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Abstract—With the ever-increasing amount of data collected,
there is also an increased demand for data analysis and machine
learning methods, which are consequently frequently deployed.
However, many of the data collected are very sensitive and
of a personal nature – thus, data confidentiality and privacy
become important considerations. In the wake of this, the use of
synthetic data as a privacy-preserving measure for micro-data is
gaining more and more popularity, especially due to its ability to
maintain a high level of data utility. Synthetic data is artificially
generated by a model that has been trained on real data. This
means that the observations in the synthetic data do not directly
correspond to any individual in the original dataset. While there
are many tools for creating synthetic data available, only a little
research has focused on specifically treating sensitive attributes
and generating synthetic data in a way that concentrates on
protecting these selected attributes from inference attacks while
keeping the data utility as high as possible. This can be achieved
done by setting certain constraints when learning the model from
the original data. Earlier work proposed a modification to extend
the DataSynthesizer, an approach for synthetic data generation
that uses Bayesian Networks to capture the underlying structures
in the original data, to protect one sensitive attribute. In this
paper, we investigate two different techniques for extending
this approach to protect multiple attributes from inference and
analyse the subsequent effects on the data utility.

Index Terms—Synthetic Data, Bayesian Networks, Disclosure
Risk Reduction

I. INTRODUCTION

The amount of data being collected increases at a steady
pace, often including personal or otherwise sensitive details,
such as health or financial data. There is an enormous value
and potential for analysis of this data, which often requires
sharing and gathering data from various sources, e.g. when
analysis is performed by knowledgeable third parties, or
when parties want to collaboratively investigate distributed
data sources. Often, this requires techniques for anonymising
or otherwise treating the data, so that e.g. information on
individuals can not be inferred anymore. The first step is often
in removing identifying attributes from the dataset, e.g. names
or attributes such as a social insurance number, in a step often
referred to as pseudonymisation. However, even then, several
forms of disclosure could happen from such a pseudonymised
dataset. To discuss those, we need to first distinguish different
types of attributes present in a dataset.

Besides identifying attributes, a dataset usually also contains
quasi-identifiers (sometimes also called indirect identifiers),
i.e. attributes that cannot themselves uniquely identify a record
but can become a unique identifier when combined with
other Quasi-Identifiers. Further, sensitive attributes normally
contain information that should not be disclosed, e.g. a medical
diagnosis.

Identity disclosure happens when in a pseudonymised
dataset an individual record can be re-identified. This can
be achieved e.g. based on the values of quasi-identifying
attributes, when linking them to another dataset that contains
the same subset of quasi-identifiers (sometimes referred to as
attribute key), and also identifying attributes; this is commonly
referred to as record linkage. Attribute disclosure, on the
other hand, means that for a record, for which the value
of an attribute is not known, this value is inferred. Finally,
membership disclosure reveals if a specific record was part of
a given dataset.

To counter these types of disclosure, several techniques
have been developed to protect data beyond pseudonymisation.
Popular techniques include e.g. k-anonymity [1] or Differential
Privacy [2]. In recent years, the usage of synthetic data has
emerged as a popular alternative to these techniques. Synthetic
data generation normally includes two steps: (i) learning a
(statistical) model that describes the data, and (ii) a process
of generating new data samples based on this model. The aim
of synthetic data is to create a new population of records that
preserve the overall characteristics of the initial dataset, e.g.
the marginal and joint distributions and correlations between
variables, without having a direct 1-1 relation to the initial data
samples. Inevitably, all kinds of data protection techniques
impact the quality and utility of the data treated. Synthetic
data has become popular also because it has been shown
to maintain high data utility for several tasks [3], such as
classification [4], anomaly detection [5], or regression [6].

However, also synthetic data is subject to disclosure attacks.
While identity disclosure might not be an issue for synthetic
data, due to the lack of a 1:1 relation from original input
data, the risk of attribute or membership disclosure remains.
Recent work has addressed the reduction of attribute disclosure
specifically, by modifying the learned data representation and
specifically protecting a single sensitive attribute. In this paper,
we are extending this approach, by developing two techniques979-8-3503-2445-7/23/$31.00 ©2023 IEEE



that modify the structure of a Bayesian Network that is
used for describing the data. We evaluate our approach by
measuring the success rate of an attribute disclosure attack on
the original as well as on the modified network structure, and
comparing how much the additional modification can reduce
the attribute disclosure. Further, we measure the change in the
utility of the synthetic data, by evaluating its effectiveness on
predictive tasks associated with each of the datasets.

The remainder of this paper is organised as follows. Sec-
tion II introduces related work on data synthetisation, as well
as on inference attacks on those. Section III then describes
in detail our enhanced approach for synthetisation of data
using Bayesian networks before we evaluate the method on
well-known benchmark datasets in Section IV. We provide
conclusions and an outlook on future work in Section V.

II. RELATED WORK

Various techniques for treating microdata before release
or data analysis have been investigated. One of the most
prominent approaches is K-anonymity [1], which sanitises data
by e.g. generalisation or suppression of values, to ensure that at
least k records have the same values for their quasi-identifiers.
This approach primarily detects against identity disclosure,
though later extensions such as l-diversity [7] also mitigate
other forms of disclosure, such as attribute disclosure. Differ-
ential Privacy [2] is a mathematical definition and describes a
property of an algorithm that publishes aggregate statistics of
a database to limit the disclosure of individual records in the
database.

Data synthetisation has recently emerged as an alternative
approach to earlier data protection methods. In data synthetisa-
tion, there are generally two steps: (i) the original data is used
to learn a model to describe the data, and then (ii) the model
is used to generate new samples. While these new samples are
based on the model, they do not have a 1:1 correspondence as
being derived from one of the individuals. The data description
step tries to find a model that best represents the complex rela-
tions between the attributes (sometimes also called predictors,
input variables, or features) of the original dataset, as the base
for then generating samples that retain the key properties of
the original dataset.

One of the earliest usages of synthetic data was in the partial
synthetic data approach by [8], where certain columns are gen-
erated synthetically. Multiple approaches have been proposed,
mainly differing in the models that are used to describe the
data [3], including e.g. decision trees [9], Gaussian copulas
[10], GANs [11], or Bayesian Networks [12].

Several works have studied inference risks in synthetic data.
Due to the lack of the 1:1 correspondence of individuals
to the original data, identity disclosure is mostly considered
to be not relevant for synthetic data. Attribute disclosure
has been studied e.g. in [13], where an attribute inference
attack generalising the Correct Attribution Probability (CAP)
approach proposed in [14] was proposed. CAP measures the
disclosure risk for a target record in the original dataset as
the empirical probability of its target value given the value

of a set of quasi-identifiers known by the attacker. CAP
finds all synthetic records that coincide with the values of
the quasi-identifiers of the target record and calculates the
sensitive attribute from those. This attack does not yield results
when there are no matching records in the synthetic dataset,
and CAP thus is overly pessimistic on the disclosure. As
an alternative, GCAP proposes to use a fixed-radius nearest
neighbour classifier (FR-NN) to always infer a value. Stadler
et al. [15] proposed a similar attack, but the attacker splits the
synthetic dataset into two parts: a feature matrix containing
the set of quasi-identifiers known by the attacker from the
partial record and a vector containing the sensitive attribute
values. Then, depending on the sensitive attribute type, the
attacker trains a classification or regression model. The model
then receives as input the partial record and returns a value
for the sensitive attribute. Houssiau et al. [16] introduced an
enhanced set of feature extraction techniques in comparison
to the ones proposed in work [15]. Specifically, they used a
feature map based on targeted counting queries as a feature
extractor and demonstrated this technique outperforms the
previously studied methods. In the context of local neighbour-
hood attacks, the authors proposed to extend the attack that
finds the closest synthetic data record for attribute inference.
Annamalai et al. [17] introduced an attack as a privacy game
where the adversary’s goal is to deduce the randomised secret
attribute associated with a specific record. In order to measure
individual-level leakage instead of population-level inferences,
the secret attribute is randomised. This attack employs the
concept of linear reconstruction attacks, with a particular
emphasis on exploiting the fact that statistical queries on
synthetic data should be as accurate as those on real data.

Regarding membership disclosure, [18] proposed a mem-
bership inference attack (MIA) based on the intuition that
whenever a generative model overfits the data, then a Gen-
erative Adversarial Model (GAN) should be able to detect
this overfitting. They assume that the attacker has a set of
records that they suspect are in the training data, and knows the
size of the training set. [19] proposed several different MIAs:
one based on Monte Carlo integration that approximates small
distance samples from the model, another one exclusively
designed for variational auto-encoders as a reconstruction
attack and a variation of the traditional MIA scenario which
considers set membership. [20] proposed an MIA as a binary
classification task motivated by the idea that a target record
with a smaller distance to a synthetic record is more likely
to be a member of the training set. [21] proposed an MIA
based on the over-representation of GAN models. The intuition
behind the attack is that there are regions where the proportion
of training samples is higher and thus the likelihood that a
sample falling in that region is a member is higher. [15]
designed an MIA as a privacy game between an adversary
and a challenger. The adversary’s objective is to determine
whether a record belongs to the original dataset, while the
challenger acts as both the custodian of the data and the
publisher of the synthetic dataset to the adversary. The attacker
is assumed to have access to a reference dataset derived



from the same underlying distribution as the original data and
performs the attack via training shadow models. [16] in their
open source framework TAPAS implement shadow-modelling
attacks as well as local neighbourhood attacks based on a
distance metric and inference on synthetic data attacks, which
rely on overfitting.

Synthetic data generation methods often treat all attributes
the same when learning the data description. This means that
when generating the data from a learned model, there will
be no differentiation between the attributes, and the model
will mimic the original correlation between them. The method
introduced in [22], however, specifically allows to select one
sensitive attribute, which will then be protected specifically.
To this end, it will be separated from the quasi-identifiers
and the other attributes, to eventually create less correlated
synthetic data. Meanwhile, the correlation between the target
attribute and the rest of the attributes is preserved. This will
then ensure that the data utility does not suffer too much from
synthetisation while reducing the risk of attribute disclosure
for sensitive values. In this paper, we extend the method of
[22] and implement the approach for an arbitrary number of
sensitive attributes. Subsequently, the influence of the number
of sensitive attributes on data utility and privacy was measured.
The method focuses on tabular, structured data.

III. PROTECTING MULTIPLE SENSITIVE ATTRIBUTES

We specifically adapt the method of Ping et al. [12]
called DataSynthesizer1, which generates synthetic data with
Bayesian networks. Bayesian networks are graphical models
that use directed acyclic graphs to model conditional depen-
dence. As a first step of data synthetisation, the original data
is described by such a Bayesian network. This is done by
constructing a network that learns correlations between the
attributes, as well as other data properties. Finding the optimal
structure of the Bayesian network is NP-complete [23]. The
original DataSynthesizer uses a greedy heuristic algorithm
called GreedyBayes, which is based on PrivBayes introduced
by [24].

As the algorithm used does not scale to datasets with higher
dimensions, a custom genetic algorithm has been introduced
in [22] for constructing the network. Genetic algorithms try to
imitate natural selection, where the fittest individuals survive
and can reproduce. Each individual has a set of properties,
the so-called chromosome, which can be altered during the
process. All possible individuals form the population. A fitness
score is calculated for each individual, and the individuals with
the highest score are selected to pass their genes to the next
generation. Two individuals will then exchange their genes to
create an offspring. The chromosomes might also be mutated
with some probability.

In our application of genetic algorithms, the individuals
represent a possible Bayesian network. Each individual con-
sists of an ordering chromosome, which represents the order
of attributes being added to the network, and a connectivity

1Code available at https://github.com/DataResponsibly/DataSynthesizer

TABLE I: Dataset dimensions

Dataset # Attributes # Instances # Classes

Caesarian 6 80 2
Contraceptive Method Choice 10 1473 3
Adult Census 15 48842 2

chromosome, which indicates the parents for each attribute.
Our goal is to build a Bayesian network where all the sensitive
attributes are separated from the non-sensitive attributes and
quasi-identifiers, i.e. sensitive attributes cannot have non-
sensitive attributes or quasi-intensifiers as their parents, and
vice versa. This will result in a network that generates data
where the sensitive attributes are less correlated with any other
attribute that might be available to an attacker, thus creating
data with a reduced risk for attribute disclosure.

In this paper, we introduce and evaluate two techniques for
protecting multiple sensitive attributes. In the first approach,
sensitive attributes can only have the target variable as a parent.
The second approach allows for sensitive attributes to have
other sensitive attributes, the target variable or both as their
parents. The basic structures of these two approaches can be
seen in Figure 1.

To integrate these two approaches into the genetic algo-
rithm, some constraints for the ordering chromosomes need
to be set. For both approaches, the target attribute needs to
be fixed as the first component of the ordering chromosome,
as done in [22]. Then all sensitive attributes are added before
any other attributes can be appended. In the case of the first
approach, the order of the sensitive attributes will stay the
same. However, for the second approach, the ordering of the
sensitive attributes will be altered during the process, to find
the best possible network. Note that the order will only be
changed within the blocks of sensitive and other attributes,
respectively, and not over all attributes. This can be seen in
Figure 2, which displays the ordering chromosome. Here t
denotes the target variable, si are the sensitive attributes, where
i = 1, ...,m, m denoting the number of sensitive attributes.
Lastly, fj with j = 1, ..., n denotes all remaining attributes.

The method will be demonstrated using three publicly
available datasets: Caesarian 2, Contraceptive Method Choice
3 and Adult Census 4). These datasets were chosen as they
represent different sizes in terms of the number of attributes
and instances. The characteristics of each dataset can be seen
in Table I.

As part of data preparation, some nominal attributes needed
to be label encoded. Each dataset was then randomly split into
training and test data (75:25% split). After that, the training
data was synthesised. All training and test sets were then
scaled by removing the mean and scaling to unit variance.

All three datasets have associated classification tasks. On
these, we applied five machine learning algorithms: k-Nearest-

2https://archive.ics.uci.edu/ml/datasets/Caesarian+Section+Classification+
Dataset

3https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
4https://archive.ics.uci.edu/ml/datasets/Adult

https://github.com/DataResponsibly/DataSynthesizer
https://archive.ics.uci.edu/ml/datasets/Caesarian+Section+Classification+Dataset
https://archive.ics.uci.edu/ml/datasets/Caesarian+Section+Classification+Dataset
https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
https://archive.ics.uci.edu/ml/datasets/Adult


(a) Method 1 (b) Method 2

Fig. 1: Network structures for sensitive and other attributes (quasi-identifiers and non-sensitive attributes

Fig. 2: Ordering Chromosome

TABLE II: Attribute overview

Dataset target attribute sensitive attribute attribute key

Caesarian caesarian heart problem, delivery number,
blood pressure delivery time, age

Contraceptive
Method

contraceptive method
used

number of children ever born,
wife’s education, wife’s age

wife now working?, wife’s religion,
husband’s education, husband’s
occupation

Adult Census salary relationship, education, marital status work class, race, sex, age, occupation

Neighbors (kNN), Random Forest (RF), Logistic Regression
(LR), Naı̈ve Bayes (NB) and Support Vector Machine (SVC),
using their respective sklearn implementation5. For model
training, the default parameter settings of the algorithms
were used. To measure the effect of the number of sensitive
attributes on the utility, one, two or three attributes were set as
such sensitive attributes for each dataset. These three sensitive
attributes were selected based on the feature importance and
sensitivity of the attribute. Table II gives an overview of target
and sensitive attributes as well as the attribute keys used for
the disclosure risk assessment in Section IV-B.

To measure the effect of the different settings on the data
utility, the mean accuracy of ten random splits into training
and test data was computed for each dataset-algorithm combi-
nation, with p = {1, 2, 3, 4}, where p is the maximum number
of parents per node. Furthermore, the different outcomes of the
two methods (with and without sensitive attribute interaction)
were evaluated.

The disclosure risk was assessed by setting the sensitive
attributes as target variables and the quasi-identifiers as input
attributes (attribute key). Then the same machine learning
algorithms as before were used to predict the sensitive at-
tributes. In addition, the Generalized Correct Attribution Prob-
ability (GCAP), introduced by [13], was computed. GCAP
was specifically designed to measure the risk of disclosure
for sensitive data using distances. For these experiments, all
synthetic data was generated using Bayesian networks with a
maximum of three parents per node.

5https://scikit-learn.org/stable/supervised learning.html

With the approach presented above, the disclosure risk is
assumed to decrease, meaning the accuracies for predicting
sensitive attributes are expected to be much lower than for
the original data and synthetic data generated by the standard
approach of the DataSynthesizer.

IV. EVALUATION

To first demonstrate the process of building the Bayesian
network and the resulting synthetic data generated by the net-
work with the new approach, the Contraceptive Method Choice
dataset was chosen. Figure 3 shows the different networks
learned for both approaches, with p = 2. The target variable
is coloured in orange, blue nodes show sensitive attributes, and
green coloured nodes represent non-sensitive attributes. While
for Figure 3a sensitive attributes cannot be parents of other
sensitive attributes (method 1), this constraint is relaxed for
Figure 3b (method 2). Once the Bayesian Network is learned
and the synthetic data is generated, the effect of the custom
networks on attribute correlations can be explored.

Figure 4 shows the correlations between attributes for the
original versus synthetic data protecting zero, one, two, or
three sensitive attributes. While correlations between sensitive
and non-sensitive attributes are still high for the synthetic
data without sensitive attributes defined, they are reduced
once the attributes are set to be sensitive. For method 1,
the only correlations preserved for the sensitive attributes are
between each sensitive attribute and the target variable. For
method 2, on the other hand, correlations between all the
sensitive attributes are maintained as well. This can be seen in
Figure 5, where ”number of children ever born” and ”Wife’s
education” were chosen as sensitive attributes (each marked
with a black frame). Figure 5a shows the correlation for the
synthetic data without sensitive attributes, while Figure 5b
and Figure 5c display the correlation for the synthetic data
created under the conditions of method 1 and 2, respectively. In
addition to preserving the correlations with the target attribute
(”Contraceptive method used”), the correlation between the
two sensitive attributes, albeit it is a low correlation, was also
kept at the original level.

A. Data Utility Assessment

One of the main goals for synthetic data generation is to
obtain datasets that can be published without privacy concerns

https://scikit-learn.org/stable/supervised_learning.html


(a) Method 1 (b) Method 2

Fig. 3: Bayesian Networks for Contraceptive Method Choice data. Orange: target attribute; blue: sensitive attributes; green: non-sensitive
attributes.

(a) Original data (b) No sensitive attribute selected (c) 1 sensitive attribute selected (d) 2 sensitive attributes selected (e) 3 sensitive attributes selected

Fig. 4: Correlations for different numbers of sensitive attributes (method 1)

while keeping the utility loss at a minimum. One option to
measure utility is to measure the effectiveness that can be
achieved when using the dataset to learn a downstream ma-
chine learning task, e.g. to measure the classification accuracy.
The utility loss can be estimated by calculating and comparing
the accuracies achieved when training the respective models
on the original and synthetic datasets. Table III as well as
Figures 6 to 8 show the results for each dataset as mean accu-
racy over all machine learning models. In addition, Table III
also shows the rounded differences between the accuracies
of the synthetic data to the original data in parenthesis. The
highest score per parameter setting and dataset is coloured red.
Note that for zero and one sensitive attributes, the results for
methods 1 and 2 will be the same, since there are not enough
sensitive attributes to have any interaction between them, and
the resulting Bayesian Networks are thus identical.

When looking at the results for the Caesarian data in
Table III and Figure 6, the accuracy scores seem to be quite
unstable with no noticeable trends or patterns, which is likely
caused by its low number of input attributes and instances.

The accuracies decrease with a higher number of sensitive
attributes for method 2. For method 1 however, the accuracies
increase with a higher number of sensitive attributes, when
the number of parents p = {2, 3, 4}. Figure 6 also shows that
accuracies for method 1 are higher than for method 2. Overall,
the results imply that the method’s effectiveness suffers from
data with a small number of input variables. Note that Table III
does not have a value for three sensitive attributes for method
1 when the number of parents p = 3, since for that case,
there cannot be a network with one node having more than
two parents, as the dataset has only six attributes in total. The
same holds for two and three sensitive attributes when the
number of parents p = 4.

The results for the contraceptive choice data show that with
an increasing number of parents p, the accuracy for synthetic
data increases as well. This can be seen in Figure 7. While
the values for p = {2, 3, 4} and method 1 seem to be very
similar, the scores for method 2 increase with an increasing
number of sensitive attributes and a maximum number of
parents (p). This, however, is not the case for the networks



(a) original (b) Method 1 (c) Method 2

Fig. 5: Correlations for two sensitive attributes. Under method 1, (b), the correlation between ”number of children” and ”wifes edu” is
removed. However, using method 2 (c), the correlation from the original data (a) is preserved

TABLE III: Data Utility shown as Accuracy Scores (mean over all ML methods); p: number of parents

#sensitive Attr. Method 1 Method 2
Dataset p original 0 1 2 3 2 3

Caesarian 1 64.10 63.90 (-0.20) 61.40 (-2.70) 62.70 (-1.40) 63.70 (-0.40) 62.65 (-1.45) 58.70 (-5.40)
2 64.10 63.45 (-0.65) 63.60 (-0.50) 63.65 (-0.45) 64.05 (-0.05) 63.60 (-0.50) 63.50 (-0.60)
3 64.10 62.05 (-2.05) 63.65 (-0.45) 64.00 (-0.10) - 63.40 (-0.70) 61.75 (-2.35)
4 64.10 61.40 (-2.70) 65.05 (0.95) - - - -

Contraceptive Choice 1 50.78 42.15 (-8.62) 44.70 (-6.08) 47.64 (-3.14) 47.47 (-3.30) 46.60 (-4.17) 44.15 (-6.63)
2 50.78 49.20 (-1.58) 46.94 (-3.83) 47.25 (-3.52) 47.72 (-3.06) 47.64 (-3.14) 49.42 (-1.36)
3 50.78 50.29 (-0.48) 47.82 (-2.95) 47.57 (-3.20) 48.15 (-2.62) 48.54 (-2.24) 50.25 (-0.52)
4 50.78 49.80 (-0.98) 47.85 (-2.93) 47.33 (-3.44) 48.23 (-2.55) 48.72 (-2.05) 50.88 (0.11)

Adult Census 1 83.08 79.92 (-3.16) 78.64 (-4.45) 81.04 (-2.04) 80.49 (-2.59) 80.94 (-2.14) 82.28 (-0.80)
2 83.08 80.45 (-2.63) 80.20 (-2.88) 81.37 (-1.71) 80.74 (-2.34) 81.48 (-1.60) 82.41 (-0.68)
3 83.08 81.82 (-1.26) 81.47 (-1.61) 81.89 (-1.19) 80.85 (-2.23) 81.73 (-1.35) 82.45 (-0.63)
4 83.08 82.89 (-0.19) 81.43 (-1.65) 82.02 (-1.06) 80.91 (-2.17) 82.06 (-1.02) 82.64 (-0.44)

with p = 1. Although it is expected that preserving the
correlations between attributes increases the accuracies for a
higher number of sensitive attributes in method 2, the results
show the opposite. This is caused by the network structures
learned: For networks with three sensitive attributes, there
will only ever be one sensitive attribute directly connected to
the target variable. The remaining sensitive attributes do not
have a direct edge to the target variable, and will therefore
fail to preserve most of the information needed to predict it.
This showcases that for a large enough dataset and adequate
parameter p, the two methods yield the expected results. By
preserving more correlations with method 2, the accuracies
score higher than when disregarding the correlations between
sensitive attributes in method 1.

When looking at the results for the Adult Census data
(Figure 8), we can observe a pattern that with a growing
number of parents p, the accuracy scores seem to become
more stable. Additionally, for all values for p, there is always

quite a big difference between methods 1 and 2 when using
three sensitive attributes. The difference between two sensitive
attributes, however, is minimal. For p = 4, the synthetic data
without sensitive attributes scores higher than all four data sets
with sensitive attributes. For the other values of p, this is not
the case.

Generally, experiments show that the higher the maximum
number of parents (parameter p), the higher the accuracy and,
therefore, the lower the utility loss. Accuracy is especially low
for synthetic data generated with a network of degree one. For
the Contraceptive Method dataset, method 2 performs worse
with three sensitive attributes than with two. The dimension of
the dataset also seems to affect the outcome. While the results
for the Contraceptive Method data and the Adult Census data
seemed to be reasonable, the small size of the Caesarian data
is assumed to cause subpar and unstable results.



Fig. 6: Accuracy for Caesarian data

Fig. 7: Accuracy for Contraceptive Method data

Fig. 8: Accuracy for Adult Census data

B. Disclosure Risk Assessment

The results for disclosure risk experiments can be found in
Tables IV to VI. Here, a lower (inference attack) accuracy
implies a lower risk for attribute disclosure, which is the
preferred outcome. The lowest values per dataset-inference
method are marked in red. Note that for these experiments,
it is assumed that the adversary does not know any of the
sensitive attributes, i.e., the attribute key cannot contain any
sensitive attributes.

The results for Caesarian data (Table IV) show that the
average inference attack accuracies of the original data are
always highest. The accuracy for synthetic data without sensi-
tive attributes is always higher than for the newly introduced
approach, which was the intended result. In most cases, the
accuracy is lowest for the synthetic data with sensitive attribute
interaction (method 2), with the exception of the attribute
”Blood Pressure”, where the score for method 2 is higher than
the score for method 1. In any case, the decrease in accuracy
from original to synthetic data implies a substantially reduced
risk for attribute disclosure, with an even lower risk for data
generated using the proposed approach.

Similar to the results of the Caesarian data, the Contra-
ceptive Method data also reaches the highest inference attack
success for the original data, and the lowest for synthetic
data with sensitive attributes (Table V). Here, the differences
between the two methods are minimal. Although for some
attributes, like ”Number of children ever born”, the decrease
in accuracy might not be as substantial as with the other
dataset, there is still a noticeable difference to the synthetic
data generated without sensitive attributes.

Table VI displays the results for the Adult Census data.
Again, the inference risk on the original data is the highest,
followed by the synthetic data without sensitive attributes.
Synthetic data generated by the new method has the lowest
scores, with similar values for the two methods.

To summarize the above findings, the synthetic data gener-
ated with sensitive attributes resulted in the lowest inference
success scores, meaning that synthetic data generated by the
new method decreases the risk for attribute disclosure even
further than synthetic data where no sensitive attributes were
selected. Assuming an adversary knew a subject’s values for
all quasi-identifiers, the probability of their predictions for the



TABLE IV: Caesarian: Attribute Disclosure Risk

GCAP LR NB RF SVC kNN Ave

Blood Pressure original 73.80 53.75 53.75 73.75 57.50 58.75 61.88
synthetic (no sensitive var.) 59.83 50.58 50.58 62.25 53.75 51.33 54.72
synthetic (Method 1) 38.80 51.25 50.00 40.00 50.00 51.25 46.88
synthetic (Method 2) 43.80 50.00 50.00 46.25 50.00 46.25 47.72

Delivery number original 76.20 51.25 51.25 76.25 61.25 66.25 63.74
synthetic (no sensitive var.) 61.01 52.17 53.00 64.42 57.17 57.00 57.46
synthetic (Method 1) 42.50 48.75 51.25 55.00 51.25 50.00 49.79
synthetic (Method 2) 41.20 48.75 46.25 41.25 48.75 45.00 45.20

Heart Problem original 87.50 61.25 61.25 87.50 70.00 73.75 73.54
synthetic (no sensitive var.) 75.91 64.17 64.58 74.08 65.25 68.33 68.72
synthetic (Method 1) 53.80 63.75 58.75 60.00 65.00 58.75 60.01
synthetic (Method 2) 60.00 62.50 56.25 57.50 60.00 53.75 58.33

TABLE V: Contraceptive Method Choice: Attribute Disclosure Risk

GCAP LR NB RF SVC kNN Ave

Number of children
ever born

original 24.50 20.37 4.62 24.51 22.81 19.89 19.45
synthetic (no sensitive var.) 19.42 19.24 19.15 19.35 19.57 16.71 18.91
synthetic (Method 1) 17.83 18.49 17.17 17.71 18.12 15.24 17.43
synthetic (Method 2) 17.79 18.72 17.95 17.73 18.44 15.79 17.74

Wife’s age original 10.90 7.60 1.49 10.93 9.71 7.26 7.98
synthetic (no sensitive var.) 6.50 6.50 5.87 6.56 6.68 4.77 6.15
synthetic (Method 1) 4.19 5.17 4.14 4.33 4.96 3.46 4.38
synthetic (Method 2) 4.24 5.09 4.11 4.33 4.89 3.52 4.36

Wife’s education original 56.10 55.19 52.21 56.14 55.06 52.14 54.47
synthetic (no sensitive var.) 54.57 54.79 51.81 54.42 54.79 48.33 53.12
synthetic (Method 1) 41.64 39.67 41.53 41.19 40.98 30.78 39.30
synthetic (Method 2) 42.25 40.26 42.00 41.75 42.03 30.83 39.85

TABLE VI: Adult Census: Attribute Disclosure Risk

GCAP LR NB RF SVC kNN Ave

education original 51.40 33.67 32.91 51.42 36.95 41.55 41.32
synthetic (no sensitive var.) 36.92 33.69 32.60 36.69 36.56 32.13 34.77
synthetic (Method 1) 28.60 32.31 32.31 28.22 32.31 24.34 29.68
synthetic (Method 2) 28.70 32.31 32.32 28.29 32.31 24.54 29.74

marital-status original 73.10 67.35 65.71 73.12 67.97 67.23 69.08
synthetic (no sensitive var.) 64.90 67.36 65.31 65.26 67.62 63.69 65.69
synthetic (Method 1) 52.10 56.00 57.14 51.61 60.71 44.92 53.74
synthetic (Method 2) 52.18 56.19 56.80 52.03 59.90 45.45 53.76

relationship original 67.30 59.77 46.05 67.28 60.60 61.40 60.40
synthetic (no sensitive var.) 57.78 59.72 36.72 57.95 60.38 56.71 54.87
synthetic (Method 1) 40.82 41.58 43.37 40.50 41.03 37.84 40.86
synthetic (Method 2) 40.74 42.15 43.61 40.54 41.39 38.24 41.11

sensitive attributes being correct is therefore much higher for
the original and the synthetic data generated in the standard
way without specifically protecting sensitive attributes. This
shows that even when adding more than one sensitive attribute,
the method still produces the desired outcome. Furthermore,
the difference between methods 1 and 2 is notably small for
all scores. Nevertheless, the effectiveness of the introduced
approach is assumed to also depend on the sensitive attributes
chosen and their initial correlations with quasi-identifiers.

Until now, it was assumed that a sensitive attribute cannot be
part of the attribute key an adversary knows. The Contraceptive
Method dataset is used to demonstrate the effect of including

the sensitive attribute ”Wife’s age” in the attribute key. The
experiment results are shown in Table VII. Here, Setting
1 uses the original attribute key for the attribute disclosure
risk assessment, as seen before and listed in Table II, while
the attribute key for Setting 2 includes the sensitive attribute
”Wife’s age”.

The inference attack accuracies for the other two sensitive
attributes not included in the attribute key, namely ”Number
of children ever born” and ”Wife’s education”, are expected
to increase for the original dataset, the commonly generated
synthetic data and the synthetic data generated with method
2, but should stay the same for method 1, since the sensitive



TABLE VII: Including a Sensitive attribute in the Attribute Key

Setting 1 Setting 2

Number of children ever born original 19.45 37.03
synthetic (no sensitive var.) 18.91 26.63
synthetic (Method 1) 17.43 16.59
synthetic (Method 2) 17.74 23.21

Wife’s education original 54.47 62.45
synthetic (no sensitive var.) 53.12 55.73
synthetic (Method 1) 39.30 36.53
synthetic (Method 2) 39.85 38.85

attributes for these networks are uncorrelated. This is exactly
what can be observed for the attribute ”Number of children
born”: All accuracies increase for Setting 2, except for the
accuracy in method 1, where we can even mark a slight
decrease. For the attribute ”Wife’s education” on the other
hand, the above assumption does not hold. While the original
and synthetic data without sensitive attributes score higher than
before, methods 1 and 2 achieve slightly smaller values in
Setting 2. A possible explanation as to why the two attributes
yield different results is that their correlation with ”Wife’s age”
differs. When looking at the heat-map of the original data in
Figure 4, it can be seen that the correlation between ”Wife’s
age” and ”Number of children ever born” is a lot higher
(0.54) than the correlation between ”Wife’s age” and ”Wife’s
education” (-0.048). Thus, when the networks are built, the
two attributes ”Wife’s age” and ”Wife’s education” are not
connected by a direct edge in most cases. Therefore, Setting
2 does not significantly influence either of the two methods.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for protecting
multiple sensitive attributes from attribute inference attacks
when generating synthetic data. To this end, we extended a
previous method that is limited to protecting one sensitive
attribute to be able to consider multiple attributes. We designed
two different methods, which vary on whether they preserve
correlations within the sensitive attributes themselves.

Our evaluation shows that it is possible to protect multiple
attributes at the same time, with limited loss in data utility,
and our new method can thus be successfully applied. We
further observed that a learned Bayesian network that allows
interaction between sensitive attributes will generate data with
higher utility than a network that does not allow sensitive
attribute interaction. This means that if it can be assumed
that an adversary does not have any information about any
of the sensitive attributes, it is advised to opt for a network
built under the conditions of method 2, which preserves the
correlations by allowing interactions in the network between
those attributes. Using networks with a high value for p and
more sensitive attributes will cause almost no utility loss. In
two cases, the accuracy of the synthetic data was even higher
than that of the original data.

The risk for attribute disclosure on sensitive data attributes
can be reduced even more by using the introduced approach

instead of conventional synthetisation methods. If the possi-
bility of an adversary having access to a sensitive attribute
cannot be excluded, using method 1 might be a safer option.
Generally, how well the new approach performs also seems
to depend on the attribute key, attributes selected as sensitive
and the chosen method.

In future, we will investigate how protecting sensitive
attributes from disclosure can be performed in other data
synthetisation methods, such as the synthetic data vault, which
is based on Gaussian Copulas, or methods based on neural
networks. Further, we will investigate how to port our findings
to other data domains.
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Anonymisation Groundhog Day,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 1451–1468. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/stadler

[16] F. Houssiau, J. Jordon, S. N. Cohen, O. Daniel, A. Elliott, J. Geddes,
C. Mole, C. Rangel-Smith, and L. Szpruch, “TAPAS: a Toolbox

for Adversarial Privacy Auditing of Synthetic Data,” Nov. 2022,
arXiv:2211.06550 [cs]. [Online]. Available: http://arxiv.org/abs/2211.
06550

[17] M. S. M. S. Annamalai, A. Gadotti, and L. Rocher, “A Linear
Reconstruction Approach for Attribute Inference Attacks against
Synthetic Data,” Jun. 2023, arXiv:2301.10053 [cs]. [Online]. Available:
http://arxiv.org/abs/2301.10053

[18] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro,
“LOGAN: Membership Inference Attacks Against Generative
Models,” Proceedings on Privacy Enhancing Technologies, vol.
2019, no. 1, pp. 133–152, Jan. 2019. [Online]. Available:
https://petsymposium.org/popets/2019/popets-2019-0008.php

[19] B. Hilprecht, M. Härterich, and D. Bernau, “Monte Carlo and
Reconstruction Membership Inference Attacks against Generative
Models,” Proceedings on Privacy Enhancing Technologies, vol.
2019, no. 4, pp. 232–249, Oct. 2019. [Online]. Available: https:
//petsymposium.org/popets/2019/popets-2019-0067.php

[20] D. Chen, N. Yu, Y. Zhang, and M. Fritz, “GAN-Leaks: A Taxonomy
of Membership Inference Attacks against Generative Models,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS).
Virtual Event USA: ACM, Oct. 2020, pp. 343–362. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372297.3417238

[21] H. Hu and J. Pang, “Membership Inference Attacks against GANs by
Leveraging Over-representation Regions,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS). Virtual Event
Republic of Korea: ACM, Nov. 2021, pp. 2387–2389. [Online].
Available: https://dl.acm.org/doi/10.1145/3460120.3485338

[22] M. Hittmeir, R. Mayer, and A. Ekelhart, “Efficient Bayesian Network
Construction for Increased Privacy on Synthetic Data,” in 2022 IEEE
International Conference on Big Data (Big Data). Osaka, Japan: IEEE
Computer Society, Dec. 2022.

[23] D. M. Chickering, “Learning Bayesian Networks is NP-Complete,” in
Learning from Data. New York, NY: Springer New York, 1996, vol.
112, pp. 121–130, series Title: Lecture Notes in Statistics. [Online].
Available: http://link.springer.com/10.1007/978-1-4612-2404-4 12

[24] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao,
“PrivBayes: Private Data Release via Bayesian Networks,” ACM
Transactions on Database Systems, vol. 42, no. 4, pp. 1–41, Dec. 2017.
[Online]. Available: https://dl.acm.org/doi/10.1145/3134428

https://dl.acm.org/doi/10.1145/1217299.1217302
http://doi.wiley.com/10.1002/9780470316696
https://www.usenix.org/conference/usenixsecurity22/presentation/stadler
https://www.usenix.org/conference/usenixsecurity22/presentation/stadler
http://arxiv.org/abs/2211.06550
http://arxiv.org/abs/2211.06550
http://arxiv.org/abs/2301.10053
https://petsymposium.org/popets/2019/popets-2019-0008.php
https://petsymposium.org/popets/2019/popets-2019-0067.php
https://petsymposium.org/popets/2019/popets-2019-0067.php
https://dl.acm.org/doi/10.1145/3372297.3417238
https://dl.acm.org/doi/10.1145/3460120.3485338
http://link.springer.com/10.1007/978-1-4612-2404-4_12
https://dl.acm.org/doi/10.1145/3134428

	Introduction
	Related Work
	Protecting Multiple Sensitive Attributes
	Evaluation
	Data Utility Assessment
	Disclosure Risk Assessment

	Conclusions and Future Work
	References

