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Abstract—Federated learning is an important technique for
training language models, which are frequently used for next-
word prediction since federated learning allows utilising large
quantities of real-life data without compromising the privacy
of the data owners. Training a model that generalises well in
this setting is a challenging task due to the inherent statistical
heterogeneity of the training data, and due to the hardware limi-
tations of private mobile devices. There are different approaches
that address these issues, e.g. through model selection, different
aggregation and learning strategies, and update compression. In
this paper, two popular model architectures, namely Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU), are
evaluated in centralised and federated settings. For federated
learning, the vanilla Federated Averaging algorithm and two
alternatives that try to address statistical heterogeneity, namely
FedProx, which uses a proximal term to restrict the divergence
from the global model during local model training, and Federated
Attention, which has similar aims of reducing the distance
between models as well to ensure faster convergence and improve
generalisation, but is performing this during the aggregation
station, are evaluated for their achieved perplexity and accuracy
in various settings on two datasets. Based on these results, we
provide guidelines on which methods to use, depending on the
scenario.

Index Terms—Federated Learning Federated Averaging Lan-
guage Models Next-word Prediction

I. INTRODUCTION

Next-word prediction is a common feature to assist users
in several mobile applications that require text input, like
messaging apps, search engines, and many more. To train
accurate language models for next-word predictions, large
volumes of training data are required. While several large
benchmark datasets are available, language usage is highly
dependent on the context and the domain. For this reason,
it is important to train language models on data that is
representative of the future application of a model, so often
user data is a prime fit. Such data may be difficult to gather due
to privacy concerns. One solution is Federated Learning, where
data that is collected distributed can stay distributed, e.g. on
end-user devices. In Federated Learning, a machine learning
model is trained directly on the local dataset, and only model
updates need to be exchanged with a central coordinator.
Removing the need to centralise the data for training, this

approach reduces the privacy risks related to the transmission,
storage and analysis of confidential data.

This makes federated learning an attractive strategy for
language modelling tasks like mobile keyboard prediction and
text correction for mobile devices. However, there are still a
few limitations in federated learning on mobile devices [1] [2]
[3]:

• Model size: hardware limitations on mobile devices
mandate a trade-off between the model performance and
size. Selecting smaller, but still well-performing models
and applying techniques to reduce the number of param-
eters, without compromising performance too much, is
necessary.

• Communication Cost: the transmission of updates may
constitute a bottleneck in the training process due to
bandwidth constraints on mobile devices. Thus, reducing
the number of communication rounds until convergence
and the size of the model updates is important.

• Distribution of Data: since a client’s dataset is heavily
influenced by the behaviour of the user (e.g. by a specific
writing style), the local datasets might be very different
from the whole population. Additionally, large differences
in the sizes of the local datasets can occur since some
users might use a service more frequently than others.
Thus, algorithms need to be robust to the heterogeneity
of the datasets.

To address these challenges, several different architectures
for learning language models in a federated manner have
been investigated, e.g. recurrent neural network architectures
such as the Long Short Term Memory (LSTM) or Gated
Recurrent Unit (GRU). Further, different methods to perform
the aggregation of the locally trained models to a global model
have been proposed. While the Federated Averaging (FedAvg)
[4] algorithm, which performs position-wise averaging of all
local model parameters, remains a popular approach, other
methods have been proposed to specifically address e.g. data
heterogeneity, such as FedProx [5] or FedAtt [3].

In this paper, we perform an empirical analysis to determine
(i) which aggregation methods and models are most suitable
for federated next-word prediction, (ii) what impact statistical
heterogeneity has on federated next-word prediction, and (iii)979-8-3503-2445-7/23/$31.00 ©2023 IEEE



to what degree the negative impact can be mitigated with
current state-of-the-art methods. To validate the performance
of our federated learning models, we compare them to a
hypothetical centralized approach, where all data is aggregated
before learning one single model.

The remainder of this paper is structured as follows. In
Section II, we present related work on language modelling
and federated learning. Section IV presents our evaluation.
Finally, we conclude and provide an outlook on future work
in Section V.

II. RELATED WORK

Language modelling is a major part of Natural Language
Processing (NLP) and is used for a wide array of differ-
ent downstream tasks such as speech recognition, machine
translation and question answering. Language modelling deals
with predicting a linguistic unit (such as characters, words,
or sentences) given a sequence of previous units [6]. This
can be achieved through statistical methods by calculating the
respective probability distribution of a sequence of linguistic
units, or through Machine Learning based approaches. Lan-
guage modeling can thus be used to predict the next-word
given an input sequence in order to make suggestions while
typing text or to enable other text generation tasks [7].

Since there is a fixed number of valid labels, language
modelling can be considered a classification task: each word
that can be predicted is a distinct class. While earlier ap-
proaches would use e.g. probabilities on n-gram models or
shallow machine learning models, the past decade has seen
rapid improvements mainly through the success of different
neural-network-based approaches, which are now State-of-the-
Art in the field. As language is a sequence of tokens, Recurrent
Neural Networks (RNNs), where the current state depends on
the outputs at earlier time steps, and due to the ability to
process sequences of variable length, are specifically suited.
Mikolov et al. [8] presented one of the first uses of RNNs for
language modelling.

Major advancements to deal with issues in training were
made when the Long Short Term Memory (LSTM) architec-
ture [9] was used for language modelling [10]. An LSTM
reduces the vanishing gradient problem by introducing input
and forget-gates that control which parts of a sequence are
taken into account and which are “forgotten”. These gates
control how the hidden state, which is passed to the cell in
the next time step, is updated.

Another architecture that has become popular for language
modelling is the Gated Recurrent Unit (GRU), which achieves
similar performance to an LSTM, but requires fewer parame-
ters to be learned [11]. GRU cells consist of only two gates, a
reset gate and an update gate. LSTM and GRU-based models
are commonly used for federated language modelling due to
their relatively small size [2], [3], [7].

Current state-of-the-art methods mostly use transformer-
based [12] architectures, but since these models have millions
of parameters, they require large amounts of training data
and extensive training. Transformer-based models are less

suited to federated learning on private mobile devices in
particular, as the amount of data on a single device is
limited, the computational power of a single device is low
and the number of rounds required to train such a model
would be very high. GPT-3 [13], for example, has 75 billion
parameters, which would make it very difficult to allocate
enough memory or computing power on mobile devices
that participate in federated learning [1]. For these reasons,
RNN-based language models are still frequently used in
settings where these prerequisites are not fulfilled, such as
mobile or edge devices.

Federated Learning encompasses methods to collaboratively
learn a common model (global model) from distributed data
sources, without the need to centralise this data in one lo-
cation. The term was coined by [4], and since then, several
frameworks for Federated Learning have been published, e.g.
Flower1, [14], or [15]. Several different learning tasks have
been analysed in federated settings. In [16], the authors
showed that federated learning on medical image data can
reach a performance, similar as to when data is centralised
before training. For structured data, [17] showed that FL
is comparable to centralised learning in several settings. In
[18] the authors considered Federated Learning for IoT, and
optimised the averaging algorithm for Edge Computing. [19]
considers anomaly detection in a federated setting, while [20]
provides an overview of analysis of medical data.

Besides hyper-parameters like the number of aggregation
rounds and local epochs of training, or federation specific
aspects like the number of clients, one fundamental aspect
influencing the effectiveness of federated learning is how the
central server (or aggregator) will aggregate these locally
trained models. Most work focuses on neural networks and
similar models (e.g. logistic regression, or also support vector
machine), where positional parameters are aggregated. In
many settings, there are multiple federated (communication)
rounds (also called iterations), i.e. several iterations of local
model training, aggregating them, and continuing local train-
ing.

The authors of [4] adapted the synchronous distributed
version of the stochastic gradient descent (SGD) optimiza-
tion algorithm to use as a baseline for federated learning
algorithms. In FedSGD, each client computes one step of
gradient descent and sends the gradient to the server. The
server then calculates a weighted average of the received
gradients and adjusts the model parameters. [4] also proposed
federated averaging (FedAvg) as an alternative. In FedAvg,
the clients perform multiple steps of gradient descent locally,
before transferring the model weights to the coordinator, who
subsequently computes the average. The main advantage of
this method is that greatly reduces the number of communi-
cation rounds compared to FedSGD, as multiple local epochs
of training can be performed before aggregation.

1https://flower.dev/
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While FedAvg has become the most common aggregation
method in the federated setting, several modifications and
alternatives have been developed to improve performance,
communication cost, privacy, or robustness to non-independent
and identically distributed data. Two major challenges in
federated learning are system heterogeneity – meaning hard-
ware and network differences between clients – and statistical
heterogeneity, i.e. non-iid distribution of data. FedProx [5]
addresses both of these issues through two modifications
of FedAvg. To tackle system heterogeneity, FedProx allows
the usage of partial computations, i.e. a device with better
hardware may train its local model for multiple epochs, while
slower devices can only train for one epoch. Still, both results
are used for the model update. This leads to a reduction of
devices that have to be completely dropped from computations
because they take too long for a full training round. The
aggregation itself is the same in FedProx as in FedAvg.

Differences in the clients’ datasets may lead to issues in
model convergence, as local model updates may not generalize
well and thus decrease the performance of the global model.
In FedProx, a proximal term is used to restrict the divergence
from the global model. The proximal term is added to the
training loss on the client device, and the new loss is used for
computing gradients.

The federated attention (FedAtt) algorithm [3] focuses on
reducing the distance between models, and to ensure faster
convergence and improve generalization. The difference to
FedProx is that in FedAtt, this happens at the aggregation
step and not during local training. Instead of computing the
average of the weights from the local models, [3] proposes a
layer-wise attention-based aggregation to train a global model
that better generalizes the client models. Attentive weights for
the aggregation are computed for each client and layer, based
on the distance of the weights of the layer at the client to
the layer in the global model. Thus, client weights that are
closer to the global model are favoured during aggregation.
FedAtt is reported to outperform FedAvg in terms of perplexity
and communication cost. The experiments conducted by the
authors included both a comparison of perplexity after 50
communication rounds for different numbers of local epochs
and a comparison of how many rounds it took to reach a
perplexity threshold [3].

In this paper, we will compare FedAvg, FedProx and FedAtt
will be compared in terms of efficiency and effectiveness, to
derive guidelines on which methods to use in which setting.

III. EXPERIMENT SETUP

In the following, we describe the setup of our experimental
evaluation, including the datasets we used, the vocabulary-
creating approach, and our evaluation metrics. Our model
architecture is the same as in [2] with either GRU or LSTM
as the recurrent layer.

A. Datasets

We selected two datasets, namely the Stackoverflow and a
Reddit dataset, since they are sufficiently large, are frequently

used in literature for language modelling, and we can thus
compare our effectiveness to literature, and as these datasets
can be divided among the federated learning clients in a mean-
ingful manner (so that there is high heterogeneity between
clients but lower heterogeneity when it comes to text within
a client dataset).

1) Stackoverflow: Stackoverflow is a website where users
can ask programming-related questions and receive answers
by other programmers; these data have frequently been used
for federated learning research [21], [22]. We utilise the pre-
processed version available through TensorFlow Federated2.
Further, BOS and EOS tokens were added to indicate the
beginning and end of a comment. The comment is then split
into 21-token-long sequences. Each sequence is transformed
into input and target – where the first 20 tokens are the input
and the target consists of 20 tokens starting with the second
token, so that the resulting splits are overlapping.

The train set consists of 342,477 unique users with
102,387,303 sequences in total. However, of this set, only
a maximum of 5,120 tokens per user are utilized; limiting
the size of the local datasets was also done in [2], [22] to
reduce the influence of very large local datasets on the training
time. The validation set includes 38,758 unique users with
12,449,166 sequences and the test set consists of data from
204,088 unique users with 124,099,09 sequences. Due to the
large size of the test set, only a fraction of the whole set was
used for measuring the performance during training and the
full dataset was used to get the final accuracy and perplexity
at the end. A histogram of the numbers of tokens per local
dataset is shown in Figure 1.

Due to differences in language patterns of the users and
topics that the posts relate to, there is statistical heterogeneity
in the dataset. The word usage of 1,000 randomly sampled
users with their respective posts and comments shows this
heterogeneity – each word in the vocabulary was used at
least once by 143.62 out of the 1,000 users on average.
Figure 2 depicts boxplots of the relative word frequency of
20 non-punctuation and non-stop-word tokens (words with
little informational value like ”the”, ”is”, and ”that”) that
were included by the highest numbers of users in this random
sample.

2) Reddit Comments: Reddit is an internet platform for
sharing and discussing user-generated content. The website
is organized in “subreddits” which are forums that are created
and moderated by users and are dedicated to different topics.
This makes Reddit a good source for a large amount of
heterogeneous textual data, and it has thus been used for many
language modelling tasks in literature in federated settings
[2], [3], [23]–[25]; however, all these use different Reddit
datasets, rendering the results not directly comparable. We
use the dataset provided by the federated learning benchmark
LEAF [26]3. It provides a preprocessed version, as well as
scripts that were used for preprocessing and for vocabulary

2https://www.tensorflow.org/federated/api docs/python/tff/simulation/
datasets/stackoverflow

3https://github.com/TalwalkarLab/leaf/tree/master/data/reddit

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow
https://github.com/TalwalkarLab/leaf/tree/master/data/reddit


Fig. 1: Stackoverflow dataset: Token-per-user-histogram

Fig. 2: Stackoverflow Dataset: Word Usage

creation. It results in a vocabulary that consists of the 10,000
most frequently used words. For our experiments, we slightly
adjusted the preprocessing from LEAF to make the results
more comparable to the literature: the sequence length was
increased to 20 tokens since this setup is more common in
other works [2], [3] and fully employs the advantage of RNNs
in regard to processing longer sequences. 500,000 users were
randomly selected for the train set. The test and validation
sets were sampled from the remaining users; both sets contain
comments from 10,000 users each. Again, 1,000 users were
sampled to analyze their word usage. On average, each word
in the vocabulary was included in 44.46 out of 1,000 user
datasets, meaning that the overlap in the word usage is much
smaller on average than with the Stackoverflow dataset. As
individual subreddits are dedicated to different topics, there
is a high variety of topics that are covered by posts and
comments. In addition, Reddit is not intended to be used in
a “professional” setting, which may lead to more usage of
slang, and language variations. These differences between the
websites could be the reasons for the higher heterogeneity in
the Reddit dataset.

Table I shows the characteristics of the two datasets. There
are three main differences between the two datasets. Firstly,
Stackoverflow is focused on a single subject, meaning that the
language used is more homogeneous than Reddit. Secondly,
Stackoverflow has more text available per user. This suggests
that language modelling tasks may be more challenging for

TABLE I: Dataset Overview

Dataset Stackoverflow Reddit
Users
Train / Valid / Test 342,477 / 38,758 / 20,408 500,000 / 10,000 / 10,000

Avg. Local
Train Set Size 3,040 Token 1,750 Token

Vocab. Size 1,004 Token 1,000 Token
Vocab. Selection used by most users most frequently used
Avg. # of Users
of Vocab. Tokens 44.46 out of 1,000 143.62 out of 1,000

the Reddit dataset. Thus, a higher perplexity for a language
model trained and evaluated on the Reddit dataset is expected
(under the same experiment setup).

B. Vocabulary Creation

For each training corpus, there are some words which rarely
occur or are not at all present in the training data. It is
not possible for a model to correctly predict that word in
these cases. Usually, the vocabulary which a model learns
is restricted by selecting a subset of all valid tokens. Most
frequently this is done by counting the occurrences of each
distinct token in the training corpus and selecting some fixed
number of most frequent tokens. All other tokens get an
encoding that indicates that they are unknown – per convention
that is usually UNK for “unknown” or OOV for “out of
vocabulary”. Any prediction that is made where the target is
UNK is usually either counted as false or is ignored.

In a federated setting where it is possible to freely access all
client datasets, one might select the words for the vocabulary
based on the number of clients that had that word in their
local dataset instead of the overall frequency. We consider two
cases. Our first vocabulary creation strategy is based on the
collection frequency, describing the number of occurrences of
a word in a collection of documents, while the second one
is based on document frequency, which corresponds to the
number of documents in which a term appears [27]. Here, a
user dataset counts as a document.

C. Evaluation Metrics

There are multiple ways to measure the quality of next-
word predictions. In this paper, we use two metrics that
are frequently used in related work, namely perplexity and
accuracy.

1) Perplexity: Perplexity is the most frequently used metric
for language modeling tasks. It can be thought of as the
weighted average branching factor of a language. The branch-
ing factor is the number of possibilities to continue a sequence
of tokens [27]. Perplexity is the exponential of the cross-
entropy (Equation (1)) [3].

PP (W ) = 2H(W ) = 2(−1/N) log2(P (w1,...,wn)) (1)

This is equivalent to the normalized inverse of the proba-
bility of the test set (Equation (2)) [27].

PP (W ) =
√
P (w1, ..., wn) (2)

Intuitively, this means the lower the perplexity, the less
”surprised” the model is by the sequences in the test set. A



model that predicts an incorrect class with high confidence
has a higher perplexity than a model that makes the same
prediction, but with a lower confidence. The perplexity metric
has a range of drawbacks. Firstly, it is highly dependent on
the vocabulary of a language model. This means that it cannot
be used to compare models with different vocabulary sizes
or different tokens in the vocabulary. Secondly, while there
is a correlation between the correctness of predictions and
perplexity, a reduction of perplexity does not necessarily mean
that the model makes fewer prediction mistakes [28].

2) Accuracy: Accuracy is the ratio of correct predictions
to predictions overall. It is used as a metric for all kinds of
classification tasks. As opposed to perplexity, it can be used to
compare models that were trained using different vocabularies
(where one includes different tokens than the other) on the
same dataset (as long as all predictions of tokens outside the
vocabulary are counted as false predictions). For some tasks,
top-k-accuracy is used, where a prediction counts as correct
if the true class is among the k most likely classes according
to the model. However, as opposed to perplexity, accuracy
does not measure with what confidence the model made a
prediction, so it does not capture how close the model was to
the correct label on a wrong prediction.

IV. EVALUATION

First, we report the performance of the baseline models in
centralised learning, followed by an analysis of the federated
learning results. Effectiveness is evaluated on the validation
and test data every 10 rounds and the federated experiments
were performed for 2,500 rounds each. In each round, one
epoch of training was performed per client. The experiments
were conducted using a client learning rate of 0.3 and mo-
mentum of 0.9 on servers and clients. For FedAtt a stepsize
of 1.0 was used and for FedProx a proximal factor of 0.1.
These values were selected based on the results of prior hyper-
parameter tuning.

A. Centralised and Local Baselines

The final test accuracy and perplexity of these baseline
models are given in Table II. An accuracy of 20.97% on
the Reddit dataset could be reached with LSTM; lacking a
centralised comparison, this is 2% higher than [2] reached on
Reddit comments in a federated setting. The Stackoverflow
dataset achieves an accuracy of 27.52% with LSTM, which is
3.5% higher than the federated results in [21].

TABLE II: Centralized Baseline Performance

Dataset Model Accuracy Perplexity

Reddit
GRU 20.64% 26.48

LSTM 20.97% 25.87

Stackoverflow
GRU 27.34% 3.53

LSTM 27.52% 3.51

Taking a closer look at the convergence of the GRU models,
we note that most of the improvements occur within the first

20 epochs. At the 20th epoch, the accuracy of the GRU model
on the Reddit dataset reaches 20.38% and improves only by
0.25% until the 80th epoch. On the Stackoverflow dataset,
the model reached an accuracy of 26.74% by epoch 20 and
improved until it reached 27.18% at the 55th epoch, where the
validation loss stopped improving.

The performance of the local baseline models is shown in
Table III. All four models have a poor performance – the
LSTM models reach an average accuracy of only 3.81% on the
Reddit dataset and 5.02% on the Stackoverflow dataset, with
a standard deviation of 1.38 and 1.53 respectively. The local
model that reached the highest accuracy on the Reddit dataset
was an LSTM model and achieved only 5.8%. On the Stack-
overflow dataset, an LSTM model reached 7.6% accuracy.
This means that models that were only trained locally cannot
reach sufficiently good accuracy to make reliable next-word
predictions. As expected, due to the differences in datasets
described in Section III-A, language modelling on the Reddit
dataset appears to be a more challenging task than on the data
from Stackoverflow, which is supported by the significantly
lower perplexity achieved for both types of baselines. For
example, the perplexity reached with an LSTM model on
the Reddit dataset is 25.87, whereas the perplexity on the
Stackoverflow dataset is only 3.51.

The differences in performance between the models with a
GRU layer and an LSTM-layer are minor. In the centralized
setting, the LSTM models reached a slightly lower perplexity –
a difference of 0.61 for Reddit and 0.02 for Stackoverflow. For
the locally trained baselines, LSTM reached a lower perplexity
on the Reddit dataset and GRU on the Stackoverflow dataset.
However, these differences are minor.

TABLE III: Local Baseline Performance

Dataset Model Mean Accuracy Mean Perplexity

Reddit
GRU 3.51% (± 1.39) 249.63 (± 117.82)

LSTM 3.81% (± 1.38) 260.1 (± 121.6)

Stackoverflow
GRU 4.60% (± 1.58) 16.30 (± 4.58)

LSTM 5.02% (± 1.53) 16.44 (± 4.10)

B. Federated Learning

Table IV shows the perplexity and accuracy of the models
after 2,500 rounds of federated learning, results are obtained
by evaluating on the respective test set. Figures 3a to 3d
show the accuracy throughout the training. The evaluation
was performed every 10 rounds, and the resulting plots were
smoothed using moving average with a window of size of 5.

Federated Averaging achieved very stable results through-
out the training – there were no significant drops in perfor-
mance from round to round. The most accuracy improvements
were achieved in the first 250 to 500 rounds of training. The
models were able to reach an accuracy of 16.40% for the
Reddit dataset, and 24.96% for the Stackoverflow dataset using
FedAvg, meaning that the federated models are weaker than
the global centralized baselines by 4.57 percentage points and



(a) Accuracy of GRU model on Reddit Dataset (b) Accuracy of LSTM model on Reddit Dataset

(c) Accuracy of GRU model on Stackoverflow Dataset (d) Accuracy of LSTM model on Stackoverflow Dataset

Fig. 3: Accuracies of GRU and LSTM models, with three different aggregation methods. Comparison to baselines: global
model denotes learning centralised, local models denotes the average of the only locally trained models.

TABLE IV: Federated Learning Results after 2,500 rounds

Dataset Model Aggregation Accuracy Perplexity
FedAvg 16.03% 38.51
FedProx 16.15% 38.37GRU
FedAtt 15.05% 42.24
FedAvg 16.40% 38.60
FedProx 16.26% 38.99

Reddit

LSTM
FedAtt 15.69% 41.58
FedAvg 24.96% 5.33
FedProx 24.99% 5.34GRU
FedAtt 24.42% 5.41
FedAvg 24.89% 5.39
FedProx 24.96% 5.42

Stackoverflow

LSTM
FedAtt 24.30% 5.56

2.56 percentage points respectively. The centralized baselines
reached a higher accuracy than the federated models after
only one epoch on the Reddit dataset and eight epochs on
the Stackoverflow dataset with the GRU model. However, the
federated models clearly outperform all the local baselines.

The choice of the RNN-Layer had little influence on the
training behaviour. The LSTM models were slightly worse
than the GRU models in terms of perplexity: the difference
was 0.09 for the Reddit dataset and 0.06 for the Stackoverflow

dataset. However, as these differences are rather small, there
is no clear trend in terms of accuracy: For the Reddit dataset
the LSTM model reached a higher accuracy with a margin
of 0.37%, and for the Stackoverflow dataset the GRU model
with a margin of 0.07%.

The proximal term added in FedProx had no positive effect
on performance and convergence behaviour. The results are
very similar to the ones from FedAvg without a proximal
term, both in terms of convergence behaviour and the achieved
performance metrics. On average, the difference between the
accuracy of the two methods is only 0.2%. FedProx has
reached a higher accuracy than FedAvg in three out of four
settings, but managed to achieve a lower perplexity in only
one of them.

In terms of the architectures, the results are also similar
to FedAvg: the GRU models have lower perplexities than the
LSTM models, but the difference is minor. Specifically, on the
Reddit dataset, the difference is 0.23 and on the Stackoverflow
dataset, it is 0.08. The accuracy of the GRU model is lower
on the Reddit dataset and higher on the Stackoverflow dataset
compared to their LSTM counterparts.



Fig. 4: Accuracy of FedProx with 50 Local Epochs

To explore whether the proximal factor is more important
in settings with a larger number of local epochs, an additional
experiment was conducted. It was performed with 50 local
epochs per client during local training, for 100 federated
training rounds, with a client learning rate of 0.001 and
proximal factors of 0 (which corresponds to FedAvg), 0.1,
0.3 and 1.0. The results are shown in Figure 4. They show
that with the highest proximal factor, the accuracy and loss
are worse than with FedAvg, while factors of 0.1 and 0.3 lead
to results that are very similar to FedAvg. At the 100th round,
a parameter value of 0.0 achieved an accuracy of 8.58%,
followed by 0.3 with 8.5%, 0.1 with 8.34% and finally 1.0
with 7.8%. The results indicate that adding a proximal term
does not improve the results when no system heterogeneity is
present in the setup.

Federated Attention (FedAtt) generally showed the worst
effectiveness of the three tested aggregation methods, visible
from around 250 rounds of the training process. However, we
now want to specifically investigate the performance during
the early phase of training. Table V shows the performance
of models trained using FedAvg and FedAtt after the first 50
and the first 100 rounds of training.

On the Reddit dataset, which is the one with more statistical
heterogeneity, FedAtt performed consistently better within the
first 100 rounds but was then surpassed by FedAvg and
FedProx for the rest of the training. The FedAtt accuracy after
50 rounds was higher than the FedAvg accuracy with a GRU
model by 0.78 percentage points and 1.81 percentage points
with an LSTM model. The perplexity of FedAtt was mostly
lower than FedAvg until around the 200th round for GRU and
the 600th round for LSTM on the Reddit dataset.

For the Stackoverflow dataset, the FedAtt performance was
slightly lower than the performance of FedAvg even at the
50th and 100th rounds, except for the LSTM models at round
100. Interestingly, the FedAtt performance at the early rounds
barely decreased (or even slightly increased) when using an
LSTM instead of a GRU, as opposed to FedAvg, where the
differences in performance were larger. For example, at the

50th round of FedAvg on the Reddit dataset, the perplexity of
the GRU model was lower by 5.14 than the perplexity of the
LSTM model. For FedAtt the LSTM model’s perplexity was
higher by 0.66.

These results do not support the assumption that FedAtt
converges faster and achieves a better perplexity than FedAvg.
In experiments in the original paper [3] the perplexity of
FedAvg and FedAtt is compared after only 50 communication
rounds. In addition, the number of rounds it took to reach a
perplexity of 90 is reported. Thus, it may be the case that
FedAtt performs better than FedAvg only at the beginning of
the training.

FedAtt might be more suitable for larger models, and if
there are strong limitations on the communication. In such a
scenario, one could use FedAtt to speed up the training at the
beginning and then use a different aggregation method later on.
This way, combinations of FedAvg and FedAtt could be used
to exploit the strengths of both aggregation methods. A method
to combine both was proposed in [29]. This method aggregates
the updates by using either FedAvg or FedAtt depending on
whether the difference in the training loss between the current
and previous rounds is above or below a selected threshold.
This method achieved both a lower perplexity and a faster
convergence than FedAvg and FedAtt in the experiments.

Interestingly, after the initial 400 to 500 rounds, where
FedAtt works fairly well, the performance of FedAtt seems
to fluctuate from round to round with rather large decreases
in accuracy in some rounds. This occurs both with the Reddit
and the Stackoverflow datasets, but with the Reddit dataset,
this behaviour is more pronounced. For example, for the
LSTM model on the Reddit dataset, there are larger drops in
performance around the 1,200th and the 1,400th round. In the
first instance, the accuracy drops from 12.8% in the 1,170th
round to 8.2% in the 1,190th round.

V. CONCLUSIONS AND FUTURE WORK

Federated learning is an important technique for training
language models since it allows the utilisation of large quan-
tities of real-life data without compromising the privacy of
the data owners. Training a model that generalizes well in
this setting is a challenging task due to the inherent statistical
heterogeneity of the training data and the hardware limitations
of private mobile devices. There are different approaches that
address these issues through model selection, different aggre-
gation and learning strategies, update compression and much
more. In this paper, two possible model architectures, namely
Long short-term memory (LSTM) and Gated recurrent unit
(GRU), were evaluated in centralized and federated settings.
For federated learning, the vanilla Federated Averaging algo-
rithm and two extensions that address statistical heterogeneity
were compared.

Our main findings are as follows:
• Throughout the experiments, models with GRU layers

achieved slightly lower perplexity and very similar accu-
racy than those with an LSTM layer. The differences were
especially significant in the first quarter of the training



TABLE V: FedAvg and FedAtt performance at round 50 and round 100

Round 50 Round 100
Dataset Model Aggregation Accuracy Perplexity Accuracy Perplexity

FedAvg 6.04% 105.56 10.04% 75.66GRU FedAtt 6.82% 97.44 10.30% 72.23
FedAvg 5.09% 110.70 8.34% 85.90Reddit

LSTM FedAtt 6.90% 96.78 10.00% 73.02
FedAvg 3.78% 12.35 9.15% 10.04GRU FedAtt 5.95% 12.73 8.87% 10.18
FedAvg 3.78% 12.36 6.70% 10.65Stackoverflow

LSTM FedAtt 3.45% 12.64 7.98% 10.62

processes and became smaller throughout the training.
Thus, when the number of training rounds is limited,
GRUs are more suitable, especially as the LSTM models
also require more parameters to be learned.

• Federated models achieved effectiveness close to their
centralized counterparts when trained for 2,500 rounds.
The poor performance of the models that were trained
locally on the data of only one user further shows the
advantages of federated learning.

• Federated Attention did achieve a significantly worse
performance than Federated Averaging by the end of the
training process, and its performance fluctuated more.
However, it consistently had better accuracy and per-
plexity than the Reddit dataset at the beginning of the
training, making it a reasonable choice in scenarios with
limited communication rounds. Also, it could be used
in combination with aggregation methods that converge
slower at the beginning but have a better performance
later on.

• Adding a proximal term to the loss as in FedProx did not
improve the results, both when training just one, or fifty
local epochs.

Future work will pursue several strands of research. On the
one hand, we will investigate other aggregation methods and
their effects, such as Probabilistic Federated Neural Matching
[30] as a way to deal with the problem that local models
might learn the same pattern but have the respective groups
of neurons at different positions, and its adaption to model
architectures such as LSTMs [31], or FedPer [32], which
aims to address statistical heterogeneity and improve the
performance of local models. To this end, model layers are
split into base and personalization layers, with the latter being
only trained locally. We will also aim to develop combinations
of these methods.

Further, pre-training language models on publicly available
data and fine-tuning the models in a federated setting could
utilise the advantages of both approaches and could greatly
improve the results.
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