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Abstract. Machine learning-based systems are increasingly used in crit-
ical applications such as medical diagnosis, automotive vehicles, or bio-
metric authentication. Because of their importance, they can become the
target of various attacks. In a data poisoning attack, the attacker care-
fully manipulates some input data, e.g. by superimposing a pattern, e.g.
to insert a backdoor (a wrong association of the specific pattern to a
desired target) into the model during the training phase. This can later
be exploited to control the model behaviour during prediction, and at-
tack its integrity, e.g. by identifying someone as the wrong user or not
correctly identifying a traffic sign, thus causing road incidents.
Poisoning of the training data is difficult to detect, as often, only small
amounts of the data need to be manipulated to achieve a successful at-
tack. The backdoors inserted into the model are hard to detect as well,
as its unexpected behaviour manifests only when the specific backdoor
trigger, which is only known to the attacker, is presented. Nonetheless,
several defence mechanisms were proposed, and in the right setting, they
can yield usable results; however, they still show shortcomings and insuf-
ficient effectiveness in several cases. In this work, we thus try to answer
the extent to which combinations of these defences can improve their
individual effectiveness. To this end, we first build successful attacks for
two datasets and investigate factors influencing the attack success. Our
evaluation shows a substantial impact of the type of neural network mod-
els and datasets on the effectiveness of the defence. We also show that
the choice of the backdoor trigger has a big impact on the attack and
its success. Finally, our evaluation shows that a combination of defences
can improve existing defences in several cases.

Keywords: Machine Learning · Poisoning Attacks · Defences.

1 Introduction

With the emergence of Deep Learning (DL), Machine Learning (ML) systems
have delivered even more impressive performance in a variety of application do-
mains, from pattern recognition tasks like speech and object recognition, em-
ployed in self-driving cars and robots, to cybersecurity tasks like spam and
malware detection [8]. With an increased dependency of daily life on machine-
learning-based systems, they also increasingly become the target of attacks.
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Commonly discussed attacks include evasion and poisoning [2], which attack
the availability or integrity of a machine learning model – and consequently
the system employing it. Evasion attacks happen during prediction time, while
poisoning attacks manipulate the training data and thus the model itself. In
a poisoning integrity attack, the attacker’s objective is to create a backdoor
that allows inputs manipulated by the attacker, using the backdoor key, to be
predicted as a target label of the attacker’s choice. For example, against a face
recognition system, this enables the attacker to impersonate another person and
subsequently mislead the authentication system into identifying the attacker as
a person that has access to a resource. A backdoored model should perform well
on most benign inputs (including inputs that the end-user may hold out as a
validation set), but cause targeted misclassifications of the model for inputs that
satisfy the secret, attacker-chosen property – the backdoor key or trigger.

Research mostly focuses on current state-of-the-art methods such as Convolu-
tional Neural Networks (CNNs), which are often employed in image analysis and
computer vision. Many DL approaches are black-box models that are difficult to
interpret – thus also malicious behaviour is challenging to detect.

Nonetheless, a few defence mechanisms against backdoor attacks are pro-
posed. For CNNs, it has been shown that different parts of the network are
specialised for learning the normal classification behaviour versus the backdoor,
i.e. the association of the specific trigger pattern and the desired target. This
is what several defences try to exploit. Activation clustering, e.g. tries to sep-
arate the inputs into groups of ”normal” and ”poisoned” inputs to discard the
latter. On the other hand, fine-pruning tries to remove the parts of the network
that are triggered by the backdoor pattern. Depending on several aspects, these
defences can achieve good results against poisoning attacks; however, they still
show shortcomings and insufficient effectiveness in many cases. In this work, we
thus aim to answer the question of to what extent combinations of these defences
can improve their effectiveness. Our main contributions are:

– We generate three poisoned versions of datasets for common tasks such as
traffic sign and face recognition and publish them online 7.

– We build successful backdoor attacks against three different neural networks
(CNNs) to investigate the impact of several aspects, such as the backdoor
trigger shape and size or the attacked model.

– We show that there is a substantial impact of the match-up of the neural
network models and datasets on the effectiveness of current defences

– We show that a combination of defences can improve the stand-alone de-
fences in several cases and can thus lead to a more robust and trustworthy
machine learning system in adversarial environments.

1.1 Threat model

We consider a user that wants to train a model, using a training dataset Dtrain.
The attacker’s goal is to return a model that will classify correctly all the inputs
that do not contain the backdoor trigger and uniquely misclassify only the inputs
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Table 1: Categorisation of attacks against Machine Learning (based on [2])
Integrity Availability Confidentiality

Test data
Evasion (e.g. ad-

versarial examples)
-

Model stealing,
model inversion, ..

Training
data

Poisoning (to allow subsequent
intrusions) - e.g. backdoors

Poisoning (to maximise
classification error)

-

that contain the trigger. To achieve this, we assume an attacker that has the
capability to alter the training data and insert different patterns that can be
used as a backdoor trigger and can add an arbitrary number of poisoned training
inputs and modify any clean training inputs.

The remainder of this paper is organised as follows. Section 2 discusses related
work, before Section 3 describes our evaluation setup. We then discuss results
in Section 4, and provide conclusions and future work in Section 5.

2 Related Work

Adversarial Machine Learning comprises several attacks on a machine learning
pipeline. They can be grouped, e.g., using the categorisation proposed in [2],
which is based on the attacker’s goals and capabilities to manipulate training
and test data. An attacker can have one of the following goals along the axes of
the well-known CIA (Confidentiality, Integrity, and Availability) triad, which is
used analogously for other assets in cybersecurity:

– Availability: misclassifications that compromise normal system operation
– Integrity: misclassifications that do not compromise normal system operation
– Confidentiality/privacy: reveal confidential information on the learning model

or its users

Table 1 shows attacks against ML systems, categorised along these axes.
It is important to note the difference between a backdoor and an adversar-

ial example [23]. The latter, a form of an evasion attack, aims to discover or
manipulate inputs at prediction time, so that they lead to a wrong inference.
Contrarily, poisoning attacks interfere during the training phase.

2.1 Backdoor Attacks

A backdoor in cybersecurity, in general, is often a piece of malicious code (or
similar), embedded by an attacker into a software (e.g. an operating system or
application). The code enables the attacker e.g. to obtain higher privileges e.g.
by authenticating through a particular password of the attacker’s choice.

In Machine Learning, a backdoor embedded into a model allows the attacker
to steer the prediction of that model. The model ideally behaves normally on
regular (clean) inputs and only behaves wrongly on inputs that trigger the back-
door. A backdoor trigger is normally superimposed on the original input; for
example, for images, it can be a specific pixel pattern (e.g. yellow square) or
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a part of another image (e.g. sunglasses), or it can even be invisible [12]. The
trigger is only known to the attacker and is needed to leverage the backdoor.

Gu et al. [9] proposed a backdoor attack by poisoning the training data. The
attacker chooses a target label and a trigger pattern to be superimposed. Then,
a subset of training images is overlayed with the trigger pattern, and their labels
are modified to the target label. By training a model on the original and poisoned
data, the backdoor is embedded. The authors show that in many settings, 99%+
of the poisoned inputs were misclassified as intended. In this attack scenario, the
adversary needs the capability to manipulate the training data.

A slightly different approach, called Trojan Attack, was proposed by Liu et
al. [14]. Here, the assumption is that the attacker has access to the final trained
model but can not interfere with the initial training process. The attacker gener-
ates a trigger pattern that optimises large activation values of selected neurons.
The attacker then generates inputs that specifically lead to high confidence values
of a selected output node; this process is to some extent comparable to a model
inversion attack [6], which tries to re-generate training data from a model. With
the trigger and the generated training data, the model is fine-tuned to obtain a
backdoored model, which can then be re-distributed to victims.

Backdoor attacks have been demonstrated to text data in e-mail SPAM clas-
sification [16], Natural Language Processing [5], and speech recognition [14], but
the most prominent setting is image recognition tasks on datasets such as natural
image recognition (CIFAR, ImageNet, ..), traffic sign recognition, or face recog-
nition. While some works also address feature-extraction and shallow learning
methods [15], the majority of works focuses on CNNs.

2.2 Backdoor Defences

As a backdoored model is trained to perform well on benign test data, and it
can only be activated with the correct trigger, it is difficult to detect whether
a backdoor is present in a model. This is aggravated by the fact that many
deep learning approaches are black-box models and difficult to interpret – thus,
also malicious behaviour is difficult to spot. Nonetheless, several defences against
poisoning attacks have been proposed. Most methods are untargeted, i.e. they do
not try to identify the specific vulnerability (e.g. the used pattern), but rather try
to identify a super-set of causes and treat them in the hope that this deactivates
the backdoor. Methods can be categorised depending on the step in the ML
process they operate on. Some methods operate during training and, e.g., try
to detect poisoned images and remove them from the training data to obtain a
non-backdoored model. Other methods post-process a trained model, trying
to disinfect it; this is especially useful when the model was obtained from an
untrusted source without knowledge of how the training was performed.

One of the earliest methods was proposed by Nelson et al. [16] and is a rather
general, model-agnostic mechanism called Reject On Negative Impact (RONI). It
measures the effect of each additional training instance. The defender first trains
a classifier with a base training set, then adds a new instance, and trains another
classifier. If this new instance causes a drop in accuracy, it is removed. RONI is
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infeasible for complex models such as CNNs, as it requires re-training for each
instance to be analysed. CNNs require tens of thousands or more samples easily
– and one single training run can take hours, days or even more.

The Data Provenance defence by Baracaldo et al. [1] is very similar to RONI
– but instead of assessing individual samples, it does so with groups of samples,
thus reducing the number of models that need to be trained Each group is eval-
uated by comparing the performance of the classifier trained with and without
it. The groups are identified based on using the information of the origin and
creation (i.e. the provenance) of the training data. This defence is thus primar-
ily useful when the training data is created as a union of datasets from different
sources, e.g. multiple sensors operated by different organisations.

Activation clustering (AC) by Chen et al. [3] is based on the assumption that
the activations of poisoned data differ from those of clean data, and thus can be
separated by clustering. The defence first trains a model with untrusted (possi-
bly poisoned) data and then records the activations for the inputs. Independent
component analysis (ICA) is performed to reduce these to 10-15 features. Sub-
sequently, they are clustered via k-Means into two clusters. Then, a new model
is trained while omitting the data that belongs to one of the clusters and is sub-
sequently used to classify the removed clusters. If the removed cluster contained
activations of clean data, it is expected that the data belonging to it will largely
be classified correctly. If it contained activations of poisoned data instead, the
model will now not have learned the pattern and will thus primarily classify the
data as the source class. Once the poisoned cluster is identified, its data can be
removed, and a new model is trained with (assumed) clean data.

A similar defence, proposed by Tran et al. [24] and called Spectral Signatures
(SS)), is based on identifying poisoned samples as outliers. The defence first
selects a specific layer that is believed to represent high-level features. During a
forward pass, the representation vectors for each output class label are recorded,
and a covariance matrix thereof is the basis for a singular value decomposition
(SVD). This is used to compute an outlier score for each input. The inputs with
the highest scores are flagged and removed from the training set. Finally, the
model is re-trained without the removed inputs. AC and SS have a few key
differences. First, AC uses activations of (one of) the last hidden layer, while SS
uses layers representing features, thus, earlier layers. Further, AC splits the data
into two sub-groups and tests which one to remove, while SS computes an outlier
score for each input and identifies those with the highest scores as poisoned.

Gu et al. [9] demonstrate that backdoored inputs trigger larger activation
values in neurons that are otherwise dormant in the presence of clean inputs,
which motivates the approach to remove (prune) these neurons. Using validation
data that is known to be clean, the defender records the average activation of
each neuron on a backdoored model. The neurons with the least activation are
then pruned. The authors recommend pruning one of the last convolutional
layers, as these sparsely encode the features learned in earlier layers – pruning
in these layers should have a larger impact on the behaviour of the network.
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Liu et al. [13] show that pruning is not effective against an adaptive attacker
that anticipates that defence and tries to force the clean and backdoor learning
onto the same neurons, by an anticipatory removal of dormant neurons before
learning from the poisoned samples. Thus, (some) neurons represent both clean
and poisoned patterns. Later, the removed neurons are added back and serve
as a decoy for the defender – who will likely first remove those, before active
neurons are considered. To defend against the adaptive attack, [13] proposes ”fine
pruning” (FP), adding a second step of fine-tuning the model with clean data.
This will also update the weights of neurons involved in backdoor behaviour.

Combining several defences has shown to gain improvements over individual
methods for evasion attacks and adversarial examples, specifically [27,11].

3 Evaluation Setup

In general, our evaluation workflow is as follows: (i) we train a model with only
clean images, to obtain a baseline for the effectiveness (e.g. accuracy) on the
test data, (ii) we poison a certain percentage of the train data and train a model
thereupon. For this model, we measure the (change in) effectiveness and also the
rate of test images that are poisoned and classified as intended by the attacker,
(iii) we apply the defence method, which might modify the current model, or
optionally we need to re-train a model if, e.g. images that are identified as
poisoned are removed, (iv) we compare the accuracy and attack defence rate on
this defended model, to the baseline and the backdoored model.

3.1 Datasets and Models

We use three publicly available benchmark datasets, detailed in Table 2. For
the fine-pruning defence, we use a part of the train set as the clean dataset
required for this defence. We keep the absolute number of clean samples compa-
rable, motivated by a similar effort spent for labelling on each dataset, thus the
percentage varies for each dataset. We picked the model architectures shown in
Table 3, which have shown to be working well with these datasets

The German Traffic Sign Recognition Benchmark (GTSRB) [21] 3

contains 43 classes of traffic signs, and is split into 39,209 training and 12,630
test images. We use 10% of the train data as clean set for fine-pruning. We use
the CNN proposed by Wang et al. [25], used, e.g. also in [7]. It consists of two
convolutional layers, followed by a max-pooling layer, again two convolutional
layers followed by a max-pooling layer, and finally, two fully connected layers.

YouTube Aligned Faces Dataset (YTAF) [26] 4 is derived from the
YouTube faces datasets, which contains 3,425 YouTube videos of 1,595 different
people. It is used for face recognition and face verification tasks [22,18,20]. Simi-
lar to the literature, we filter out people that have less than 100 images, resulting

3 https://benchmark.ini.rub.de/gtsrb dataset.html
4 https://www.cs.tau.ac.il/∼wolf/ytfaces/
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in a dataset with 599,967 images for 1,283 individuals. We split the data into
train, test and clean set in the ratio of 75:20:5, to obtain similar sizes of train
and test set as used in the literature. In line with the literature, we use DeepID
[22], a CNN with four convolutional layers. The first three layers are followed by
max-pooling, and both convolutions 3 and 4 output to a fully connected layer.

Labeled Faces in the Wild (LFW) [10] 5 contains 5,749 people with 13,000
images, whereas 1,680 of the people pictured have two or more distinct photos.
We filtered out people with less than 20 images, arriving at 57 classes and 2,923
images. We split these into a train, test, and clean set with a ratio of 70:20:10.
We use a pre-trained VGG16-Face model [18] 6, which was trained on 2.6 million
images. We fine-tune the last layer of the model on our dataset, as it was done
in [4]. Thus, also only the last layer is trained with poisoned samples.

Table 2: Datasets used
Dataset Details

Domain Name # Classes Train Size Test Size

Traffic
Signs

GTSRB 43 35,288 12,630

Face
Recognition

YTAF 1,283 529,172 59,996
LFW 57 2,500 292

We then train the models on clean data with the hyperparameters specified
in Table 3; for GTSRB and YTAF, these are based on [25], and achieve almost
identical accuracy as the benchmarks reported in literature. For LFW with the
VGG-Faces model, without a comparable setup from literature, we used a grid
search to determine optimal parameters. We tested different values for following
parameters: epochs (10, 20, 30, 50, 70, 100), batches (32, 64), optimiser (Adam,
Adadelta) and learning rate (0.001, 0.01, 0.1). We do not have a comparison to
literature in terms of accuracy for LFW with VGG16 model.

Our poisoned datasets as well as the trained models are available at Zenodo
7.

3.2 Backdoor triggers

For GTSRB, we use five different patterns as triggers. A square pattern is used
frequently in literature (e.g. [9,19,17], either yellow or white, and we use these
in two sizes (2x2, 4x4 pixels); we complement these with an additional pattern
of four pixels, following similar patterns used in e.g. [3,25]. We use the pattern
in both yellow and white to see if the colour has an impact.

5 http://vis-www.cs.umass.edu/lfw/
6 https://www.robots.ox.ac.uk/∼vgg/software/vgg face/
7 Datasets: DOI 10.5281/zenodo.6588632; models: DOI 10.5281/zenodo.6588730
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Table 3: Models used and clean dataset results
Model Accuracy

Dataset Name Layers Hyper-parameters Ours Literature

GTSRB
Custom
al. [25]

6 Conv
+ 2 Dense

epochs=10, batch=32,

optimizer=Adam, lr=0.001
97.21% 96.83% ([25])

YTAF DeepID [22]
4 Conv
+ 1 Dense

epochs=10, batch=32,

optimizer=Adadelta, lr=0.1
99.33% 98.14% ([25])

LFW
VGG-
Faces [18]

13 Conv
+ 3 Dense

epochs= 50, batch=32,

optimizer=Adadelta, lr=0.1

Only last layer re-trained

84.98% N/A

In literature, a common approach is to put the trigger outside of the actual
traffic sign – but this does not transfer to real-world settings or physical attacks.
Since all traffic sign images are centred, we thus placed the trigger around the
middle of the image. For the attack, we need to select which (source) class
should be misclassified into which (target) class. Randomly selecting several
combinations showed that there is little difference between the specific selection.
We discuss in the following the results for one pair (”120 km/h” → ”stop”).

For face recognition, in literature, funky and attention-drawing sunglasses in
bright colours are the most frequently used for face recognition datasets [4,13]
However, their appearance is rather unusual, and it is rare that people wear such
sunglasses – especially not politicians or businessmen. Thus, to provide a more
realistic and less suspicious attack scenario, we include as well black sunglasses
(of the same shape). We use the same triggers for YTAF and LFW, namely
green and black sun-glasses, as depicted in Figures 5 and 6. The trigger image
was added manually using a web application 8. Due to practical limitations of
generating poisoned images, we thus focused on a randomly selected source class.

3.3 Evaluation and Metrics

To evaluate backdoor attacks and defences we considered the accuracy of the
model and its change, as well as the backdoor success, similar to [13]. To be not
noticeable, a backdoor attack should not decrease this accuracy a lot (e.g. less
than 5%). The desired backdoor success depends on the use case, but in general,
the attacker wants it as high as possible. However, we also performed attacks
that have lower success to see the effectiveness of the defences against those.
Backdoor defences should substantially decrease backdoor success; ideally, they
would not affect (lower) the accuracy on the clean data at all – which is, however,
in general, the case. Thus, the defender wants to minimise the loss in accuracy
on clean data, while being effective enough against the attack.

8 https://insertface.com/

https://insertface.com/
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3.4 Evaluated Defences and Implementation

We apply the following defences: Spectral Signature (SS) [24], Data Provenance
(DP) [1], Activation Clustering (AC) [3] and Fine Pruning (FP) [13]. SS is re-
ported successful by the authors with 5% and 10% of poisoned images; DP with
10% to 70% poisoned data; AC with 10%, 15% and 33%; and FP is tested dif-
ferently for each domain, with 10% for the face recognition task, approx. 15%
for speech recognition, and 50% for traffic sign recognition.

We primarily use the implementations in the IBM Adversarial Robustness
Toolbox (ART) 9. Fine-Pruning is not provided by ART, and we thus adapt the
code provided by the authors of the defence [13]10 to a similar stack as ART.

4 Results

Regarding the baseline attack success, Figures 1a to 1e show that for different
trigger patterns on GTSRB, a varying number of poisoned images is needed to
achieve a high backdoor success rate. For e.g. 95% success, the lowest ratio of
poisoned images is needed for the big yellow square pattern with 4%, while the
white square and the white pattern require 27%. This confirms that both the
size and the colour of the pattern have an impact on the backdoor’s success.

For face recognition, a high backdoor success is important when e.g. in an
authentication system, the attacker has only limited attempts to authenticate
before being blocked. On YTAF, to achieve a 100% attack success rate when
using the green glasses, we need to poison 10% of the the images in the source
class (cf. Figure 1f). For the black glasses, we achieved only 90% backdoor suc-
cess. For LFW, with green glasses and 10% poisoning, the attack success was
only 20%. While success steadily increases when poisoning up to 30%, it then
plateaus at 70% success (cf. Figure 1g). For black glasses, a similar glass ceiling
is reached, but only when least poisoning 40%. Both face recognition datasets
thereby confirm the importance of colour respectively contrast for the attack.

From our tested defences, Spectral Signature (SS) and Data Provenance (DP)
did not produce useful results with any of our models and datasets. SS needs
two hyper-parameters to be set: (i) the expected percentage of poisoned images
(which is normally not known), and (ii) an internal multiplication factor that
would increase recall at the cost of false positives. We performed an extensive
grid search, including the true poison percentages, but no setting prevailed. To
the best of our knowledge, this defence was only used by the original authors, on
the CIFAR-10 dataset, and with a very special one-pixel backdoor pattern. We
suspect that our choice of datasets or trigger is the reason for the low perfor-
mance. Data Provenance requires provenance information, which is not available
for any of our benchmark datasets. We tried various runs with randomly assign-
ing samples into different sources, but the defence was never successful. Both
defences might only work in the specific settings evaluated by their authors. We
thus focus on the other, successful defences.

9 https://github.com/Trusted-AI/adversarial-robustness-toolbox
10 https://github.com/kangliucn/Fine-pruning-defence/tree/master/face
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(a) White Pattern (b) White square

(c) Yellow pattern (d) Yellow square (e) Yellow square (large)

(f) YTAF green glasses (g) LFW green glasses

Fig. 1: Change in accuracy and backdoor success when increasing percentage of
poisoned images: GTSRB (a-e), YTAF (f), LFW (g)

4.1 Activation Clustering Defence

We present and discuss the success of the defences against an attack with a
percentage of poisoned data as above identified as a successful attack. The first
backdoor defence applied is activation clustering. One important parameter is
the metric used for cluster similarity computation. For all our cases, the distance-
based metric would lead to all data being recognised as poisoned, which made
this metric ineffective.

The results for AC with the size-based metric can be seen in the left half of
Table 4 (absolute values are shown in Table 7). Even though the defence detects
a relatively large portion of poisoned images in several settings, it also produces
many false positives, i.e. clean data labelled as poisoned. For GTSRB models,
the defence removed 31–33% of clean data, while for some settings (yellow square
with lower percentage and the big yellow square), it did not remove any poisoned
images. For YTAF, we can note a large difference depending on the pattern: for
the green glasses, 21.11% of clean and 75% of poisoned images were removed,
while for the black glasses, a lot more clean images (33.94%), but only 6.25%
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Table 4: Accuarcy and attack success after applying Activation Clustering
Number of images

Trigger poisoned
removed
poisoned

removed
clean

Accuracy
clean data

∆
Acc.

Attack
success

∆ Attack
success

German Traffic Sign (GTSRB)

Yellow square (7%) 52 67.31% 31.79% 99.63% +4.04% 100.00% +0.74%
Yellow square (2%) 14 0.00% 32.82% 96.36% +0.63% 60.00% +16.55%
Yellow pattern (6%) 44 88.64% 31.98% 95.46% +0.12% 99.26% -0.74%
White square 258 75.19% 31.31% 95.19% -0.40% 93.70% -1.57%
White pattern 258 76.36% 31.24% 94.47% -2.07% 100.00% +1.12%
Big yellow square 29 0.00% 29.75% 96.52% +3.80% 100.00% +2.67%

Youtube Aligned Faces (YTAF)

Green glasses 16 75.00% 21.11% 97.49% -1.99% 30.00% -70.00%
Black glasses 16 6.25% 33.94% 98.80% -0.72% 90.00% 0%

Labelled Faces in the Wild (LFW)

Green glasses 30 66.67% 28.82% 84.04% -0.43% 50.00% -28.57%
Black glasses 40 62.50% 33.55% 81.91% -1.29% 50.00% -28.57%

of poisoned images were removed. For LFW, green glasses perform better than
black, but still worse than green glasses on YTAF.

After removing the data recognised as poisoned, the models were re-trained
and evaluated on clean and poisoned data, shown on the right side of Table 4. The
effectiveness varies substantially. For GTSRB, it is mostly ineffective, and only
marginally reduced backdoor success in two settings: the yellow pattern (-0.74%)
and white square (-1.57%). For the other GTSRB models, the backdoor success
increased; this can be explained with the now more favourable proportion against
clean images, as relatively fewer poisoned than clean images were removed.

For face recognition, we can observe a substantial reduction of attack success
with the green glasses trigger on YTAF, from 100% to only 30%. For LFW,
backdoor success decreased by 20% to 50%, for both colours. For both datasets,
as expected, accuracy on the clean dataset drops as well, between 0.43% to
1.99%. On LFW, both green and black glasses lead to the same backdoor success
(albeit with different percentage of poisoned images), and also the defence has
the same effect. But different trigger colour makes a huge impact on YTAF;
there, for black glasses, this defence did not decrease the backdoor success at all.

From the results for GTSRB, it seems that the percentage of poisoned data
also has an impact on this defence. For models that have a small number of
poisoned images (one of the yellow square settings, and the big yellow square),
none of these are removed, and the backdoor success increased more than for
the other GTSRB models – which is expected, since the ratio of poisoned to
clean is even worse. To understand that impact, we studied this in detail for
the yellow square pattern, increasing the percentage from 2% in a 1% step size,
shown in Figure 2. We can see that the defence always removes a lot and almost
constant amount of clean images, namely 31-33%. In models with up to 4%
poisoned training data, no true positives were identified; beyond this percentage,
the number increases sharply, and can reach up to 90%. A similar trend was
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(a) Removed images (b) Change in accuracy and attack success

Fig. 2: GTSRB: Activation clustering against yellow square pattern, different
poisoning percentages

Table 5: Accuarcy and attack success after applying Fine Pruning
2nd-to-last conv layer Last conv layer

Model
Removed
neurons

∆ accuracy
(clean data)

Attack
success

∆ Attack
Success

Removed
neurons

∆ accuracy
(clean data)

Attack
success

∆ Attack
Success

German Traffic Sign (GTSRB)

Yellow square (7%) 76/128 +0.63% 92.96% -6.35% 105/128 +0.02% 86.67% -12.68%
Yellow square (2%) 101/128 +0.40% 45.13% -13.30% 91/128 +2.29% 35.19% -29.70%
Yellow pattern (6%) 98/128 +0.35% 95.92% -4.08% 98/128 +0.21% 92.96% -7.04%
White square 101/128 -1.39% 91.19% -4.20% 99/128 +0.45% 90.74% -4.67%
White pattern 96/128 -0.58% 85.83% -13.31% 105/128 -0.98% 74.44% -23.23%
Big yellow square 79/128 +2.44% 72.96% -25.10% 99/128 +2.77% 68.15% -30.02%

Youtube Aligned Faces (YTAF)

Green glasses 10/60 -0.58% 70.00% -30.00% 18/80 -0.40% 80.00% -20.00%
Black glasses 16/60 -0.53% 60.00% -33.33% 25/80 -0.47% 90.00% 0%

Labelled Faces in the Wild (LFW)

Green glasses 127/512 -8.26% 30.00% -42.86% 75/512 -7.98% 40.00% -42.86%
Black glasses 127/512 -9.40% 60.00% -14.29% 75/512 -11.11% 70.00% 0%

observed for the big yellow square (not depicted). We might speculate that this
stems from the utilised clustering algorithm, that is potentially not able to group
the poisoned images together if they are too infrequent. Figure 2b shows that
removing more true positives results in a drop of backdoor success, rather than
an increase. However, the defence is still relatively ineffective. This is likely due
to the fact that the backdoor pattern is still very prominent, and can be learned
from fewer examples as well, as indicated in Figure 1, where we observe that
even with small percentage of poisoned data, the attack is already successful.

4.2 Fine Pruning Defence

For this defence, we prune neurons until the accuracy starts to drop more than
4% on the tuning set, as recommended in [13]. The authors of [13] do not specify
which layer to prune, but just mention ”later convolutional layers”. Thus, we
compare pruning on the last and second to last convolutional layer. After that, we
fine-tune the model and evaluate it against clean and poisoned data separately,
as shown in Table 5.

For GTSRB, we obtain a larger attack success reduction when we select the
last convolutional layer, and they are substantially different for many trigger
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types, e.g. 29.7% instead of 13.3% reduction for the yellow square with less poi-
soned images. While the defence in general is maybe not as effective as it would
be required, we can observe that in several cases, fine pruning did not reduce,
but increase the accuracy for some of GTSRB models, i.e. pruning redundant
neurons also improved generalisation in some cases.

On the other hand, on the face recognition models, we achieve better results
when selecting the second to last convolutional layer. For example, for the black
glasses pattern, pruning the last convolutional layer does not reduce the attack
success at all, it just affects the clean data accuracy. But pruning the second
to last layer, we reduce the attack success by 33.33% for YTAF and 14.28%
for LFW. The biggest side effect of fine pruning is visible for LFW, where the
accuracy was significantly decreased for both glasses colours.

When analysing the difference in the activations on clean and poisoned in-
puts, it can be observed that for GTSRB, there are several ”dormant” neurons,
not activated with clean inputs, on the last layer, as shown in Figures 7 and 8.
For the face recognition models, these are rather found on the second-to-last
layer. This implies that a defender with a good understanding of the model and
the ability to investigate neuron activations for clean samples may be able to
chose the best layer.

We further varied the threshold for pruning – in addition to the suggested 4%,
we also prune until a 2% and 6% accuracy drop, as shown in Figure 3. We applied
fine pruning with these new thresholds against selected GTSRB (yellow square)
and YTAF and LFW (green glasses) attacks. We pruned as above: for GTSRB
the last, and for YTAF and LFW, the second to last convolutional layer. For all
cases, increasing the pruning threshold causes the accuracy on clean images to
drop, as expected – but very marginally, except for LFW.

Figures 3a and 3b also show that for the GTSRB models, the backdoor
success decreases when the threshold increases. The decrease is much bigger
between 2% and 4% thresholds, than between 4% and 6%. For YTAF shown in
Figure 3c, at the 2% threshold, the backdoor success is not reduced, and for 4%
and 6% the reduction is the same. For LFW shown in Figure 3d, the defence
effectivenessis the same for all thresholds, but accuracy decreases drastically with
a higher threshold – already using just the 2% threshold, the accuracy reduction
is around 7%, which might be unacceptable in many settings.

It is difficult to recommend one threshold valid for each setting – and the
choice also depends on how much accuracy the defender is willing to give up. For
the GTSRB models, it would be recommend to use the 6% threshold, since the
accuracy does not drop much. For YTAF, the 4% threshold is the best choice,
since it has the same backdoor success drop as the 6% threshold, but higher
accuracy. In a real-world setting and no knowledge on the attack, this decision
becomes more difficult, as it can be based only on the accuracy change.

4.3 Combined Defence

We combined the defences in a different order, to analyse if this impacts the
effectiveness. Table 6 recaps the effect of the individual defences in the 2nd and
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(a) GTSRB, yellow square (6%) (b) GTSRB, yellow square (2%)

(c) YTAF, green glasses (d) LFW, green glasses

Fig. 3: Change in accuracy and backdoor success caused by fine pruning

3rd column, and then the impact of the combinations. Regarding accuracy on
clean data, there is no big difference between the combination of defences and
single defences, thus there is no penalty for combining.

First, we apply fine pruning (FP) after activation clustering (AC). The com-
bination is an improvement over AC on GTSRB – but we need to keep in mind
that defence did not actually decrease the attack on that dataset. There are some
cases where the combination outperforms both individual defences, e.g. on the
yellow square with a larger percentage of poisoned images, with a reduction of
more than 25%, or the yellow pattern and white square, with around 12% higher
reduction. For the big yellow square, there is no improvement over AC alone. For
the remainig patterns, there is an improvement over AC, but the combination
is worse than FP alone. When it comes to face recognition, the combination
improved the results for all cases except the green glasses on YTAF, where the
defence removed only 8 of 60 neurons, much below the other cases.

Comparing fine pruning and this combination, the latter returned better re-
sults in the case of LFW models, but equal or worse in the case of YTAF models.
For GTSRB, the combination improved on three attacked models. Overall, this
method obtained better or equal results than fine pruning for 6 out of 10 cases,
and better or equal results than activation clustering for 9 out of 10 cases.

Results from applying activation clustering after fine pruning are depicted
in the right half of Table 6. This combination reduced the attack success more
or equal than activation clustering for eight of 10 settings models – it is less
effective only for GTSRB with the white square (very marginally), and LFW
with the black glasses. Compared to fine pruning, this combination achieved less
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Table 6: Accuracy and attack success when combining Defences.
Single Defence Activation Clustering → FinePruning FinePruning → Activation Clustering

Number of images

Model AC FP
Conv
Layer

Removed
Neurons

Accuracy
clean data

Attack
success

Poisoned
Removed
Poisoned

Removed
Overall

Accuracy
clean data

Attack
success

German Traffic Sign (GTSRB)

Yellow square (7%) 100.00% 86.67% Last 98/128 95.96% 62.96% 44 0 10,873 (30.81%) 96.53% 97.78%
Yellow square (2%) 60.00% 35.19% Last 106/128 96.34% 48.15% 14 0 11,578 (32.81%) 95.57% 52.29%
Yellow pattern (6%) 99.26% 92.96% Last 96/128 94.06% 89.26% 44 38 (86.36%) 11,267 (31.93%) 95.76% 99.26%
White square 93.70% 90.74% Last 99/128 96.17% 78.89% 258 0 11,110 (31.48%) 95.71% 94.07%
White pattern 100.00% 74.44% Last 100/128 96.00% 97.04% 258 163(63.18%) 11,488 (32.55%) 97.11% 98.52%
Big yellow square 100.00% 68.15% Last 101/128 95.82% 100.00% 29 0 10,933 (30.98%) 96.30% 100.00%

YouTube Aligned Faces (YTAF)

Green glasses 30.00% 70.00% 2ndLast 8/60 98.97% 80.00% 16 11 (68.75%) 151.531 (25.26%) 97.46% 20.00%
Black glasses 90.00% 60.00% 2ndLast 15/60 98.54% 60.00% 16 1 (6.25%) 153,707 (25.62%) 97.32% 90.00%

Labelled Faces in the Wild (LFW)

Green glasses 50.00% 30.00% 2ndLast 160/512 74.82% 20.00% 30 22 (73.33%) 814 (32.56%) 79.08% 20.00%
Black glasses 50.00% 60.00% 2ndLast 119/512 78.01% 30.00% 40 8 (20.00%) 701 (28.04%) 79.43% 60.00%

reduction in all GTSRB settings. In four out of six cases, activation clustering on
a pruned model did not manage to to remove any poisoned image; when applying
the defence alone, it failed to remove poisoned images only in two cases. On
YTAF, the combination reduced substantially more of the attack success than
only fine pruning for the green glasses pattern: down to 20.00%, compared to
70.00% after fine pruning only. With the black glasses on LFW, the combination
achieved the same score as with fine pruning. The combination performed better
on LFW with green glasses, where the attack success was reduced by 10%, down
to 20.00%; for the black glasses, the reduction stayed the same, at 60%.

It is interesting to note that order of the defences did make an impact on the
effectiveness. In general, the combination of activation clustering followed by fine
pruning gave better results than the other way around. As a comparison, the first
combination outperformed AC in 9, while the second combination outperformed
only in 5 cases. Similarly, the first combination outperformed FP for 5 out of 10
models, but the second combination for only 2.

A likely explanation for this is as follows. When applying fine pruning, dor-
mant neurons that are potentially used by poisoned images, as they represent
the trigger pattern, are removed. Consequently, the activations of the poisoned
images will produce less distinct patterns than clean data, and subsequently, the
clustering algorithm is not able to separate these into poisoned or clean, but
rather along other criteria, which are irrelevant for the poisoning detection.

4.4 Discussion

In our experiments, we observed that more contrast (by larger colour difference,
e.g. green instead of the black glasses), as well as a larger size of the pattern,
lead to an effective backdoor, already at a lower percentage of poisoned images.

Fine pruning (FP) was effective for every combination of the model and
dataset. Activation clustering (AC) was much more effective on the YTAF and
LFW, independent of the used backdoor trigger; on GTSRB, it sometimes even
had a negative effect, i.e. it increased the backdoor success in several cases. AC
heavily depends on a good hyper-parameter for the metric used for clustering:
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the distance-based metric (falsely) recognises too many samples as poisoned, ren-
dering the method useless; the size-based metric is thus preferable. FP depends
primarily on two hyper-parameters: the layer to be pruned, and the pruning
threshold. The choice of the layer can drastically increase the effectiveness, and
is model dependent – and thus requires some domain knowledge to be correctly
set, but with an inspection of the activations, it is likely feasible for many set-
tings. The threshold parameter depends on the risk mitigation strategy of the
model owner. Larger values incur a higher penalty on clean data accuracy, but
provide a better defence. Which value is fitting is thus case and strategy de-
pendent. However, we note that the recommendation from the authors of the
method of 4% is not optimal in all settings.

Combining defences has only a marginal further impact on clean data accu-
racy – but generally reduces the attack success. In our evaluation, this positive
effect was more substantial for the face classification datasets. Also, the order
of the application of the combined defence matters, and applying AC first is
recommended.

5 Conclusions and Future Work

In this paper, we investigated backdoor attacks and defence mechanisms. We
utilised three different CNN models on three different image datasets – German
Traffic Sign Recognition Benchmark (GTSRB), YouTube Aligned Faces (YTAF)
and Labeled Faces in the Wild (LFW). We embedded backdoors by poisoning
the dataset with different backdoor triggers, to show the impact of the trigger
on the backdoor success. We observed that more contrast and a larger size of
the pattern lead to an effective backdoor, already at low percentage of poisoned
images.

We tested the effect of different defences, as well as combining the successful
ones to become more effective. While fine pruning (FP) was effective for every
combination of the model and dataset, activation clustering (AC) was much more
effective on the YTAF and LFW, independent of the used backdoor trigger; on
GTSRB, in contrast, it sometimes even had a negative effect. For both methods,
setting the hyper parameters correctly is critical. Combining defences lead to
only marginally further impact on clean data accuracy, but generally reduced
the attack success. Thus, it is a valid and effective strategy to employ against
suspected poisoning attacks, and should be considered by defenders.

Future work will focus on evaluating our results on an even larger range of
datasets and models trained thereupon. Further, we will include other, novel
defences not yet considered in this work.

Acknowledgements SBA Research (SBA-K1) is a COMET Centre within
the framework of COMET – Competence Centers for Excellent Technologies
Programme and funded by BMK, BMDW, and the federal state of Vienna. The
COMET Programme is managed by FFG.



18 Andrea Milakovic and Rudolf Mayer �

Appendix

(a) Clean (original) (b) Yellow square (c) Yellow pattern

(d) White Square (e) Wwhite pattern (f) Big yellow square

Fig. 4: GTSRB: clean (a) and poisoned images with different patterns (b-f)

(a) Clean (original) image (b) Green glasses (c) Black glasses

Fig. 5: LFW (Donald Rumsfeld): clean and poisoned images with two colours

(a) Clean (original) image (b) Green glasses (c) Black glasses

Fig. 6: YTAF (Sarah Jessica Parker): clean and poisoned images with two colours
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Table 7: Accuarcy and attack success after applying Activation Clustering (ab-
solute image values)

Number of images

Trigger poisoned
removed
poisoned

removed
clean

Accuracy
clean data

∆
Acc.

Attack
success

∆ Attack
success

German Traffic Sign (GTSRB)

Yellow square (7%) 52 35 11,203 99.63% +4.04% 100.00% +0.74%
Yellow square (2%) 14 0 11,578 96.36% +0.63% 60.00% +16.55%
Yellow pattern (6%) 44 39 11,271 95.46% +0.12% 99.26% -0.74%
White square 258 194 10,969 95.19% -0.40% 93.70% -1.57%
White pattern 258 197 10,943 94.47% -2.07% 100.00% +1.12%
Big yellow square 29 0 10,489 96.52% +3.80% 100.00% +2.67%

Youtube Aligned Faces (YTAF)

Green glasses 16 12 94,968 97.49% -1.99% 30.00% -70.00%
Black glasses 16 1 152,736 98.80% -0.72% 90.00% 0%

Labelled Faces in the Wild (LFW)

Green glasses 30 20 581 84.04% -0.43% 50.00% -28.57%
Black glasses 40 25 673 81.91% -1.29% 50.00% -28.57%

(a) Clean data (b) Poisoned data (c) Backdoor neurons

Fig. 7: GTSRB: neuron activations in second-to-last convolutional layer

(a) Neuron activation on
the clean data

(b) Neuron activation on
the poisoned data

(c) Backdoor neurons

Fig. 8: GTSRB: neuron activations in last convolutional layer
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