection (with the MLP), where more than one anomaly class can be
identified, they will be treated as two separate anomaly classes. For the Gaussian
Mixture and Isolation Forest algorithms, these two anomaly classes are merged,
in line with other related work. This could influence the effectiveness of the
anomaly detection task, as subnormal and hyperthyroid anomalies may have
different behaviours.
3 https://www.kaggle.com/mlg-ulb/creditcardfraud
4 https://archive.ics.uci.edu/ml/datasets/thyroid+disease
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4.2 Evaluation Metrics

Anomaly detection can be evaluated by several different metrics. As data is nor-
mally heavily imbalanced towards the normal class, measures like accuracy (the
number of correct predictions) are not sufficient – as already predicting every-
thing to be of the normal class would score very high. Thus, frequently the so-
called F-score, a combination of the precision and recall, is employed. Precision
denotes the ratio of the number of true positive samples (anomalies identified
as such) divided by the number of false positives (normal samples wrongly pre-
dicted as anomalies). Recall is the ratio of samples classified as positive among
the total number of positive samples – i.e. how many of the anomalies have been
identified. The F1 score then provides a combined score by computing the har-
monic mean of precision and recall. On the other hand, the F2 score weights
recall higher than precision. This makes it suitable for the datasets considered in
our evaluation, where identifying most of the anomalies is critical, while a certain
amount of false positives can be tolerated. However, the actual preference for F1
or F2 (or other F-scores) depends on the exact application scenario, and how
many false positive cases can be tolerated and handled, respectively how critical
not identified anomalies are, and needs to be determined by domain experts.

Another measure frequently employed is the area under curve (AUC) of the
receiver operating characteristics (ROC), which is based on the true positive
rate (TPR) and false positive rate (FPR), and indicates if we picked randomly
a “normal” and anomaly sample, the anomaly example one will have a higher
anomaly score, with a probability that corresponds to the AUC. A perfect model
will have its AUC equal to 1, while a poor model will have its AUC score around
0. If the AUC is 0.5, it means that the model has no class separation capacity
at all.

4.3 Data Distribution

For federated learning, we test different numbers of clients, namely from two to
ten with a step size of one, and then 10, 15, 20, 25, 30. In Section 5, due to space
limitations we mostly report results for a medium amount of clients, 15, and the
largest configuration with 30 clients.

The data is randomly split among the clients to achieve a distributed setting.
During our experiments, we use a holdout method to split the data into training
and test set in a 90:10 ratio.

5 Results

In this section, we present and discuss our experimental results. We compare the
federated results to an idealised, centralised baseline, i.e. where a model can be
trained on all data. This represents a glass-ceiling for the federated learning, and
is a very difficult baseline to achieve. We thus argue that achieving this glass-
ceiling baseline is not necessarily mandated to deem the federated detection as
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Table 1: Anomaly detection scores on the credit card fraud dataset
MLP GMM IF

Pr Re F2 Pr Re F2 Pr Re F2

Centralized 87.5 85.7 86.1 36.6 39.8 39.1 13.3 4.1 4.7

FL-15 Clients 85.4 71.4 73.8 40.7 52.4 49.6 0.9 16.3 3.8

FL-30 Clients 78.6 44.9 49.1 78.6 44.9 49.1 0.0 0.0 0.0

successful, as in many real-world settings, gathering all data in a centralised
manner will not be possible.

While we present results from supervised, semi-supervised and unsupervised
anomaly detection on the same datasets and with the same algorithms, it has to
be noted that these approaches are only partially comparable to each other, and
each rather constitute a separate task. This is due to the fact that supervised
detection has much more information available when learning the model than
the other two approaches (labels for both classes), and is thus an easier task.
Unsupervised has the least information available, and is thus the hardest task.

5.1 Credit Card Fraud Dataset

Table 1 shows the scores for the anomaly detection algorithms on the credit card
fraud dataset, depicting precision, recall and the F2 score. We can observe that
anomaly detection on this dataset is difficult already on the original, centralised
setting. The easiest task is the supervised setting, which we address with the
Multi-Layer Perceptron (MLP), and which consequently achieves the best scores;
its precision, recall and F2 values are all in a very similar range, namely 87.5%,
85.7% and 86.1%, respectively. The Gaussian Mixture Model (GMM), which
we employ to solve the semi-supervised task, also has all of its scores within a
similar range, albeit lower than the MLP, with values of 36.6% for precision,
39.8% for recall, and 39.1% for F2. Isolation Forests (IF) are used to solve the
hardest task, i.e. the unsupervised setting. In line with that difficulty, it scores
low on the recall, and thus also achieves a low F2 score. The AUC scores for the
centralised setting are shown in Figure 1a, indicating a similar trend.

When comparing the centralised to the federated learning setting, we can
notice that the different methods for the tasks are affected to a varying degree.
With an increasing number of clients, the MLP loses mostly on recall. Figure 1b
shows that also the AUC score drops in the federated setting. This can indicate
that the averaging mechanism of FedAvg is not capable of completely preserving
the parts of the individual MLPs that learned to represent the anomalies, if the
number of clients increases too much, respectively, if there are very few anomaly
instances at each client. Strategies to improve this could be e.g. in boosting
the weights representing anomalies, similar to the strategy of boosting weights
of malicious nodes in the model replacement strategy in a federated backdoor
attack [23].
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(a) Centralised Setting (b) Federated Setting, 15 clients

Fig. 1: ROC Curves for the Credit Card Dataset

Table 2: Anomaly detection scores on thyroid data set
MLP GMM IF

Pr Re F2 Pr Re F2 Pr Re F2

Centralized 95.7 83.0 85.3 54.6 37.8 40.3 10.4 18.9 16.2

FL-15 Clients 95.6 81.1 83.7 64.9 62.9 63.3 9.8 14.8 13.4

FL-30 Clients 95.5 79.2 82.0 12.5 1.9 2.2 12.5 1.9 2.2

For GMMs, we can however notice that the F2 score actually increased in the
federated setting, while the AUC score stays roughly the same (cf. Figure 1b).
The cause for this effect is not systematic – sometimes it is due to a higher recall,
but other times due to a higher precision.

For Isolation Forests, the initial trend is similar as for the MLP – a larger
number of clients in the federation leads to a drop in effectiveness of the detec-
tion, for all scores. A too large number of 30 clients, and thus many Isolation
Trees used in the Forest, leads to the anomaly detection not properly working
anymore, and no anomalies being detected. This is likely due to the fact that if
only few clients have data with anomalies, only a few trees representing these
anomalies are created, and they are subsequently outvoted by the many trees
representing the normal cases.

5.2 Ann-Thyroid Dataset

Table 2 shows the precision, recall and F2 scores for the anomaly detection
algorithms on the thyroid dataset. While the overall best scores for the MLP
and GMM on this dataset are comparable to the credit card fraud dataset (with
a difference in F2 scores of ± 1%), the Isolation Forests, albeit on a still low
score, performs significantly better on the thyroid dataset. We can observe that
for MLP and GMM, precision is significantly better than recall, in the range of
10-15%. With Isolation Forests, that observation is inverse. The AUC scores are
depicted in Figure 2a, and indicate a similar trend.
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(a) Centralised Setting (b) Federated Setting, 15 clients

Fig. 2: ROC Curve for Thyroid Dataset

When comparing the scores from the centralised to the federated setting,
Table 2 and Figure 2b indicate that the trend for the MLP is, albeit dropping,
rather stable, i.e. there is a decrease of around 1.5% each when going from
centralised to federated learning with 15 clients, and then increasing that number
to 30 clients. The drop is mostly due to a drop in recall, as precision stays almost
the same for all these settings, just dropping by 0.1% each.

For GMM and Isolation Forests, we can notice that with 30 clients the ag-
gregation into a single model fails – the F2 scores drop to an unusable value,
especially due to a low recall. For 15 clients, GMM is however delivering use-
ful results, even better than in the centralised benchmark, mainly due to an
increased recall. For Isolation Forests with 15 federated clients, results drop by
around 3% from the centralised baseline, but are still significantly better than
as for 30 clients. As with the credit card dataset, when too many clients each
have only a few anomaly instances, paired with the more difficult semi- and un-
supervised tasks, it seem to be a challenge to preserve the knowledge learned on
the anomalies during the aggregation process.

6 Conclusions and Future Work

In this paper, we investigated anomaly detection in tasks on medical and financial
datasets. We evaluated the performance of three algorithms in central as well as a
federated settings, for three settings of availability of labels in the training data –
supervised, semi-supervised, and unsupervised. While we observe that especially
the supervised method (an MLP) translated very well into the federated setup,
the other two methods manged to match their centralise baseline only in some
of the settings, especially with a smaller number of federated clients.

We can identify several strands for future work. On the one hand, the adap-
tion of the centralised algorithms into federated versions can be improved, espe-
cially for semi- and unsupervised approaches. For Isolation Forest, approaches
that e.g. select only the most relevant subset of Isolation Trees might lead to an
improvement. Also, further anomaly detection algorithms will be considered.
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Further, the centralised baseline where a model is trained on all data is an
idealised baseline, and in fact represents a glass-ceiling for the federated learning.
It is also an unlikely comparison, as in a real setting, centralising this data is not
possible. Another comparison would be to evaluate each locally trained model
against the (global) test set; this will simulate how well the anomaly detection
works if every client works in isolation, not collaborative, and thus represents a
lower bound. To arrive at a realistic judgement on the value of federated anomaly
detection, it should be evaluated whether it is well-positioned between these two
bounds, and provides a clear advantage over within-silo training.

As studies have shown that unbalanced (in terms of the size of each silo’s
dataset) and not independent and identically distributed data (non-iid data) can
lead to slower convergence, increased communication costs, or lower effectiveness
in federated learning [24], we will investigate these for anomaly detection.

Finally, another important aspect to investigate is the vulnerability of fed-
erated learning towards inference attacks. Studies such as [25] have shown that
federated learning is still vulnerable to e.g. membership inference, and might
even open up novel attack vectors. [26] show that outliers might be specifically
vulnerable to these attacks, and thus protecting the anomalies is of importance.
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