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Abstract. Data is increasingly collected on practically every area of
human life, e.g. from health care to financial or work aspects, and from
many different sources. As the amount of data gathered grows, efforts to
leverage it have intensified. Many organizations are interested to anal-
yse or share the data they collect, as it may be used to provide critical
services and support much-needed research. However, this often conflicts
with data protection regulations. Thus sharing, analyzing and working
with those sensitive data while preserving the privacy of the individ-
uals represented by the data is needed. Synthetic data generation is
one method increasingly used for achieving this goal. Using synthetic
data would useful also for anomaly detection tasks, which often contains
highly sensitive data.
While synthetic data generation aims at capturing the most relevant
statistical properties of a dataset to create a dataset with similar char-
acteristics, it is less explored if this method is capable of capturing also
the properties of anomalous data, which is generally a minority class
with potentially very few samples, and can thus reproduce meaningful
anomaly instances. In this paper, we perform an extensive study on sev-
eral anomaly detection techniques (supervised, unsupervised and semi-
supervised) on credit card fraud and medical (annthyroid) data, and
evaluate the utility of corresponding, synthetically generated datasets,
obtained by various different synthetisation methods. Moreover, for su-
pervised methods, we have also investigated various sampling methods;
sampling in average improves the results, and we show that this transfers
also to detectors learned on synthetic data. Overall, our evaluation shows
that models trained on synthetic data can achieve a performance that
renders them a viable alternative to real data, sometimes even outper-
forming them. Based on the evaluation, we provide guidelines on which
synthesizer method to use for which anomaly detection setting.

Keywords: Anomaly Detection · Synthetic Data · Privacy Preserving ·
Machine Learning

1 Introduction

With increased data collection, also data analysis becomes more wide-spread.
One important data analysis task is anomaly detection [5], which aims at finding
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unusual behavior in datasets. Anomalies may be caused by variations in machine
behavior, fraudulent behavior, mechanical defects, human error, instrument error
and natural deviations in populations [15]. Anomalies in data lead to important
actionable information in a broad range of application domains, including cyber-
security intrusion detection, defect detection of safety-critical devices, credit card
fraud and health-care [5].

From the above mentioned examples it becomes clear that many detection
tasks will operate on sensitive and personal data, and therefore techniques to use
those data while preserving privacy are needed. Thus, data privacy has become
a concern also among the anomaly detection research community. Different ap-
proaches for data privacy were proposed. One of those is K-anonymity which
protects against a single record linking threat [34]. Different releases, however,
might be connected together to compromise k-anonymity. Extension of the orig-
inal concept, such as l-diversity, protect against further risks, such as attribute
disclosure. However, these have shown to destroy the data utility too much [3].

Another approach is generating synthetic data. The fundamental concept be-
hind synthetic data is to sample from suitable probability distributions to replace
some or all of the original data, while preserving their important statistical fea-
tures [26]. In this paper, we explore in depth the problem of anomaly detection
models learned from synthetic data. We analyse different synthetic data gener-
ation methods and different anomaly detection methods, to answer whether it
can be used as a suitable surrogate for utilising the original data – which might
not be a viable option due to data sharing or usage limitations.

We use three different data synthesizers, and multiple different supervised,
semi-supervised and unsupervised techniques to detect anomalies, on two fre-
quently used, benchmark data sets with sensitive data (credit card fraud and
annthyroid) in the anomaly detection domain. Moreover, since the imbalanced
data problem is a core issue in anomaly detection, for the supervised setting,
we balance the data using three separate sampling approaches: oversampling,
undersampling, and the Synthetic Minority Oversampling Technique (SMOTE)
[6], and compare that effect also on the synthetic data.

The remained of this paper is organised as follows. Section 2 discusses related
work and state of the art results. We describe our evaluation setting in Section 3,
and discuss results in Section 4. We then conclude in Section 5 and discuss
directions for future work.

2 Related Work

Privacy preserving of sensitive data has been the subject of extensive research,
and several different approaches have been considered. K-anonymity [34] has
been a traditional solution to privacy concerns. However, concerns over residual
risks, and lack of utility [3] have given rise to other techniques. One recently
widely studied approach is synthetic data generation. Synthetic data is created
by building a model based on real-world source data, from which samples are
drawn to form a surrogate dataset. While the data is (close to) statistically
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indistinguishable from the real dataset, it no longer has a link to real individuals,
and thus can be used, exchanged and transfered with less restrictions.

Rubin et al. [32] were among the first to propose synthetic data generation
for disclosure control, namely repeated perturbation of the original data as a
replacement for the original data. Ping et al. use a Bayesian network-based data
synthesis approach, the Data Synthesizer [28]. They further also provide an inde-
pendent attribute mode, which generates data for each attribute independently
of the others. The Synthetic Data Vault (SDV) offers among other approaches
one based on a multivariate version of the Gaussian Copula to model the co-
variances between the columns in addition to the distributions [27]. Nowok et
al. propose a technique based on classification and regression trees (CART) in
their Synthpop tool [26]. The synthetic values for the attributes are created pro-
gressively from their conditional distributions. Acs et al. [2] utilise generative
neural networks. They first cluster the initial datasets into k clusters, and build
synthesizer models for each cluster.

A high utility of the generated synthetic data is vital to successfully substitute
original data. Several earlier works have specifically analysed and measured the
utility of synthetic data for certain data analysis tasks, termed the application
fidelity [7], e.g. for classification [12] or regression [13], or more generically super-
vised learning tasks [31], or for specific data types, e.g. microbiome data[14]. An
earlier work addressing specific anomaly detection in synthetic data is provided
by [23], focusing on a single dataset. We extend their work by considering more
datasets, more detection techniques, and the incorporation of sampling methods,
which are shows improvements for several of the supervised setting. Further, we
re-create state-of-the-art results on the original dataset to find a more viable
baseline for adequately assessing the comparative performance of the synthetic
data based detectors, and thus achieve higher scores than [23] in the baseline.

Anomaly detection is a form of unbalanced data problems [20]. In anomaly
detection, the majority of samples are "normal" data, whereas the minority
samples are anomaly data. Fraud detection [39], disease detection [18], intrusion
detection [19], identification systems [16], and fault diagnostics [29] are some
example application domains. There are several ways to categorize anomaly de-
tection methods. Goldstein et al. [11] distinguished three settings based on the
availability of the data as illustrated in Figure 1: Supervised anomaly detec-
tion refers to a setting in which the data consists of training and test data sets
labeled with normal and anomaly instances. Semi-supervised anomaly detec-
tion also employ training and test datasets, with training data consisting only of
normal data, but no anomalies. A model is learnt on the normal class, and then
anomalies may be found if they are deviating from that model. Unsupervised
anomaly detection does not require any labels and no differentiation is made
between a training and a test dataset.

A further distinction can be on the learning approach. Classification-based
techniques learn a machine learning model from a set of labeled examples, and
then classify a test instance into one of the classes using that model [5]. These
techniques are used in supervised settings.
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Fig. 1. Different anomaly detection modes depending on the availability of labels [11]

Statistical anomaly detection methods fit a statistical model (typically
for normal behavior) to the available data, and then use a statistical inference
test to check if an unseen instance fits the distribution [5]. Anomalies are assumed
to occur in the low probability areas of the model. Statistical techniques can be
used in an unsupervised context, without the necessity for labeled training data,
if the distribution estimate phase is robust to data anomalies.

Clustering-based can be one of three categories. The first category is based
on the premise that normal behavior data are grouped into clusters whereas
anomalies are those samples not belonging to any of the clusters. The second
category is based on the idea that anomalies are far away from their nearest
cluster centroid, whereas normal data instances are close. One issue is that if
data anomalies create clusters on their own, these methods will fail to detect
them. To address this problem, a third category is based on the premise that
anomalies belong to small or sparse clusters.Clustering is primarily an unsuper-
vised technique. However, approaches from the second category can work in a
semi-supervised mode.

Information theoretic approaches uses different information theoretic mea-
sures, such as Kolmogorov or entropy, to examine the information content of a
data collection [5]. Anomalies are detected based on the assumption that anoma-
lies in data cause inconsistencies in the data set’s information content. Informa-
tion theory techniques can be used in an unsupervised setting.

The specific techniques and algorithms that we have used for anomaly detec-
tion are described in Section 3.4.

3 Experiment Setting

In our experiment we used two datasets, credit card fraud3 and annthyroid4.
An overview of the experiment process can be seen in Figure 2. It starts with
3 https://www.kaggle.com/mlg-ulb/creditcardfraud
4 https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease

https://www.kaggle.com/mlg-ulb/creditcardfraud
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Fig. 2. Experiment flow diagram

the original datasets; to be able to evaluate the synthesizers, both datasets are
split into train-validation splits (holdout method). From the train splits of the
datasets we generate synthetic data with each synthesizer. After the synthetiza-
tion step, depending if the target variable is available, the original and synthe-
sized train splits are sampled using one of the sampling techniques mentioned in
Section 3.3. As part of the training process, to improve the model performance,
the hyperparameters are tuned using a grid search, for which the values of the
hyperparameters are shown in 1. In the end the performance (effectiveness) is
evaluated on the validation set with the best performing model from the train
phase using the F2 score, accuracy and precision, which are described below.

In a two-class problem, we try to tell the difference between anomalies and
normal behaviour data. If the anomaly class is considered as "positive" , and the
non-anomalies as "negative" class, we distinguish four outcomes: “true positives”
for correctly predicted anomalies, “false positive” for normal samples incorrectly
predicted anomalies, “true negative” for correctly predicted normal samples as
such, and “false negative” for incorrectly predicting an anomaly as normal sam-
ple. Based on this, we use the following evaluation metrics: Precision, which
is the ability of a classification model to identify only the relevant data points,
and can be calculated as the number of true positives divided by the number of
true positives plus the number of false positives.

Recall, which is the ability of a model to find all the relevant cases within
a dataset and can be calculated as the number of true positives divided by the
number of true positives plus the number of false negatives.

Precision and recall are not representative on their own, as it is trivial to
improve one at the cost of the other, but difficult to have both with high values
at the same time. Therefore, we also use the F1 and F2 scores, which combines
precision and recall. In contrast to the balanced F1, F2 puts an emphasis on
recall, which is suitable for anomaly detection, where it is more critical to identify
the majority of anomalies, and a certain amount of false positives may be allowed.
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3.1 Datasets

The credit card datasetFootnote 3 includes credit card transactions made by
European cardholders with two days in September 2013. It contains 492 frauds
out of 284,807 transactions, and is thus highly unbalanced, with the positive
class (frauds) accounting for just 0.172% of all transactions.

The dataset has 31 features, all of them are numerical. Features V1,...,V28
are the principal components obtained with a Principal Component Analysis
(PCA). Further, one attribute holds the amount of the transaction, and the
attribute ’Time’ represents the time since the first transaction in the dataset.

The Annthyroid dataset Footnote 4 includes patients records from Garavan
Institute. This dataset comprises of 7,200 records and has 22 features, all nu-
merical. The target class contains "hyperfunction", "subnormal functioning" and
"normal" (not hypothyroid), respectively. As common in literature ([21,10], we
grouped hyperfunction and subnormal functioning as one group that represents
anomalies in this dataset. Thus, 534 entries are anomalies, i.e. 7.4%.

3.2 Dataset Synthetization

For generating synthetic data we used SDV, Synthpop and two modes of Data-
Synthesizer, independent attribute and correlated attribute mode. We thus gen-
erate four synthetic datasets for each datasets.

3.3 Dataset pre-procesing

As the datasets are highly imbalanced, we employ three well known sampling
techniques, namely Random Undersampling, Random Oversampling and Syn-
thetic Minority Oversampling Technique (SMOTE)[6], to potentially improve
the performance of supervised techniques (sampling can only be applied if we
have labels for both anomalies and normal data). We used the implementation
from the python package "imblearn"5.

3.4 Anomaly Detection Methods

We use different supervised, semi-supervised and unsupervised machine learning
techniques from the Python machine-learning library sk-learn 6.

The supervised methods include: (i) Ada Boost , (ii) XGB (extrem gradient
boosting), (iii) Gaussian Naive Bayes, (iv) Linear SVC, (v) k-nearest Neighbors,
(vi) Random Forest, and (vii) Logistic Regression. This selection of supervised
machine learning techniques includes a wide range of different approaches, in-
cluding probabilistic, linear, and rule-based classifiers, and ensemble techniques.

For semi-supervised techniques, we use: (i) AutoEncoder, and (ii) Gaussian
Mixture

The selected unsupervised approaches are: (i) Isolation Forest, (ii) Local Out-
lier Factor, (iii) One Class SVM,
5 https://imbalanced-learn.org/
6 https://scikit-learn.org/stable/modules/outlier_detection.html

https://imbalanced-learn.org/
https://scikit-learn.org/stable/modules/outlier_detection.html
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Table 1. Parameter grid for supervised methods

Method Parameter (Grid) values

GaussianNB var_smoothing [1.0e−02,1.0e−04, 1.0e−09]

k-NN n_neighbors [5, 10, 15]

Random Forest n_estimators [100, 200, 300]

Logistic Regression C np.logspace(-4, 4, 3)

Linear SVC C [1, 100, 1000]

AdaBoost n_estimators [100, 200, 300]

XGB n_estimators [100, 200, 300]

IsolationForest n_estimators [100, 200, 300]

LocalOutlierFactor n_neighbors [5, 10, 15]

OneClassSVM gamma [1.0e−03,1.0e−05, 1.0e−08]

GaussianMixture n_components; n_init 1; 5

AutoEncoder epochs; batch-size 10; 128

To improve the results for the supervised methods, we executed a grid search
on the training set through a number of parameters and values, shown in Table 1.
Each of the parameter values are taken through the full pipeline and evaluated
on a five fold cross-validation inside the training set. For evaluation we used an
unseen validation set, consisting of 20% of the original data.

4 Results

In this section, we present the results from our evaluation, based on the setup
described in Section 3. We primarily discuss the F2 scores, but provide further
results details, namely precision and recall for supervised, semi-supervised and
unsupervised methods, for both datasets, in section A.

4.1 Credit Card dataset

From Table 2, we can observe that for the credit card dataset, in most cases,
sampling methods can not improve the scores, with a few exceptions (such as
random oversampling or SMOTE for the already very successful XGB on real
data). In average over all classifiers, sampling decreases the performance. For
better visual comparison, Figure 3 shows F2 scores for the different synthesizers
and supervised methods when no sampling method was used.

We can further see that the performance drops when learning anomaly de-
tection on real versus the synthetic data, implying that in general, it is slightly
more difficult to learn an anomaly representation after synthesizing the data.
However, in many settings, the drop is relatively small (within a few percent),
and there are even a few cases where the best performance on real data is in-
creased after synthetization, e.g. for the Gaussian Naive Bayes (from an albeit
low base) and Logistic Regression without sampling.
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Fig. 3. Credit card: F2 scores for supervised techniques on datasets generated using
no sampling

Moreover from Tables 2, 12 and 13 when analyzing the synthetic datasets,
we can see that the best performing synthesizers are the Synthetic Data Vault
(SDV) and Synthpop (SP); the latter is the best choice for k-NN and Random
Forest. Overall, it is difficult to generally recommend which of these synthesizers
is the better choice.

Regarding individual classifier performance, from the average columns in
Tables 2, 12 and 13 we can observe that XGB achieves a relatively low recall of
77.5% compared to the other supervised methods, however, it has the highest F2
score and precision of 58.3% and 57.5% respectively, making it the most suitable
for outlier detection tasks on the credit card dataset. On the other hand, we can
see that Gaussian Naive Bayes is not useful for this task, achieving a good recall
of 80%, but a very low precision and F2 score, 8.4% and 25.1% respectively,
which is 49.1 and 33.2 percentage points less than the best performing classifier
on the table, respectively.

When looking only at the sampling methods, it can be observed that on
average none of the sampling methods provide a performance increase. There are
some exceptions for specific cases where the sampling methods helped such as
when synthesizing with DataSynthesizer in correlated mode, using XGB classifier
and SMOTE sampling method, where the F2 score is increased by relative 65.1%.
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Table 2. Credit Card: supervised results, F2 score (ROS: random oversampling, RUS:
random undersampling, SM: SMOTE sampling)

dataset Real SDV DS-Corr. SP
sampl. No ROS RUS SM No ROS RUS SM No ROS RUS SM No ROS RUS SM Avg

AB 82.0 65.5 12.3 59.0 77.6 59.9 17.3 74.7 52.0 46.8 17.4 16.8 72.6 37.1 10.2 29.2 45.7
GNB 23.2 21.1 16.0 22.8 45.5 1.2 4.5 0.1 63.7 43.9 44.7 42.6 21.0 19.0 13.3 18.6 25.1
KNN 76.4 79.4 24.8 72.2 7.5 18.5 3.5 3.1 50.2 18.8 5.9 10.2 71.4 56.3 21.1 50.8 35.6
LSVC 81.3 26.7 7.5 30.9 80.2 63.7 53.3 64.8 28.3 27.5 31.4 29.7 62.6 15.9 14.4 15.9 39.6
LR 68.2 24.2 14.6 42.3 79.5 62.2 53.5 64.1 40.4 24.7 28.4 27.6 57.7 14.1 12.7 22.6 39.8
RF 85.6 81.4 18.7 82.7 37.7 0.0 6.5 1.0 51.7 3.8 33.7 28.3 74.8 75.7 11.4 76.3 41.8
XGB 83.0 83.9 14.3 86.4 80.2 78.6 9.0 78.9 38.1 57.9 16.8 62.9 77.1 78.3 12.1 76.1 58.3

Avg 71.4 54.6 15.4 56.6 58.3 40.6 21.1 41.0 46.4 31.9 25.5 31.2 62.5 42.3 13.6 41.4

Table 3. Credit Card: semi- & unsupervised results, F1 and F2 score

dataset Real SDV DS-Corr. DS-Ind. SP Avg
method F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

AutoEncoder 30.4 43.2 24.4 37.9 37.2 48.6 46.3 55.2 30.6 44.1 33.8 45.8
GMM 23.4 34.1 21.2 34.4 27.6 42.5 43.1 52.4 26.5 36.6 28.4 40.0
Isol.Forest 7.4 16.2 8.0 17.3 15.3 29.9 34.3 31.3 6.7 15.0 14.3 22.0
LOF 0.8 1.8 4.7 10.8 17.5 26.9 20.5 37.1 1.5 3.2 9.0 16.0
1-ClassSVM 0.6 1.6 0.8 1.9 1.8 4.2 2.4 5.6 0.6 1.7 1.23 3.0

Avg 12.5 19.4 11.8 20.5 19.9 30.4 29.3 36.3 13.2 20.1

Figure 4 and table 3 show the results for semi- and unsupervised settings.
Mind again that for these technique, we can not apply sampling strategies, as
there is no knowledge about the different types of samples (anomaly or not) for
the unsupervised, and no information about relative sizes of the two classes for
the semi-supervised case, as in this case, we only have samples from the "normal"
class. Therefore, the corresponding tables and figures only show results without
any sampling.

The first observation is that unsupervised and semi-supervised methods on
average perform worse than the supervised counterparts, the major impact is
on precision, where many methods struggle to obtain high values. However, this
is expected, as this setting is more difficult, due to less information that can
be exploited. In line with this, the semi-supervised methods (AutoEncoder and
GMM) work better than the unsupervised ones.

Another noteworthy finding is that, in contrast to the supervised techniques,
for unsupervised and semi-supervised techniques synthesizing the data increases
the precision, recall and F2 score on average. This improvement in F2 score is
27.6% for semi-supervised and unsupervised approaches.

When comparing synthetic datasets, from Tables 3, 8 and 9 we can see that
in semi-supervised and unsupervised setting the best performing synthesizer is
DataSynthesizer in independent mode with an average F2 score of 36.3 %. This
is especially intriguing when compared to the supervised techniques, where there
was a significant loss of quality (not depicted) when the data was synthesized
with DataSynthesizer in this mode. On the other hand, the synthetic dataset
generated by SDV is the worst performing synthesizer for semi-supervised meth-
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Fig. 4. Credit card: F2 scores for semi-supervised and unsupervised techniques

ods with an average F2 of 36.15%, whereas for unsupervised methods the worst
performing synthesizer is Synthpop with an average F2 score of 6.3%, due to a
very low precision of only 1.5%.

For the unsupervised methods, Isolation Forest obtains the best precision
values, as well as a high recall value, resulting in the highest F2 score of 22%,
whereas One Class SVM obtains the lowest F2 score of 3%, due to 0.6% precision.
A significantly higher performance is achieved by semi-supervised methods. On
average across the original and synthetic datasets, Auto Encoder outperforms
Gaussian Mixture Model with an average precision of 23.8%, which is 4.3 higher
than the Gaussian Mixture Model’s precision and with an average recall of 61.4%,
which is 4.5 higher than Gaussian Mixture Model’s recall. Thus, also in regards
to the F2 score, Auto Encoder outperforms the Gaussian Mixture Model, with
an average F2 score of 45.8%, which is 5.8 higher than the Gaussian Mixture
Model’s average F2 score.

In Table 4 we show the results that are achieved in the literature using
several different machine learning methods. If we compare these results with our
results for the credit card dataset from Tables 2 and 13, we can observe that
we achieved better results for Logistic Regression, Random Forest and XGB
compared to [22], with 20.8, 26.8 and 21.6 higher precision. Mittal et al.[25] has
the best precision for these three classifiers, achieving a precision of 99% for
all three classifiers, which is 15.9, 4.7 and 5 higher than our precision for these
three methods. On the other hand, Dornadula et al. [9] have a significantly
better performance for Random Forest and Logistic Regression when using a
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Table 4. Credit Card: benchmark algorithms and results (SM: SMOTE sampling, US:
undersampling; ’*’ indicates scores we calculated from other scores)

Authors Methods Recall Precision Accuracy F2-Score

Yann-Ael Le Borgne1 LR,RF, XGB N\A 62.3, 67.8, 69.4 N\A N\A
Mittal et al.[25] NB,RF,

KNN,LR,
XGB,SVM,
IF,LOF,K-
Means

82,99,0,99,
99,93,100,
100,0

6,99,0,
99,99,0,
99,99,99

N\A 23.2*,99*,0*,
99*,99*,0*,
99.8*,99.8*,
0*

Dornadula et al.[9] LOF,IF,
SVM,LR,DT,
RF,LOF-
SM,IF-SM,
LR-SM,DT-
SM,RF-SM

N\A 0.38,1.47,
76.81,87.5,
88.54,93.10,
29.41,94.47,
98.31,98.14,
99.96

89.90,90.11,
99.87,99.90,
99.94,99.94,
45.82,58.83,
97.18,97.08,
99.98

N\A

Trivedi et al.[37] RF,NB,LR,
SVM,KNN,
DT, GBM

95.12,91.98,
93.11,93,92,
91.99,93

95.98,91.20,
92.89,93.23,
94.59,90.99,
94

95,91.89,
90.45,93.96,
95,91,94

95.29*,91.8*
93.1*,93.05*,
92.5*,91.8*,
93.2*

Dhankhad et al.[8] SC,RF,
XGB,KNN,
LR,GB,
MLP,SVM,
DT,NB

95,95,95,91,
94,94,93,93,
91,91

95,95,95,91,
94,94,93,93,
91,91

95.27,94.59,
94.59,94.25,
93.92,93.58,
93.24,93.24,
90.88,90.54

95*,95*,95*,
91*,94*,94*,
93*,93*,91*,
91*

Bachmann 2 LR,KNN,
SVM,SVC,
LR-US, LR-
SM

94,93,93,93,
N\A,N\A

94,93,94,93,
N\A,N\A

94,93,93,93,
94.21,98.70

94*,93*,93.2*,
93*,N\A, N\A

Mayer et al. [23] NB,SVM,
KNN,RF,
LR,IF,LOF,
1CSVM,
GMM,AE

76.8,70.5,
77.7,71.4,
76.8,76.8,
31.3,83,
71.4,55.4

6.6,88.8,
94.6,97.6,
86,5.4, 0.6,2.8,
87,19.3

N\A 24.5,73.6,
80.6,75.5,
78.5,21,
2.7,12.4,
74.1,40.3

1 https://github.com/Fraud-Detection-Handbook/fraud-detection-handbook
2 https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets

sampling method to balance the dataset, with around 17 and 84 higher precision,
respectively compared to our results. Overall, our results are however well in line
with what is achievable in literature.

When comparing our unsupervised approaches to those in the literature, from
Tables 4, 8 and 9 we can observe that our results for Isolation Forest and LOF
slightly outperform the results from [9], achieving 2.43 and 0.02 better precision,
respectively. On the other hand, for these two methods Mittal et al. [25] achieved
an almost perfect results, with 100% recall and 99% precision for both methods,
which is highly suspect due to the lack of similar results on any state-of-the-art
paper; also, the paper is not clear on which data they evaluate on, i.e., whether
they use an independent validation set, or not – hence, these results should be
taken with a grain of salt

4.2 Annthyroid dataset

When comparing synthesizers with each other, we can observe from Tables 5,
14 and 15 that SDV achieves by far the lowest precision, recall and F2 scores.
Data generated by Synthpop, on the other hand, achieves the best performance,
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Fig. 5. Annthyroid: F2 scores for supervised techniques on datasets generated using
no sampling

Table 5. Annthyroid: supervised results, F2 score (ROS: random oversampling, RUS: random
undersampling, SM: SMOTE sampling)

dataset Real SDV DS-Corr. SP
sampl. No ROS RUS SM No ROS RUS SM No ROS RUS SM No ROS RUS SM Avg

AB 98.3 98.3 98.2 97.2 3.5 30.7 46.7 57.0 32.3 44.2 39.7 48.4 98.3 98.0 96.1 97.6 67.8
GNB 36.1 33.8 32.8 34.3 28.4 28.5 40.2 28.8 28.1 31.8 34.6 32.1 57.6 35.8 35.8 32.5 34.4
KNN 42.5 55.2 51.1 55.7 0.0 9.7 36.2 25.3 18.9 29.1 37.2 34.1 35.5 45.8 45.3 50.8 35.8
LSVC 56.2 80.3 64.9 68.2 0.0 41.2 54.4 45.6 11.4 55.7 52.5 53.8 60.0 88.5 80.8 74.6 55.5
LR 65.0 94.7 87.5 95.0 0.0 44.6 53.5 44.5 22.1 55.6 52.9 53.7 63.0 93.1 92.7 93.9 63.2
RF 98.7 98.5 97.3 98.5 0.0 0.0 62.2 23.5 32.4 36.2 44.4 47.8 98.3 98.3 95.9 99.1 64.4
XGB 97.9 98.5 97.1 98.5 0.0 5.8 55.5 23.6 32.1 34.9 40.3 46.9 96.7 97.4 96.7 99.1 63.8

Avg 70.7 79.9 75.5 78.2 4.5 22.9 49.8 35.4 25.3 41.1 43.1 45.3 72.8 79.6 77.6 78.2

Table 6. Annthyroid: semi- & unsupervised results, F1 and F2 score

dataset Real SDV DS-Corr. DS-Ind. SP Avg
method F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

AutoEncoder 23.1 37.7 18.6 33.5 18.0 31.0 18.6 34.5 23.0 35.3 20.3 34.4
GMM 13.8 28.6 13.8 28.6 13.8 28.6 13.8 28.6 13.8 28.6 13.8 28.6
Isol.Forest 10.9 9.3 16.2 18.5 6.5 5.3 5.4 4.3 10.2 8.4 9.8 9.1
LOF 18.0 17.8 16.8 22.1 7.5 6.9 11.1 8.6 21.0 20.7 14.9 15.2
1-ClassSVM 15.8 28.1 13.4 19.6 15.4 27.5 14.4 21.6 15.6 28.1 14.9 25.0

Avg 16.3 24.3 15.8 24.5 12.2 19.9 12.7 19.5 16.7 24.2
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Table 7. Algorithms used in literature and their results for annthyroid dataset (’*’
indicates scores we calculated from other scores in the table)

Authors Methods Recall Precision Accuracy F2-score

Salman et al. [33] DT,SVM,
RF,NB,
LR,KNN

N\A N\A 90.13,92.53,
91.2,90.67,
91.73,91.47

N\A

Sidiq et al.[35] KNN,SVM,
DT,NB

N\A N\A 91.82,96.52,
98.89,91.57

N\A

Chandel et al. [4] KNN, NB N\A N\A 93.44,22.56 N\A
Sinhya et al. [36] NB, RF N\A N\A 95, 99.3, N\A
Ionita et al. [17] NB,DT,

MLP
N\A N\A 91.63,96.91,

95.15
N\A

Maysanjaya et al. [24] RBF,LVQ,
MLP,BPA,
AIRS

95.3,93.5,
96.7,69.8,
93.5

95.3,94,96.8,
48.7,93.5

95.35,93.5,
96.74,69.77,
93.5

95.3*,93.6*,
96.72*,
65.23*,93.5*

Tyagi et al. [38] KNN,SVM,
DT

N\A N\A 98.62,99.63,
75.76

N\A

Raisinghani et al.[30] SVM,DT,
LR,RF

96,99,97,99 96,99,97,99 96.25,99.46,
97.5,99.3

96*,99*,97*,
99*

Rehman et al. [1] KNN,DT,
NB,SVM,
LR

90,67,100,
70,88

N\A 91.39,74.19,
100,80.46,
90.32

N\A

with achieving even better precision and F2 score than the original dataset. On
average over all sampling methods, the dataset generated by Synthpop achieves
the best F2 score of 77.05%, due to the highest precision and recall of 68.5% and
86.95% respectively.

Another interesting observation can be seen in the ‘avg’ columns, where we
can see that Gaussian Naive Bayes, even though it achieves the best recall on
average that ranges around 81.9%, has a very low precision of 13.8%, making
it not suitable for our task. The other algorithms have a significantly higher
precision, with Adaboost being the best with an average F2 score of 67.8%, due
to good precision and recall of 68.7% and 74% respectively. Random Forest, XGB
and Logistic Regression are the next best algorithms, and achieve an average F2
score of 64.4%, 63.8% and 63.2% respectively.

When comparing the sampling methods used to balance the datasets, we
can see that, contrary to the credit card dataset’s results, in almost all of the
cases balancing helped to achieve better results. This is especially true for SDV
and DataSynthesizer in correlated mode, though from a rather low base. When
comparing the sampling methods between each other, we see that the best per-
forming sampling method is Random Undersampling, followed by SMOTE with
a slightly lower performance, whereas supervised methods performed worst on
the datasets sampled with Random Oversampling.

Figure 5 depicts an average comparison of F2 scores for the different synthe-
sizers and supervised methods when no sampling method was used
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Fig. 6. Annthyroid: F2 scores for semi-supervised and unsupervised techniques

Table 7 shows the results reported in literature. When we compare these with
our results in Table 15, we can see that for Random Forest we achieve slightly
better recall compared to [30], but 1.8 lower precision. For Logistic Regression,
Raisinghani et al. [30] and Rehman et al. [1] achieved better recall than we do,
with 36.3 and 27.3 higher recall. Overall, our results are well embedded into the
state-of-the-art results.

Tables 6, 10 and 11 show F2 scores, precisions and recalls for semi-supervised
and unsupervised methods on original and synthetic datasets. Another visual
representation of F2 scores is shown in Figure 6 for semi-supervised and unsu-
pervised methods. As with the credit card dataset, and as expected, supervised
approaches outperform unsupervised and semi-supervised ones. Moreover, simi-
lar to the supervised techniques, synthesizing the data decreases the F2 score on
average by 9.5%, from 24.3% to 22%, this decrease on F2 score is due to precision
and recall, with 11.7% and 5.8% decrease respectively. Thus, for the annthyroid
dataset, synthesizing the dataset marginally decreases the performance of semi-
supervised and unsupervised methods. An exception is the Gaussian Mixture
Model, which achieves same F2 score, precision and recall, before and after
synthesizing the dataset with any synthesizer that we have considered in our
experiment.

Moreover, from Tables 6, 10 and 11 we can observe that datasets generated
with Synthpop and Synthetic Data Vault outperform the datasets generated with
DataSynthesizer in both correlated and independent modes. For semi-supervised
methods dataset generated with Synthpop outperforms the other synthesizers,
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with a precision of 11%, which is on average around 17.8% better than other
synthesizers, and with a F2 score of 31.95%, which is 3.6% better than other syn-
thesizers. On the other hand, semi-supervised methods perform worst on data
generated by DataSynthesizer in correlated mode. On the other hand, when we
compare the unsupervised methods to each other, data generated by Synthetic
Data Vault outperforms other synthesizers, whereas data generated by DataSyn-
thesizer in independent mode results in the worst F2 scores.

As expected, in all cases semi-supervised methods perform better than un-
supervised ones. We note that Auto Encoder outperforms Gaussian Mixture
Model in terms of F2 score and precision achieving on average 34.4% F2 score,
and 12.0% precision over original and synthetic datasets. On the other hand
GMM achieves the best recall compared to other semi-supervised and unsuper-
vised methods, with a value of 100%.

As for unsupervised methods, even though One Class SVM shows a low
precision of only 9%, having the highest recall of 47.3% compared to other unsu-
pervised methods makes it the best performing method with a F2 score of 25%,
which is around 10 and 16 percentage points higher than Local Outlier Factors
and Isolation Forest, respectively. Isolation Forest with an F2 score of only 9.1%
is not well suited for this task.

4.3 Observations

Based on the results shown in the Sections 4.1 and 4.2 we can conclude that
the quality of anomaly detection in both credit card and annthyroid datasets
for supervised methods is slightly reduced when using synthetic data, but they
achieve results that are very competitive to the real data. As expected, unsu-
pervised and semi-supervised approaches perform worse than supervised ones,
which is expected, considering that having an actual label for the data provides
more exploitable information than the other approaches have available.

In both datasets, XGB performed very well in the supervised techniques,
while Gaussian Naive Bayes yields the worst results. When looking at semi-
supervised methods for both datasets AutoEncoder outperforms Gaussian Mix-
ture Model. Furthermore, the best synthesizer for the credit card dataset and
annthyroid dataset in almost all of the cases is Synthpop. SDV performed well
on the credit card dataset, but not so well on annthyroid. DataSynthesizer was
overall the worst of the synthesizers.

One of the most noteworthy distinctions is the effect of sampling methods on
the results in the two cases for supervised methods. For the annthyroid dataset,
sampling significantly improved the performance of supervised methods in most
cases. On the other hand, in most of the cases it has bad effect on the quality
of anomaly detection in credit card dataset. We see that both effects also trans-
ferred to synthetic data, that is, for annthyroid, also synthetic data profits from
choosing a fitting sampling methods.

When looking at non-sampled datasets for supervised techniques, another
significant difference is the influence synthetization has on the data for the two
datasets. After synthesizing the credit card dataset using the Synthetic Data
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Vault, the performance dropped only marginally, whereas the same synthesizer
on the annthyroid dataset incurs a substantial performance drop. This indicates
that the type of data and its distribution has a significant impact on the syn-
thetisation success. An interesting observation is how unsupervised methods per-
formed differently on annthyorid and credit card datasets when the datasets are
synthesized with DataSynthesizer in the independent attribute mode. Whereas
on the annthyroid dataset this mode shows the worst results among the other
synthetic datasets, it achieves the best F2 score of all synthesisers on the credit
card dataset. This might be caused by the nature of the features in this dataset,
which are obtained via PCA, a dimensionality reduction technique.

5 Conclusion

Data privacy tries to balance non-disclosing management of sensitive data, while
also preserving data utility. Synthetic data generation is one method that re-
cently gained a lot of attention, and has shown to exhibit high utility for several
tasks. In this paper, we used multiple metrics to to assess the application fidelity
of existing synthetic data creation strategies on datasets from the financial and
health domain. We used state-of-the-art synthetic data generators for synthesiz-
ing the dataset; due to highly unbalanced datasets we applied several sampling
approaches. Moreover, supervised, unsupervised and semi-supervised anomaly
detection methods were used.

The results reveal that Synthpop overall outperforms the other synthetic
data generators. As a guideline, it is thus a good overall choice to employ. In
a few cases, especially on some of the supervised classifiers on the credit card
data, the SDV outperformed Synthpop, though. Further, in the semi- and unsu-
pervised settings on the same dataset, the DataSynthesizer yielded substantially
better results. These might both correlate with the specific nature of most of
the variables in this dataset. Thus, the best choice without any prior knowl-
edge still remains Synthpop; however, if possible, a wider range of synthesizers
should be tested before deciding on a specific approach, to account for particular
attributes, distributions and correlations within a dataset.

Moreover, we have seen that XGB, Adaboost, and RandomForest outper-
form the other supervised approaches in our datasets, whereas Isolation Forest
outperformed the other unsupervised techniques we used. For semi-supervised
settings, the AutoEncoder was the best choice, and should be utilised first. While
these two are thus recommended as guidelines for the semi- and unsupervised
settings, for the supervised methods, we can generally recommend ensemble-
based techniques as the ones mention above, of which in particular XGB was
most successful in our evaluation.

Future work will focus on generalising our results beyond our current eval-
uation, in particular by addressing further datasets. Also other synthetisation
methods, e.g. based on Generative Adversarial Networks (GANs), will be con-
sidered.
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A Appendix: Additional Results

A.1 Credit Card dataset results

Tables 8 and 9 show the precision respectively recall for semi-supervised and
unsupervised techniques on original and synthetic datasets, whereas Tables 12
and 13 show the precision respectively recall for supervised methods.

A.2 Annthyroid dataset results

Tables 10 and 11 show the precision respectively recall for semi-supervised and
unsupervised techniques on original and synthetic datasets, whereas Tables 14
and 15 show the precision respectively recall for supervised methods.

Table 8. Credit Card: semi- & unsupervised results, precision

dataset Real SDV DS-Corr. DS-Ind. SP Avg
method

AutoEncoder 20.3 15.3 26.7 36.5 20.3 23.8
GMM 15.4 12.9 17.4 33.3 18.2 19.5
Isol.Forest 3.9 4.2 8.4 40.8 3.5 12.2
LOF 0.4 2.4 11.1 11.7 0.8 5.3
1-ClassSVM 0.3 0.4 0.9 1.2 0.3 0.6

Avg 8.1 7.0 12.9 24.7 8.6

Table 9. Credit Card: semi- & unsupervised results, recall

dataset Real SDV DS-Corr. DS-Ind. SP Avg
method

AutoEncoder 60.2 60.2 61.2 63.3 62.2 61.4
GMM 49.0 59.2 66.3 61.2 49.0 56.9
Isol.Forest 81.6 79.6 83.7 29.6 84.7 71.8
LOF 14.3 85.7 41.8 81.6 13.3 47.3
1-ClassSVM 96.9 95.9 93.9 91.8 96.9 95.1

Avg 60.4 76.1 69.4 65.5 61.2
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Table 10. Annthyroid: semi- & unsupervised results, precision

dataset Real SDV DS-Corr. DS-Ind. SP Avg
method

AutoEncoder 14.0 10.7 10.6 10.5 14.5 12.0
GMM 7.4 7.4 7.4 7.4 7.4 7.4
Isol.Forest 15.5 13.3 10.4 10.3 16.0 13.1
LOF 18.1 12.0 9.0 21.6 21.4 16.4
1-ClassSVM 9.1 8.8 8.9 9.2 9.0 9.0

Avg 12.8 10.4 9.3 11.8 13.7

Table 11. Annthyroid: semi- & unsupervised results, recall

dataset Real SDV DS-Corr. DS-Ind. SP Avg
method

AutoEncoder 65.4 72.0 59.8 80.4 55.1 66.5
GMM 100 100 100 100 100 100
Isol.Forest 8.4 20.6 4.7 3.7 7.5 9.0
LOF 17.8 28.0 6.5 7.5 20.6 16.1
1-ClassSVM 58.9 28.0 57.0 32.7 59.8 47.3

Avg 50.1 49.7 45.6 44.9 48.6

Table 12. Credit Card: supervised results, precision (ROS: random oversampling, RUS:
random undersampling, SM: SMOTE sampling)

dataset Real SDV DS-Corr. SP
sampl. No ROS RUS SM No ROS RUS SM No ROS RUS SM No ROS RUS SM Avg

AB 87.8 32.6 2.8 25.9 67.5 29.6 4.1 57.7 52.0 17.1 4.1 4.2 69.2 11.0 2.2 7.9 29.7
GNB 5.9 5.2 3.7 5.8 18.5 0.2 0.9 0.0 32.0 14.8 15.2 14.7 5.2 4.6 3.1 4.5 8.4
KNN 84.9 68.6 6.4 46.6 75.0 10.0 0.7 0.7 80.4 28.8 1.3 2.6 75.8 40.7 5.3 21.7 34.3
LSVC 84.0 7.0 1.6 8.5 74.8 33.9 22.3 35.6 75.0 7.3 8.8 8.1 81.7 3.7 3.3 3.7 28.7
LR 83.1 6.1 3.3 13.6 72.1 31.9 22.5 34.5 56.1 6.3 7.6 7.3 71.1 3.2 2.9 5.7 26.7
RF 94.3 95.1 4.5 82.7 71.7 0.0 1.4 0.9 66.7 100.09.6 75.0 80.9 81.1 2.5 60.6 51.7
XGB 94.0 89.0 3.3 85.0 74.8 78.6 2.0 76.5 63.0 66.3 4.0 61.4 84.1 77.0 2.7 57.9 57.5

Avg 76.3 43.4 3.7 38.3 64.9 26.3 7.7 29.4 60.7 34.4 7.2 24.8 66.9 31.6 3.1 23.1

Table 13. Credit Card: supervised results, recall (ROS: random oversampling, RUS: random
undersampling, SM: SMOTE sampling)

dataset Real SDV DS-Corr. SP
sampl. No ROS RUS SM No ROS RUS SM No ROS RUS SM No ROS RUS SM Avg

AB 80.6 87.8 90.8 86.7 80.6 80.6 86.7 80.6 52.0 82.7 87.8 68.4 73.5 91.8 90.8 87.8 81.8
GNB 84.7 87.8 87.8 87.8 71.4 90.8 82.7 4.1 84.7 86.7 86.7 80.6 84.7 87.8 84.7 87.8 80.0
KNN 74.5 82.7 86.7 83.7 6.1 23.5 84.7 31.6 45.9 17.3 66.3 39.8 70.4 62.2 85.7 76.5 58.6
LSVC 80.6 91.8 94.9 90.8 81.6 81.6 81.6 81.6 24.5 89.8 87.8 89.8 59.2 90.8 92.9 91.8 82.0
LR 65.3 91.8 91.8 89.8 81.6 81.6 81.6 81.6 37.8 89.8 88.8 89.8 55.1 92.9 92.9 89.8 81.4
RF 83.7 78.6 90.8 82.7 33.7 0.0 86.7 1.0 49.0 3.1 89.8 24.5 73.5 74.5 91.8 81.6 59.1
XGB 80.6 82.7 91.8 86.7 81.6 78.6 85.7 79.6 34.7 56.1 88.8 63.3 75.5 78.6 92.9 82.7 77.5

Avg 78.6 86.2 90.7 86.9 62.4 62.4 84.3 51.5 46.9 60.8 85.1 65.2 70.3 82.7 90.2 85.4

https://orcid.org/0000-0002-5008-6856
mailto:rmayer@sba-research.org
https://orcid.org/0000-0003-0424-5999


An Empirical Analysis of Synthetic-Data-based Anomaly Detection 23

Table 14. Annthyroid: supervised results, precision(ROS: random oversampling, RUS: ran-
dom undersampling, SM: SMOTE sampling)

dataset Real SDV DS-Corr. SP
sampl. No ROS RUS SM No ROS RUS SM No ROS RUS SM No ROS RUS SM Avg

AB 95.5 95.5 91.5 93.8 100.064.4 18.0 37.6 83.3 22.1 14.8 27.5 92.2 90.7 82.9 89.2 68.7
GNB 10.4 9.4 9.1 9.6 7.5 7.6 37.0 7.7 25.0 10.3 10.6 9.2 37.8 10.2 10.2 9.0 13.8
KNN 93.0 35.0 21.9 28.7 0.0 26.5 12.0 18.1 77.3 17.9 14.2 15.6 89.2 32.0 20.0 29.0 33.1
LSVC 90.2 45.7 38.4 31.9 0.0 16.4 24.1 21.8 90.9 37.4 27.9 35.7 83.3 73.0 61.0 47.7 45.3
LR 90.3 78.1 67.8 79.3 0.0 21.6 25.1 21.5 83.3 35.8 28.6 35.3 87.5 77.2 73.6 82.5 55.5
RF 97.2 96.4 87.7 96.4 0.0 0.0 27.6 53.7 85.7 81.0 18.0 48.6 95.5 95.5 82.3 95.5 66.3
XGB 97.2 96.4 87.0 96.4 0.0 83.3 23.2 38.3 76.9 73.3 15.3 41.3 94.5 94.6 85.6 95.5 68.7

Avg 82.0 65.2 57.6 62.3 15.4 31.4 23.8 28.4 74.6 39.7 18.5 30.4 82.9 67.6 59.4 64.1

Table 15. Annthyroid: supervised results, recall (ROS: random oversampling, RUS: random
undersampling, SM: SMOTE sampling)

dataset Real SDV DS-Corr. SP
sampl. No ROS RUS SM No ROS RUS SM No ROS RUS SM No ROS RUS SM Avg

AB 99.1 99.1 100.098.1 2.8 27.1 77.6 65.4 28.0 58.9 68.2 59.8 100.0100.0100.0100.074.0
GNB 94.4 96.3 94.4 96.3 91.6 91.6 41.1 91.6 29.0 66.4 80.4 85.0 66.4 96.3 95.3 94.4 81.9
KNN 37.4 64.5 76.6 72.9 0.0 8.4 72.9 28.0 15.9 34.6 62.6 48.6 30.8 51.4 66.4 62.6 45.9
LSVC 51.4 99.1 78.5 95.3 0.0 66.4 79.4 62.6 9.3 63.6 67.3 61.7 56.1 93.5 87.9 86.9 66.2
LR 60.7 100.094.4 100.00.0 60.7 74.8 60.7 18.7 64.5 67.3 61.7 58.9 98.1 99.1 97.2 69.8
RF 99.1 99.1 100.099.1 0.0 0.0 90.7 20.6 28.0 31.8 70.1 47.7 99.1 99.1 100.0100.067.8
XGB 98.1 99.1 100.099.1 0.0 4.7 85.0 21.5 28.0 30.8 68.2 48.6 97.2 98.1 100.0100.067.4

Avg 77.2 93.9 92.0 94.4 13.5 37.0 74.5 50.1 22.4 50.1 69.2 59.0 72.6 90.9 92.7 91.6
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