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SBA Research, Vienna, Austria

tsarcevic@sba-research.org

Rudolf Mayer
SBA Research, Vienna, Austria

rmayer@sba-research.org

Philipp Adler
Vienna University of Technology, Austria

Abstract—Since many types of data nowadays contain person-
ally identifiable information about individuals, it is important to
apply privacy protection techniques to mitigate disclosure risks.
One approach is k-anonymity, where hiding the identity within
a group of k similar entities reduces the risk of re-identification.
Another risk when distributing data is the loss of control over
their further re-distribution and sharing. This risk is frequently
addressed by fingerprinting, a method that allows to identify the
recipient of a specific copy of the data, by embedding a generally
invisible mark.

In this paper, we specifically implement and adapt an intrinsic
fingerprint scheme that makes use of k-anonymity and the fact
that multiple, differently perturbed versions of a dataset can be
found that all fulfil a certain k-anonymity, and share a rather
similar level of data precision. Thus, these different datasets can
be seen each as a fingerprinted version of the original.

One research question we address in this paper is the evalua-
tion of the most common generalisation algorithms according to
their generalisation strategy and their influence on data utility
and the number of resulting release candidates, i.e. fingerprints
and execution time. In addition, we investigate the properties and
robustness of these fingerprints against intentional (adversarial)
manipulation through attack simulations. We further provide
recommendations and guidelines on how fingerprinting can be
best achieved based on the results of our evaluation.

Index Terms—anonymisation, fingerprinting, robustness

I. INTRODUCTION

Data publishing is required in many settings, e.g. for col-
laborative data analysis, or if the analysis shall be outsourced
to a third party, or if data in general be made available to
the general public for research. However, data publishing
comes with several pitfalls. On the one hand, disclosure
risks threaten the privacy of the individuals in the dataset,
e.g. via (re-)identification attacks. Anonymisation strategies
have been proposed to deal with these risks, among them k-
anonymity and its extensions such as l-diversity. These reduce
the disclosure risks, normally at the cost of data utility, as
they modify statistical properties, as well as the utility for e.g.
predictive machine learning models trained thereupon.

On the other hand, if the data is only made available
to a selected number of users, further re-distribution of the
data is generally not desired by the original data controller.
Thus, illicit re-distribution shall be deterred from and made
detectable. Fingerprinting is a reactive technique that can

identify the original recipient from data that is re-distributed,
by embedding a recipient-specific mark into the data, e.g.
by altering attribute values in relational data. This approach
thus inevitably lowers the utility of the fingerprinted data.
A scheme [1] for fingerprinting relational data proposes to
combine k-anonymisation of a dataset with fingerprinting, by
leveraging the fact that there are generally multiple solutions to
achieve the same level of k-anonymity, namely by generalising
different attributes to a different degree. The level to which
each attribute then gets generalised represents an intrinsic
and recognisable property of that one specific instance of
a k-anonymised dataset of a specific original dataset. The
scheme thus proposes to generate multiple different solutions
and treat each of them as a uniquely fingerprinted version
of the original dataset – which can thus be released to the
respective recipients. This relies on the assumption that there
are (enough) different solutions to provide a sufficient number
of possible recipient copies that, however, should not differ
(too much) in data utility. With this assumption, fingerprinting
thus comes at no additional ”cost” in terms of data utility,
then what is already introduced by applying k-anonymity,
and becomes an interesting option in case the dataset will
anyhow be anonymised before releasing it – likely a reasonable
assumption in many scenarios, considering data protection
regulations

While the proposed scheme poses some intriguing proper-
ties, it has neither been implemented nor empirically validated
until now. In this paper, we provide an implementation and
evaluation of the key properties of the scheme. Our contribu-
tions are thus:

• An implementation of the k-anonymity based fingerprint-
ing scheme

• An evaluation of the assumption that there is a sufficiently
large number of equivalent k-anonymous solutions

• An evaluation of the robustness of the scheme against
attacks, i.e. intentional, malicious modifications to the
released data with the goal of reducing the effectiveness
of the fingerprint

• Evaluation of the collusion attack success, where the
recipients collaborate to remain untraceable, and the
discussion on the efficiency of the scheme against this
attack

The remainder of this paper is structured as follows. Sec-979-8-3503-2445-7/23/$31.00 ©2023 IEEE



tion II discusses related work, before Section III details the
approach for k-anonymous fingerprinting. We evaluate the
utility and robustness of the scheme in Section IV, and provide
conclusions in Section V.

II. RELATED WORK

A. k-anonymity

k-anonymity was first introduced by Samarati and
Sweeney [2] to obfuscate sensitive datasets in order to be able
to share them with other parties. In a dataset, we can generally
distinguish different types of attributes. On the one hand,
(directly) identifying attributes directly reveal the identity of
a data record and should be removed from the dataset before
publishing. Quasi-identifiers (QIs) do not directly identify a
person but may become uniquely identifying when used in
combination with other QIs. QIs often hold significant infor-
mation, which is required in analysis processes. In medical
analysis, for example, it is often important to differentiate
between age groups, the type of job, or information on the
location of the residence of patients. Thus, this information
cannot simply be completely omitted. Sensitive data is con-
tained in attributes that for example hold information about
a certain type of illness or the salary of an individual. These
are generally the main target in statistical analysis, and can
therefore not be omitted or obfuscated.

As each level of generalisation invokes an increasing loss
of specificity, the goal of k-anonymisation is to minimise
the overall information loss, making it an NP-hard prob-
lem [3]. Several different, mostly heuristic, approaches have
been proposed for optimising the level of suppression and
generalisation for achieving a specific level of k-anonymity.
Samarati [4] introduces the concept of minimal generalisation
that captures the property of the release process not to distort
the data more than needed to achieve k-anonymity. There are
a few proposed globally optimal anonymisation algorithms,
such as Flash [5], a greedy depth-first manner algorithm and
OLA (Optimal Lattice Anonymisation) [6].

1) Data Precision / Utility Metrics: Protecting the privacy
of data inevitably leads to some loss of information. Since the
usefulness of data often depends on the use case, which from
the publisher’s point of view is typically unknown, choosing a
fitting metric is challenging. A wide variety of general-purpose
data precision, utility or quality metrics have been proposed;
according to [7], these metrics are divided into the cell- and
column-oriented and row-oriented quality models, and we will
briefly introduce representative metrics. A column-oriented
metric height [4] estimates the information loss as the sum of
the generalisation level steps applied to the sets of microdata.
However, since the total number of possible generalisation
levels is not taken into account in the measurement, it can
happen that complete suppression leads to the same result
as a simple generalisation. Consequently, these circumstances
might have a huge impact on the final result. As a cell-
oriented metric, precision quantifies the data quality based on
normalised generalisation levels. Accordingly, the amount of
distortion of attribute values is measured as the generalisation

level of an attribute value relative to the height of the attribute’s
generalisation hierarchy. Row-oriented metrics measure the
information loss according to modifications on the sample
level. For instance, a modified discernibility metric (DM*) [8]
measures the size of the equivalence classes and penalises
suppressed data records.

B. Watermarking and Fingerprinting

Watermarking and fingerprinting are forms of steganogra-
phy, the information-hiding techniques that embed information
about the owner (watermarking) and the recipient (finger-
printing) into digital data. Watermarking allows identifying
the ownership of digital objects by embedding secret owner-
specific information into the dataset. Fingerprinting can be
seen as an extension of watermarking, which in addition
encodes, for each copy, an identifier of the particular recipient.
Fingerprint combines thus secret owner-specific and recipient-
specific information embedded in a specific release of a
digital object. Fingerprinting and watermarking of digital data
first appeared for multimedia data and have been extensively
studied over the last two decades [9]. For tabular data, which
is the focus of this work, most of the current state-of-the-
art fingerprinting methods [10], [11], [12] extend the water-
marking technique proposed by Agrawal [13]. The techniques
contain two algorithms: fingerprint insertion and fingerprint
detection. In the embedding phase, the fingerprint is created as
a bit-string uniquely representing the recipient and additionally
encoding the owner’s secret and is embedded into the least
significant bits (LSBs) of the data values. The extraction is the
reverse process where the encoded values are extracted from
the LSBs and the fingerprint can be assigned to the specific
recipient.

1) k-anonymity based fingerprinting: Schrittwieser et. al.
[14] propose a scheme that is based on k-anonymity. They
note that as multiple solutions for achieving the same level
of k-anonymity exist, and that these datasets then differ in
the granularity of the attributes, this granularity can serve
as a fingerprint identifying the exact copy that was released.
The approach is based on the assumption that the different
solutions are also comparable to each other in data quality.
This scheme uses a slightly modified version of the OLA
algorithm [6] for revealing all possible k-anonymous datasets.
The algorithm incorporates the following steps (description
from [14]):

1) Define a minimum k for the k-anonymity criterion, the
minimum and maximum levels of data loss lmin and lmax

and the data precision metric to be used
2) Define the generalisation strategies for each quasi-

identifier
3) Calculate the lattice diagram derived from all possible

generalisations
4) Choose a node at middle height and decide whether it is

at least k-anonymous
a) In case it is not, rule out all nodes below in the lattice

diagram.



b) In case it is, mark all nodes above the chosen one as
possible solutions.

5) Start with step four for the remaining sub-graph, similar
to the original algorithm

6) In case no sub-graph is left, start by choosing another
initial node at middle height and proceed with step four
until all nodes are evaluated

7) For each at least k-anonymous solution, calculate data
precision and the actual k. Remove all solutions with data
precision outside the bounds of lmin and lmax.

8) Classify and cluster the solutions by their data precision
9) Create ”similar” sets of microdata based on results in one

cluster and distribute them to the recipients

The watermark detection relies on a pattern list that
stores the generalisations performed to achieve a certain k-
anonymised dataset and the recipient of this dataset. From
the dataset in question, the generalisation patterns are ob-
served (by checking the granularity of the values for each
attribute), and the match is retrieved from the pattern list.
Note that this detection method assumes that an attacker does
not voluntarily increase the generalisation of some of the
attributes in the dataset they obtained. In further work [15],
the authors propose a collusion filter applied before data
distribution and an approach to resolve the collusion attack
(cf. Section II-B2), i.e. identify the recipients participating in
the malicious collaboration. The design of the collusion filter
also implies a theoretical bound for the number of collusion-
free fingerprints. One major drawback of both the base and
extended approach is the lack of evaluation and a lack of study
on the success of the collusion attack.

There are other approaches that simultaneously achieve data
privacy and ownership protection or tracing; Bertino et al.
use binning [16], Gambs et al. use (α, β)-sanitisation [17], Ji
et al. [18] differential privacy, [19] watermark data by firstly
applying the classical watermark, then k-anonymity.

2) Robustness of Fingerprinting Schemes: The robustness
of a fingerprinting scheme is measured as the resilience of
the scheme against modifications of the dataset, which can
happen as a result of benign updates or malicious attacks [20].
The resilience manifests as the success of extracting the
fingerprint from a data copy and associating it to its correct
recipient while maintaining data utility [21]. In literature,
frequently mentioned attacks against fingerprinting schemes
for relational datasets are different manipulations of LSBs
(e.g. flipping attack where the attacker flips a portion of
LSBs of data values), attribute-oriented alterations (deletion,
transformation) or row-oriented alterations (addition, deletion)
or [22]. Another common attack is additive attack, where the
attacker produces and embeds their own fingerprint on top of
the existing one, to try and claim false ownership of the data.
An attack specific to fingerprinting is a collusion attack where
multiple malicious recipients collaborate to obfuscate or hide
the received fingerprints.

Fig. 1: k-anonymity algorithm performance on KDD; the x-
axis represents the increasing privacy level k combined with
increasing complexity of generalisation hierarchies

III. FINGERPRINTING VIA k-ANONYMITY

A. Approach

The starting point of our approach is the algorithm of
Schrittwieser et. al. [14] (cf. Section II-B1). In the following,
we further detail the steps we adapted.

a) Step 1: Definition of input parameters (number of pos-
sible data users, clustering method and data utility metrics):
We define all input parameters: the dataset, privacy level k,
suppression limit MaxSup, data utility metric (DUM) for
measuring the applied information loss during generalisation,
clustering method and the number of data users u to whom
the unique fingerprints will be distributed. Specifying the
number of recipients is necessary to guarantee a minimised
intra-cluster solution with at least the required number of
fingerprints. To provide roughly the same level of precision to
all data users, the choice of an appropriate utility metric is an
important aspect. In Section IV, we demonstrate a few metrics
that are particularly suitable for our goal: the generation of a
cluster with high data utility and low variance. The choice of
the clustering algorithm also impacts the final cluster result.
Furthermore, we could observe from experimentation that
defining lmin and lmax beforehand is not beneficial for the
algorithm, as it usually requires post-processing steps (in Step
7), where these attributes need to be relaxed to allow a larger
range of candidate solutions. For this, we adapt the baseline
approach by avoiding the pre-definition of these thresholds and
consequently remove step 7 from the baseline algorithm.

b) Step 2: DGH definition: The definition of the domain
generalisation hierarchy for each quasi-identifier serves as an
indicator for the theoretical upper limit of the number of solu-
tions,

∏N
i=1 ni, where N denotes the number of QIs and ni the

number of applicable generalisation steps of the corresponding
QI. Although this formula does not apply in practice, since not
all anonymised datasets meet the specified privacy criterion, a
high number of possible DGHDi is recommended to increase
the chance of finding further solution candidates.

c) Steps 3-6: k-anonymisation: Achieving k-anonymity
can be treated as an independent modular part of the approach,



therefore we combine steps 3 – 6, originally describing the
OLA algorithm, into one step that can be achieved as well with
any other k-anonymity algorithm. Due to a large amount of
computation (to achieve multiple k-anonymous datasets), we
opted for the most time-efficient algorithm, Flash, according
to our comparative study on the KDD datasets (Figure 1).

d) Step 8: Clustering the solution space: For selecting
release candidates it is important to evaluate the clusters
according to several criteria. Since multiple recipients get
mutually different anonymised copies of the same dataset, it is
important to keep the copies on a similar quality level to ensure
fairness; we also need to be able to provide a sufficient number
of anonymised copies. Therefore, we model our criteria as
follows:

• The average utility of the fingerprints (anonymised
datasets) within the cluster is given by the cluster cen-
troid. Clusters with a high data utility are more useful for
the recipients.

• The utility variance is an indicator of similarity between
the copies of one cluster. Hence, clusters with a small
variance will ensure fairness in the distribution of simi-
larly useful anonymised datasets.

• The number of nodes, or cluster cardinality shall be at
least as large as the number of expected data recipients,
and rather be maximised in case this number is not fully
known upfront.

An optimal cluster for distribution should satisfy all three of
the above criteria simultaneously. We thus use the following
weighted average sum of the three quality criteria to measure
the quality of a cluster Ci.

QCi
=

fi
fmax

× 1

3
+

ci
cmax

× 1

3
+ (1− vi

vmax
)× 1

3
(1)

, where v is variance, c the centroid and f the number of
fingerprints.

e) Step 9: Distribution of the datasets from the optimal
cluster: The datasets from the resulting cluster undergo further
considerations regarding collusion possibilities discussed in
Section III-B. The collusion filter is applied to eliminate
datasets with a high risk of collaboration and the final set
of k-anonymous solutions is distributed to the recipients.

B. Collusion filter

In [15], the authors set the theoretical upper bound of the
number of recipients to the number of QIs in the dataset.
According to their discussion, the ”signature” of recipient A
in collusion is one specific QI, where recipient A has got the
largest granularity of that QI (i.e. the lowest generalisation
level) out of all other recipients. Since this needs to be true for
all recipients to guarantee the collision resolution, the number
of recipients can only be as large as the number of QIs.
While this statement in theory indeed limits the number of
recipients, it is based on the assumption that the recipients
can successfully collaborate by matching the other attributes
in the dataset (not affected by the k-anonymity). In practice,
this is not easily achievable, since the non-sensitive attributes

have to satisfy some specific properties. We demonstrate and
evaluate the collusion attack in Section IV-D.

C. Robustness of fingerprints

Fingerprinting schemes should be robust against different
attacks that aim to prevent the correct detection of the finger-
print. We analyse the robustness using measures proposed in
[10]:

• Misattribution false hit, the probability of detecting an
incorrect but valid fingerprint that belongs to a different
recipient. This measure describes the success of the
attacker’s obfuscation, the ability to disguise their own
identity into someone else’s.

• False negative, the probability of not detecting the valid
fingerprint from fingerprinted data i.e. the detected fin-
gerprint finds no direct match to the released ones. This
measure describes hiding, the likelihood of concealing
behind a group of potential fingerprints such that no
recipient can be suspected. The higher the group, the
higher the success rate for the attacker.

To summarise, both attacker characteristics attempt to mod-
ify the anonymised dataset in such a way that the underlying
resulting fingerprint can not be directly assigned to the original
data recipient. The attacks evaluated in Section IV-C follow
this procedure:
S1: Identification of manipulable QIs: Any value that is not

fully suppressed can potentially be manipulated.
S2: Attribute analysis: Using the unique attribute values,

an attacker can determine which data type an attribute
belongs to. For instance, the continuous attributes will
have values in integer or decimal formats, however,
values represented in ranges potentially also represent
generalised continuous attributes.

S3: Attribute selection: The attacker chooses any number of
QIs from the manipulable set, which he manipulates to
subvert the embedded fingerprint pattern.

S4: Attribute manipulation: Any selected QI is generalised.
The final result of the fingerprint alteration process ul-
timately depends on the existing background knowledge
and the associated data type. The straightforward way
to generalise QIs is to fully suppress them (i.e. replace
the values with the most general value, *). Whether the
attacker has the ability to apply other transformations
depends on their access to the original hierarchies of the
QIs, or their ability to guess the correct generalisations.

Step S4 requires distinction of the attackers based on the
knowledge, skills, and resources available to them.

• An uninformed attacker has no information about the
generalisation patterns or any background knowledge that
could be used to generalise the attribute to anything more
granular than the full suppression (*).

• Attacker with some background knowledge: an attacker
who does not have an access to the generalisation hierar-
chies can still transform QIs using assumptions based on
common practices in generalisation patterns. For instance,



demographic attributes such as zip code, place of birth
etc. are often part of the datasets that are anonymised.
Hence, some generalisation patterns can resemble each
other in similar domains, or might even be standardised.
E.g., it is a common practice to generalise zip codes such
that the last digits are gradually suppressed on each gener-
alisation level (90011→9001*→900**→90***→9****).
Similarly, numerical attributes, such as age are usually
generalised withing ranges, and these ranges might dou-
ble in each hierarchy level (32→[30-34]→[30-39]→...).

• An Informed attacker is familiar with the generalisation
hierarchies used for each QI (either provided originally
by the data owner, or obtained through malicious actions).
Manipulations in this case exactly follow the generalisa-
tion patterns of the original anonymisation process. The
probability of transforming the fingerprint to another valid
one (the one that belongs to a different recipient) is hence
higher compared to less informed attackers.

IV. EVALUATION

To evaluate the fingerprinting scheme, we conduct a series
of experiments with two real-world datasets that have already
been used in several previous studies [6], [23] in the area of
k-anonymity and also fingerprinting.

A. Datasets

The first dataset is the Adult dataset1, which is an excerpt
from the 1994 US census database; it is through 15 attributes
in 32,561 samples. As pre-processing steps, we removed all
records with missing values2, leaving us with 30,162 samples.
The second dataset was initially introduced in the KDD Cup
19983 (KDD for brevity), and represents the donations of
the Paralysed Veterans Association, veterans with spinal cord
injuries or diseases with 95,412 observations. After removing
instances with missing values, 63,441 of the 95,412 tuples
remained. The dataset consists of eight QIs, six of which
belong to the continuous data type.

The generalisation hierarchies for both datasets range be-
tween two and six levels. With the number of hierarchy steps,
we could theoretically achieve 20,736 and 1,128,960 differ-
ent combinations of generalisations, and thus fingerprints,
for Adult and KDD, respectively. However, not all of these
generalisations will fulfil the desired level of k. In fact, only
considering combinations that achieve at least 2-anonymity,
the number of transformations in the solution space is 96 for
KDD, and 12,096 for Adult.

B. Influence of utility metrics

In this section, we show the effects different utility metrics
have on the resulting cluster. The quality of the clusters of
fingerprints is evaluated using Equation (1), where the centroid

1http://archive.ics.uci.edu/ml/datasets/adult
2Dealing with missing data in the process of anonymisation is left outside

of the scope of this manuscript.
3https://archive.ics.uci.edu/dataset/129/kdd+cup+1998+data

and variance are calculated using a predefined utility metric.;
we evalute:

• Height [4], i.e. the generalisation level of an attribute
value

• non-uniform (NU) entropy [6] measures the differences
in the distributions of attribute values induced by data
transformations.

• Precision [24] is the generalisation level of an attribute
value relative to the height of the attribute’s generalisation
hierarchy

• Loss [25] measures the granularity of data by determining
the fraction of an attribute’s domain that is covered by
the transformed values.

• Average Equivalence Class size (AEC) [26] measures the
average size of classes of indistinguishable records

• Modified discernibility (DM*) [6] is the sum of squared
equivalence class sizes

• Ambiguity Metric (AM) measures the degree of uncer-
tainty in the anonymised data. The uncertainty of an
anonymised record measures the number of tuples in the
data domain that could have been generalised to it.

The row-oriented data utility metrics AEC, AM and DM*
have generally large utility scores and hence produce the
clusters with high-utility centroids, which results in a high
impact on the weighted average used to determine the general
quality of the cluster, as shown in Tables I and III. This
in result ranks some clusters with higher cardinality lower
according to the weighted average as shown in Table II.

The metrics describing the absolute (height) or relative (pre-
cision) generalisation level are subject to the lower granularity
of the obtained utility values, hence a large number of obtained
anonymised datasets appear the same in terms of quality. This
results in large clusters with low variance, especially evident
in Table I.

Furthermore, using different utility metrics, the resulting
clusters will differ in size, which in our case denotes the
number of fingerprints. This effect is of great relevance when
the data holder wants to maximise the number of resulting
fingerprints to be able to distribute to many recipients. Hence,
a metric that maximises the cluster sizes should be preferred
over the others. For instance, the greatest cardinality in overall
best-quality clusters is achieved via height, which is espe-
cially evident from the experiments on Adult data Figures 2
and 3. Nonetheless, a data publisher should be aware of the
consequences of clusters with a high number of fingerprints
when distributing them: while it might be advantageous to
have clusters with many elements when the set of recipients
is uncertain, if the number of data users is known in advance,
clusters with more elements might lead to the disadvantage of
having a lower centroid or higher variance.

C. Robustness

In this section, we evaluate the robustness of fingerprinting
against tampering and removal towards the two attack types,
obfuscation, and hiding. These attacks are carried by a single
recipient alone, in contrast to the collusion attacks discussed

http://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/dataset/129/kdd+cup+1998+data


Fig. 2: k-means cluster size results for k:2,
gen:[1,1,1,2,3,2,1,2,1] and min 3 recipients

Fig. 3: k-means cluster size results for k:2,
gen:[1,3,1,3,4,3,2,3,2] and min 3 recipients

in Section IV-D. Therefore, we inspect the properties of
each released dataset in relation to the characteristics of the
cluster from which the fingerprints originate. In particular,
we investigate the necessary trade-off in connection with the
applied attack settings and the success rate according to our
two defined manipulation goals. The insights gained from this
analysis advise the data publishers on which properties are
influential in the generation and distribution of fingerprints and
how clusters are designed in a way to remain robust against
manipulation.

Data publishers who grant third parties access to the desired
dataset have to create a pattern list, which links the recipient
and the fingerprint pattern and thus allows tracking of the
source in the event of an improper release. As a result of the
preceding clustering step, the allocation shown in Tables IV
and V was made.

1) Experiment design: Based on the assumption that every
data recipient can potentially take on the role of an attacker
and re-distribute its corresponding dataset without permission
to third parties, we designed our experiments in such a way
that we allow each recipient any number of modifications, thus
covering the full range of possible manipulation scenarios for

TABLE I: Top 3 optimal clusters per utility metric for the
Adult dataset, gen=[1,3,1,2,3,2,1,2,1]

Clustering results
# metric #elements centroid variance w.avg.

1 AM 18 98,043 0,122 0,753
2 AM 10 96,930 0,031 0,710
3 AM 10 96,922 0,123 0,710

1 AEC 20 89,070 1,383 0,733
2 AEC 14 96,970 0,251 0,730
3 AEC 13 96,685 0,001 0,724

1 DM* 10 93,571 0,221 0,698
2 DM* 11 91,531 0,219 0,696
3 DM* 10 90,593 0,293 0,688

1 Height 66 18,750 0 0,729
2 Height 54 18,750 0 0,669
3 Height 49 25,000 0 0,664

1 Precision 21 22,220 0 0,514
2 Precision 17 22,220 0 0,494
3 Precision 17 22,220 0 0,494

1 Loss 12 35,120 0,176 0,512
2 Loss 7 42,543 3,993 0,509
3 Loss 10 33,580 0,021 0,496

1 NU 12 20,829 0,083 0,464
2 NU 8 26,506 1,659 0,461
3 NU 10 21,963 0,118 0,457

1 Norm.NU 9 33,767 0,191 0,492
2 Norm.NU 15 22,265 0,004 0,484
3 Norm.NU 14 22,217 0,022 0,478

TABLE II: Ranking of the clusters for the Adult dataset,
gen=[1,3,1,2,3,2,1,2,1], min k=2, metric=AM

Clustering results
# #elements centroid variance weighted avg.

1 18 98,043 0,122 0,753
... ...
6 11 93,478 0,057 0,703
7 10 92,669 0,084 0,695
8 10 92,657 0,077 0,695
9 7 96,409 0,004 0,693
10 11 90,394 0,274 0,693
... ...
16 13 84,040 0,314 0,688
... ...
19 13 85,437 1,107 0,685
... ...
25 12 85,719 0,354 0,682

evaluation. Since we can not know in advance what back-
ground knowledge an attacker possesses, we must consider all
attacker skill sets described in Section III-C. We thus perform
the following steps; from Step 3 on, they are repeated 100
times to cover many combinations:

S1: Cluster selection for distribution. A data publisher has to
define which cluster he wants to release. This is followed
by assigning each recipient a fingerprint.

S2: Specification of the attack properties. Definition of how
an attacker approaches the manipulation in terms of the
background knowledge of the attacker; either an informed
attacker or attacker with some background knowledge.



TABLE III: Top 3 optimal clusters per utility metric for the
KDD dataset, gen=[1,2,4,3,1,1,1,1]

Clustering results
# metric #elements centroid variance w.avg.

1 AM 13 91,178 16,798 0,971
2 AM 11 90,222 13,903 0,917
3 AM 11 84,943 58,396 0,892

1 AEC 13 92,298 15,903 0,975
2 AEC 11 91,364 13,123 0,921
3 AEC 11 86,023 54,703 0,896

1 DM* 13 88,588 26,932 0,961
2 DM* 11 87,399 22,575 0,906
3 DM* 9 94,512 4,675 0,882

1 Height 12 24,405 12,391 0,721
2 Height 10 25,000 22,941 0,670
3 Height 9 17,463 12,588 0,620

1 Precision 9 8,798 3,167 0,593
2 Precision 8 15,754 3,921 0,590
3 Precision 8 14,061 4,609 0,585

1 Loss 10 22,822 7,602 0,665
2 Loss 8 22,044 5,660 0,611
3 Loss 8 21,693 3,084 0,611

1 NU 8 9,263 1,207 0,569
2 NU 8 7,239 2,005 0,562
3 NU 8 5,469 1,216 0,556

1 Norm.NU 8 12,766 3,844 0,580
2 Norm.NU 8 3,934 5,380 0,550
3 Norm.NU 7 9,024 1,395 0,543

TABLE IV: Pattern list for chosen clusters and manipulation
opportunities per type of attacker - Adult dataset

recipient utility score fingerprint pattern A1 A2 A3

A 96,67 [0,2,0,2,2,2,1,2,1] 7 7 7
B 96,67 [0,2,0,2,3,2,1,1,1] 7 7 7
C 96,67 [0,2,1,2,1,2,1,1,1] 7 7 11
D 96,67 [0,2,1,2,3,1,1,1,1] 7 7 7
E 96,67 [1,1,1,2,1,2,1,1,1] 7 7 11
F 96,67 [1,1,1,2,3,1,1,1,1] 7 7 7
G 96,67 [1,2,0,1,2,2,1,2,1] 7 7 7
H 96,67 [1,2,0,1,3,2,1,1,1] 7 7 7
I 96,67 [1,2,0,2,3,2,1,1,0] 7 7 7
J 96,67 [1,2,1,1,1,2,1,1,1] 7 7 11
K 96,67 [1,2,1,1,3,1,1,1,1] 7 7 7
L 96,67 [1,2,1,2,1,2,1,1,0] 7 7 11

S3: Random selection of an attacker. From the set of data
recipients, a random one is selected who takes on the
role of the attacker.

S4: Data manipulation. The attacker tries to manipulate the
dataset based on his capabilities in a way that he remains
undetected by the detection mechanism. First, the attacker
identifies the QIs that can still be manipulated. Depending
on the specified number of attributes an attacker is
supposed to influence, he selects a random one from
the identified candidates and checks whether this can
be manipulated according to the corresponding specified
criteria, and the number of generalisation steps. If the
prerequisites of Step 2 are met, the attribute values will
be replaced with the new generalised values. If not, we

TABLE V: Pattern list for chosen clusters and manipulation
opportunities per type of attacker - KDD dataset

recipient utility score fingerprint pattern A1 A2 A3

A 98,18 [1,1,1,2,1,1,1,1] 7 11 11
B 96,42 [1,1,1,3,1,1,1,1] 3 5 5
C 96,47 [1,1,2,2,1,1,1,1] 7 7 7
D 93,06 [1,1,2,3,1,1,1,1] 3 3 3
E 98.03 [1,1,3,0,1,1,1,1] 3 3 7
F 96,28 [1,1,3,1,1,1,1,1] 3 5 5
G 93,00 [1,1,3,2,1,1,1,1] 3 3 3
H 96,28 [1,2,1,0,1,1,1,1] 3 5 11
I 92,95 [1,2,1,1,1,1,1,1] 3 7 8
J 92,80 [1,2,2,0,1,1,1,1] 3 3 7

move on to the next candidate attribute. We repeat this
procedure until either the requirements are met, or the list
of candidates is empty. In the second case, we discard the
release and select a new attacker.

S5: Fingerprint detection. In the last step, the detection phase,
the distinct values of the attributes in the dataset under
evaluation are compared to the generalisation hierarchy,
and the resulting pattern is compared to the pattern list. If
no fingerprint exactly matches the detected one, potential
candidates are determined based on their distance.

Relevant metrics for our analysis are (i) the attack success
rate with respect to two attack targets: obfuscation and hiding
and (ii) the required manipulation, particularly the induced
data loss to achieve this objective, which represents the cost of
the attack. Note that the obfuscation success rate is ≤ than the
hiding success rate, as a successful identity obfuscation implies
successful identity hiding, while the latter can be achieved
without the former.

We summarised in Tables IV and V the number of manip-
ulations that a recipient can do depending on the attacker role
they take (A1 corresponds to an uninformed attacker, A2 to
some background knowledge and A3 to an informed attacker).

2) Analysis: Based on the possible manipulation strategies,
we perform the analysis and examine the average success rate
as well as the incurred data loss.

Table VI shows the difference in the number of modification
strategies, the resulting data loss, and the success rate based
on the level of knowledge an attacker possesses for the Adult
dataset. Even though an attacker with additional knowledge
can manipulate the dataset with less information loss and
has 16 more attempts to disguise his identity due to the QI
education, the average success rate is nearly the same as an
uninformed attacker. However, in many settings, the attack
comes at a relatively high cost, indicated by the relative utility
loss. While an acceptable loss depends on the usage scenario,
even the attack with the lowest loss incurs an almost 7%
relative loss penalty, while only avoiding detection in a bit
more than a third of the cases. Attacks that would succeed
with around 70% chance incur a utility loss of around 30%,
which seems prohibitively costly in most settings. It can also
be seen that obfuscation is very difficult to achieve with the
generalisation hierarchies present in this dataset.



TABLE VI: Attack and detection phase outcomes; Adult

Input parameter Modification results

no of
attrib. levels know-

ledge options
avg.

obfuscation
success

avg.
hiding
success

avg. rel.
utility

loss

1 1 ⊥ 36 0,00% 44,44% 8,05%
1 1 ⊤ 36 0,00% 37,96% 6,77%
1 2 ⊤ 4 0,00% 58,33% 13,79%
2 1 ⊥ 36 0,00% 75,00% 31,70%
2 1 ⊤ 36 5,56% 71,94% 25,80%
2 2 ⊤ 8 0,00% 76,25% 39,66%
3 1 ⊥ 12 0,00% 91,67% 100,00%
3 1 ⊤ 12 33,33% 94,44% 77,01%
3 2 ⊤ 4 0,00% 91,67% 100,00%

⊥ 84 0,00% 64,29% 31,32%
⊤ 100 6,00% 63,00% 28,69%

For the KDD dataset, the continuous attributes age and
income are the only potential candidate for a fine-grained
generalisation. All the others, including zip that belong in
each release to at least a domain of level 1, do not give
an informed attacker any additional advantage because their
hierarchy is based on a simple suppression approach. When
comparing the same input parameter sets of Table VII, it
again shows that an attacker with internal knowledge has
a clear advantage. He suffers from less information loss,
achieves a higher success rate, and has more manipulation
options available. In general, however, on this dataset, the
incurred utility losses are much smaller compared to the Adult
dataset. In several settings, it is possible to achieve a hiding
success rate of more than 70%, incurring relative utility loss
below 15%. On this dataset, also relatively high success rates
for obfuscation can be achieved, with around 50% average
success rate. The relatively low utility loss can be attributed
to often using the continuous attribute income, which can be
generalised three times according to its underlying domain
tree.

TABLE VII: Attack and detection phase outcomes; KDD

Input parameter Modification results

no of
attrib. levels mixed know-

ledge options
avg.

obfuscation
success

avg.
hiding
success

avg. rel.
utility

loss

1 1 ⊥ ⊥ 22 31,82% 72,27% 14,90%
1 1 ⊥ ⊤ 22 40,91% 74,70% 11,74%
1 2 ⊥ ⊥ 6 16,67% 73,89% 13,20%
1 2 ⊥ ⊤ 9 22,22% 73,33% 12,69%
1 3 ⊥ ⊤ 3 0,00% 65,56% 27,27%
2 1 ⊥ ⊥ 14 71,43% 96,43% 52,07%
2 1 ⊥ ⊤ 14 85,71% 98,21% 38,41%
2 2 ⊥ ⊥ 1 0,00% 87,50% 100,00%
2 2 ⊥ ⊤ 2 50,00% 93,75% 74,56%
2 2 ⊤ ⊥ 6 33,33% 91,67% 77,04%
2 2 ⊤ ⊤ 10 80,00% 97,50% 50,06%
2 3 ⊤ ⊤ 4 50,00% 93,75% 68,19%
3 1 ⊥ ⊥ 2 100,00% 100,00% 74,75%
3 1 ⊥ ⊤ 2 100,00% 100,00% 74,75%
3 2 ⊤ ⊥ 1 100,00% 100,00% 100,00%
3 2 ⊤ ⊤ 1 100,00% 100,00% 100,00%

⊥ 52 44,23% 83,90% 37,46%
⊤ 67 55,22% 85,26% 32,30%

In summary, manipulations resulting in a higher information
loss have a better success rate, as the number of patterns

in question increases. The underlying attribute data types
have a significant influence on the number of possible attack
strategies and their success rate.

3) Observations and recommendations: Regarding the
dataset characteristics, certain properties of the dataset have a
major impact on the attacker’s success. A higher number of at-
tributes in conjunction with a large distance between the repre-
sented and the maximum possible generalisation level favours
an attacker, granting more attack opportunities. Generalisation
hierarchies of continuous data types allow for the generation
of a high number of fingerprints, with the disadvantage of
increasing the risk of a successful attack. Categorical attributes
provide the benefit of limiting the number of attacks, as well as
increasing data loss induced by the attack. Since their domain
structure can be more complex and harder to predict compared
to continuous, attackers without background knowledge often
have no other option than to apply total suppression.

Data publishers can influence the robustness of fingerprints
with the choice of appropriate fingerprint generation param-
eters. The lower the data utility, implying a high degree of
generalisation up to suppression, the lower the number of op-
portunities for manipulation. On the one side, data publishers
achieve thereby a limitation of the attack and thus more robust
fingerprints, on the other side, the data is less useful for further
analysis. Therefore, while choosing the cluster of fingerprints
with the high centroid (utility), the data owner must take into
account the trade-off with fingerprint robustness.

Finally, the number of fingerprints affects their robustness.
The smaller the number of potential recipients, the smaller
the eligible set for an attacker to hide behind becomes,
thus making the attack harder. Of course, there are certain
limitations in restricting the number of recipients, and if there
are commercial incentives (like selling the data), then there is
a desire to maximise the number of recipients, which is then
in direct contradiction to the aim of limiting the number of
recipients for attack resilience purposes.

D. Collusion attack

In this part, we conduct two case studies on the Adult
Census dataset to analyse the collaboration between data
recipients. Firstly, we analyse the success rate of the collusion
attack for all fingerprints in the cluster, before applying the
collusion filter. Secondly, we apply the collusion filter as
described in Section III-B and demonstrate the collusion
resolution. Lastly, we challenge the strong definition of the
upper limit of the number of recipients (equalling the number
of QIs in the dataset as discussed in Section III-C).

a) Collusion analysis: Multiple data recipients may com-
bine their datasets by matching the data values they have
in common, typically the non-QI attributes that remain un-
changed in the anonymisation/fingerprinting process, but also
on the QIs that may share exact same values due to the
same anonymisation levels. We first show how successful the
attackers get regardless of the collusion filter. Given that their
goal is to reduce their received generalised values (assignment
shown in Table VIII), the success rate denotes the percentage



of records recovered to minimal generalisation levels available
from collaboration.

TABLE VIII: Recipients and their gen. configurations

Recipient A B C D E

Gen. config. [4,1,2,1,1,1,0,1,0] [3,1,3,1,1,1,0,1,0] [3,1,2,2,1,1,0,1,0] [3,1,2,1,1,1,0,1,1] [4,1,3,0,1,1,0,1,0]

TABLE IX: Collusion attack.
*including records that have 2 potential matches among collaborators’ datasets
*including records that have 3 potential matches among collaborators

Collaborators Success rate Success rate* Success rate**

A & B 1478 (4,90%) 2150 (7,12%) 2585 (8,57%)
A & C 1782 (5,91%) 2626 (8,71%) 3190 (10,58%)
A & D 1752 (5,81%) 2556 (8,47%) 3099 (10,27%)
A & E 1640 (5,44%) 2398 (7,95%) 2935 (9,73%)
B & C 2060 (6,83%) 3036 (10,07%) 3762 (12,47%)
B & D 1982 (6,57%) 2930 (9,71%) 3533 (11,71%)
B & E 1378 (4,57%) 1996 (6,62%) 2404 (7,97%)
C & D 2437 (8,08%) 3571 (11,84%) 4402 (14,59%)
C & E 1378 (4,57%) 1996 (6,62%) 2404 (7,97%)
D & E 1256 (4,16%) 1842 (6,11%) 2193 (7,27%)

The ability of the collaborators to successfully match their
datasets depends majorly on the amount and distribution of
non-QIs. As confirmed by our analysis presented in Table IX,
only in average about 5,69% of records are successfully
transformed by two recipients colluding. The remainder of
the datasets leaves uncertainty for the matches across the two
datasets, we show results for up to 2 and up to 3 potential
matches per record.

After applying the collusion filter to the potential cluster
of recipients from Table VIII as described in Section III-B,
the resulting group of anonymised datasets for distribution is
[A,B,E] and the collusion resolution is possible by using a
single record. This is demonstrated in Table X. Exemplified
is the case of A and E in collusion, where we can single out
one of 1640 of the samples (cf. Table IX) transformed into the
least generalised values available to the union of the colluders,
i.e. [4,1,2,0,1,1,0,1,0]. Since only the recipient A has the level
of detail for the ”education” attribute (generalisation level =
2) and only E has the level of detail for the ”marital-status”
(generalisation level = 0) among all collusion-free recipients,
we infer that indeed the recipients A and E had to be in the
collaboration to obtain the presented data sample. Without the
loss of generality, this applies to any combination or number
of collaborators from [A,B,E].

On the other hand, we can demonstrate the unsuccessful
collusion resolution on the result of the collaboration of
recipients C and D, those excluded by the collusion filter
step, i.e. if we used all five datasets from Table VIII. This
collaboration results in 2437 records (cf. Table IX) that have
minimal attribute generalisations available to the union of the
recipients; i.e. the configuration [3,1,2,1,1,1,0,1,0]. From this
configuration, it is not possible to detect the correct colluders
since there is no unique level of detail that only one recipient
received. For instance, the generalisation level = 1 of ”marital-
status” (4th QI) could have originated from recipients A, B or

C. This applies to any collusion which contains at least one
recipient outside of [A,B,E].

b) Relaxing the upper limit on the number of recipients:
A rather low percentage of the recovered records indicates
that the collaborators do not necessarily benefit greatly from
joining the datasets. The threat can even be diminished by
suppressing selected records. This method can be found useful
in scenarios where a larger number of recipients is a critical re-
quirement. For our example from above we found that similar
sets of individual records contribute to success rates for all the
collaborations in Table IX. By suppressing these records, the
resulting collusion attack success rates considerably decrease.
We find that suppressing ≈ 10% of data records leads to
cutting the success rates by more than half, suppressing ≈ 15%
decreases the success below 1% for most of the collusions,
and finally, the perfect collusion can be evaded by suppressing
≈ 23% of the records, per results shown in Table XI. Note that
the collusion cannot be resolved in cases where non-collusion-
free recipients collaborate, however, their chances of finding
the matching records are so small that one could rightfully
claim that collusion is no longer a threat.

c) Discussion: The colluding attackers might have dual
intentions; (i) reducing the generalisation levels, hence improv-
ing data utility, or (ii) re-identification of the data records.
The first one cannot be prevented, but we discuss how the
involved parties can be detected from such collaborations.
The re-identification goal is prevented intrinsically by the
collusion filter such that any reduction of generalisation levels
still results in a dataset that satisfies k-anonymity property.
It is important to note that this cannot be guaranteed when
relaxing the collusion-free requirement. To make sure that
the re-identification is not possible for the collaborations in
the relaxed scenario, one either needs to ensure that the
combination of all minimal provided attribute generalisations
still satisfies k-anonymity, or that the attacks success rates are
decreased to 0, hence preventing the collusion altogether.

V. CONCLUSIONS

In this paper we analysed the approach of achieving
anonymity and unauthorised usage verification of the datasets
via a unified process, combining thus two common require-
ments for sharing private and sensitive datasets. The approach
uses the k-anonymity generalisation patterns as the fingerprint
information, according to which the owner can trace the data
copy to its original recipient. The analysis of our implemented
approach shows that the data owner needs to solve certain
trade-offs in order to obtain robust fingerprints and ensure high
data quality simultaneously for all the recipients. The utility
of the fingerprints is preserved better in the settings where at-
tributes have high granularity of potential generalisations (such
as numeric attributes), however, the robustness is achieved
better in settings including attributes with a rather low gran-
ularity of potential generalisations, thus limiting any poten-
tial attacks. Additionally, limiting the amount of distributed
datasets contributes to better robustness. This is especially
the case for collusion attacks where the attackers combine



TABLE X: Demonstration of collusion resolution with and without collusion filter. One record of the Adult dataset obtained
from the collusion of recipients A and B represents the successful collusion resolution. Collusion of C and D represents the
unsuccessful collusion resolution.

age workclass education marital-status occupation relationship race sex capital-gain capital-loss hours-per-week native-country salary-class

A&E [57, 97] * higher edu. Widowed * not-in-family * Male 0 0 6 * > 50k
4 1 2 0 1 - 1 0 - - - 1 0

C&D [77, 97] * higher edu. other * not-in-family * Male 0 0 50 * > 50k
3 1 2 1 1 - 1 0 - - - 1 0

TABLE XI: Collusion attack after record suppression.

suppressed records

Collaborators 0% 1,19% 1,33% 10,08% 15,02% 22,73%

A & C 5,91% 4,98% 4,97% 2,10% 0,39% 0
A & D 5,81% 4,91% 4,91% 2,04% 0,30% 0
B & C 6,83% 5,88% 5,88% 3,00% 0,47% 0
B & D 6,57% 5,68% 5,68% 2,78% 0,31% 0
C & D 8,08% 7,69% 7,55% 4,14% 2,93% 0
C & E 4,57% 4,22% 4,22% 0,91% 0,16% 0
D & E 4,16% 3,84% 3,70% 3,68% 3,26% 0

information from their datasets to either improve the utility of
their dataset or attempt the re-identification of the records. We
show that the method is resilient against those attempts. We
further show that even for a larger number of recipients, the
collusion threat can be diminished by suppressing records that
allow collaboration.

The future work includes comparing different methods
that ensure privacy and unauthorised usage tracing including
those that incorporate some stronger privacy definitions and
those applying these requirements sequentially, i.e. classical
fingerprint on top of the k-anonymous data.
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