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ABSTRACT
Over the past few years, deep learning has been dominating the
field of machine learning in applications such as speech, image, and
text recognition, which lead to an increased use of deep learning
techniques in safety-critical tasks. However, Neural Networks are
vulnerable to adversarial examples, i.e. well-crafted small pertur-
bations of the input that aim to disturb the prediction correctness.
Therefore, robustness and security of deep learning models has
become a major concern, indirectly also affecting safety.

In this paper, we therefore evaluate several state-of-the-art white-
and black-box adversarial attacks against Convolutional Neural Net-
works for image recognition, for various attack targets. Further,
defences such as adversarial training and pre-processors are eval-
uated. Moreover, we investigate whether combinations of them
can improve these defences. Finally, we examine whether attack-
agnostic robustness scores such as CLEVER are able to correctly
estimate the robustness against our large range of attack.

Our results indicate that pre-processors are very effective against
attacks with adversarial examples that are very close to the original
images, that combinations can improve the defence strength, and
that CLEVER is insufficient as the sole indicator of robustness.
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1 INTRODUCTION
With increases in performance of machine learning (ML), primarily
fuelled by deep learning (DL), in modalities such as speech, image,
and text, and their practical significance, these techniques are also
increasingly employed in critical settings. For example, convolu-
tional neural networks (CNNs) are used e.g. to recognise road signs.
As ML is employed in an increasing number of systems involved
in potentially autonomous decision making, the robustness and
security of ML models becomes of concern: autonomous vehicles
failing to recognise a STOP sign could result in major incidents, and
ML system thus indirectly also affect safety. In recent years, several
methods to successfully attack ML processes were demonstrated.

In this paper, we address evasion attacks such as adversarial ex-
amples. Here, the attacker manipulates the test data (at prediction
time) by applying (minor) perturbations, with the goal of maximis-
ing the error. In many cases, these modifications are so subtle that
a human observer does not notice them, but the model still makes
mistakes. Even worse, the attacked model usually reports high con-
fidence for the wrong prediction. It has been shown that many DL
techniques are vulnerable to evasion attacks, sometimes even if the
adversary has no access to the underlying model.

On the other hand, a number of defences have been proposed to
mitigate the success of evasion attacks. Some techniques are based
on pre-processing the inputs, with the aim to remove or disturb the
perturbations, while aim to train the learned model to be aware of
potential attack patterns. Only few mechanisms can defend against
multiple attack types, which leads to the idea to combine them.

To measure the robustness of a model against adversarial attacks
is of great interest, as that allows to estimate potential risks upfront.
One such metric, CLEVER, is attack-agnostic, i.e. it should gener-
alise to a range of attacks and predict the robustness. However,
there is still a lack of an in-depth evaluation of this correlation.

Our contributions in this paper are as follows.
• We provide an in-depth evaluation of several attacks, on
various datasets and against different CNN architectures

• We evaluate multiple attack target settings: untargeted, least
likely class, and "next" class (i.e. next higher index)

• We compare existing defences, and combine them in various
ways to achieve a better protection of the models

• Wemeasure the robustness estimation of the CLEVERmetric

Threat model. We define the attacker’s goal, knowledge, and
capabilities mainly based on the discussion by Biggio and Roli [1].

The attacker’s goal is defined in the following terms.
Security violation: the attacker aims to cause either an integrity
violation, i.e. to evade detection without compromising normal
system operation, or an availability violation, i.e. to compromise
the normal system functionalities available to legitimate users.
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Attack specificity: targeted attacks aim to cause the model to mis-
classify a specific set of samples (e.g. a given user), while untargeted
attacks aim to misclassify any sample. We consider both variants.
Error specificity: we consider the attacker both aiming to misclassify
a sample to a specific class, and to any of the non-true classes.

The attacker’s knowledge of the targeted system can include
knowledge on e.g. the training data, the feature representation,
the learning algorithm along with the objective function, and the
learned parameters. We can distinguish the following cases. In
a white-box setting, the attacker is assumed to know everything,
while a black-box setting means that attacker knows nothing about
the targeted system; grey box is any setting in between. We focus
primarily on white-box attacks, for two reasons. First, white box
is harder to defend against – if CNNs can be protected against an
attacker with complete knowledge, then they can likely be protected
in the same way and (at least) to the same degree when the attacker
knows less. Secondly, Papernot et al. [14] showed that one can
train a substitute model given black-box access to a target model,
and transfer an attack on this back to the target model. Thus, they
transform an originally black- into a white(r)-box setting.

Attacker’s Capability. In terms of the influence on the data,
adversarial examples are an exploratory attack, i.e. the attacker
can only manipulate test data (also known as evasion attack). In
contrast, in a causative attack, the attacker can manipulate both
training and test data (commonly known as poisoning attacks).
We require no specific data manipulation constraints, except the
resulting inputs to be still valid.

This paper is organised as follows. Section 2 discusses related
work. Section 3 describes our evaluation setup, and Section 4 dis-
cusses our results. We conclude and discuss future work in Section 5.

2 RELATEDWORK
Adversarial Example Generation. Szegedy et al. [19] first no-

ticed the existence of adversarial examples in image classification,
showing that state-of-the-art neural networks (NN) are surprisingly
vulnerable. Several further methods to craft adversarial examples
were subsequently proposed. Many methods assume white-box
access, including to the architecture and learned parameters.

The Fast Gradient Sign Method (FGSM) [8] is a popular attack,
as it is capable of crafting adversarial examples with relatively
small perturbation fast. It is optimised for the 𝐿∞ norm as distance
metric to quantify the similarity between original and adversarial
samples. Intuitively, for each pixel, FSGM uses the gradient of the
loss function to determine in which direction the pixel’s intensity
should be changed (increased or decreased) to minimise the loss. A
parameter 𝜖 determines the strength of the change.

FGSM was designed to be rather fast than optimal. Since then,
many improvements were introduced, to defeat proposed defences.
As such, the Basic Iterative Method (BIM) [10], replaces the single
step of size 𝜖 in the direction of the gradient sign with multiple
smaller steps 𝛼 . Additionally, the result is clipped by the same 𝜖 .

ProjectedGradient Descent (PGD) [11] is another iterativemethod
where the perturbation is projected on an 𝑙𝑝 -ball of specified radius
after each iteration. This is done in addition to clipping, to ensure
that the samples lie in the permitted data range. PGD is formulated
as a constraint optimisation problem to find a perturbation that

maximises the loss function used to train the CNN model, while
the perturbation stays inside the 𝐿𝑝 ball of the original sample.

Instead of solving the constrained optimisation problem of PGD,
the Shadow attack [7] optimises a range of components, which
(i) force the perturbation to have a small total variation to appear
smooth and natural, (ii) limit the perturbation globally by constrain-
ing the change in the mean of each colour channel to suppress ex-
treme changes, and (iii) promote perturbations that assume similar
values in each colour channel, which results in making the pixels
darker/lighter without changing the colour balance of the image.
The penalties minimise the perception of perturbations, while at the
same time, they allow perturbations that are very large in 𝐿𝑝 -norm.

Carlini and Wagner (CW) attacks [3] find an adversarial trans-
formation for an input that minimises the difference between the
original and perturbed image, but changes the classification of that
input, while the result is still a valid image. This is difficult to solve
directly, and thus the problem is reformulated as a heuristic opti-
misation. Empirically, an objective function was found, which is
adjusted for the specific metric (𝐿1, 𝐿2 or 𝐿∞). For the latter, the
distance metric is not fully differentiable and standard gradient
descent does not perform well for it, which is resolved by using an
iterative attack. CW incurs large computational overhead.

While the above-mentioned attacks create a perturbation specific
to one single input, a universal perturbation ([12]) is able to fool a
model on most inputs, always with the same perturbation. These
input-agnostic perturbations are generally larger, but still remain
quasi-imperceptible. The perturbation is desired to be small in
terms of the 𝐿𝑝 norm, with 𝑝 ∈ [1,∞)). One parameter controls the
magnitude of the perturbation, and a second parameter specifies
the desired fooling rate for all images. Universal perturbations often
generalise well across different models and thus result in universal
perturbations that are both image- and model-agnostic.

HopSkipJump [4] is a black-box attack based on a novel estimate
of the gradient direction using binary information at the decision
boundary. The algorithm is iterative, and can perform untargeted
and targeted attacks. HopSkipJump requires fewer queries than
other decision-based attacks, e.g. the Boundary Attack [2].

Adversarial Defences. Adversarial examples are hard to defend
against. A theoretical solution to the process of generating adversar-
ial examples is difficult to construct, as many attacks are non-linear
and non-convex optimisation problems. Thus, it is equally hard to
derive any theoretical conclusions that a given defence improves
robustness against adversarial examples. Further, if a defence mech-
anism makes a considerable modification to the model or input, it
may affect the ability to correctly predict legitimate, unmodified
inputs. Robustness could thus be at the cost of the effectiveness.
Finally, most current defence strategies are defending against a spe-
cific attack, but might be still vulnerable to other types of attacks.

Current defences can be categorised as follows [13]. Detectors
attempt to detect the perturbations added to inputs. For example,
the Fast Generalized Subset Scan [18] adapts the subset scanning
methods from the anomalous pattern detection. Preprocessors
modify the input to the model, to remove or at least disturb the
perturbation. Trainers re-train the model so that it is more ro-
bust to adversarial samples, by adding adversarial examples crafted
by the defender to the training set. Transformers also perform



model (re-)training, but often also introduce a change to the model
architecture, e.g. via Defensive Distillation [15].

We focus primarily on preprocessors and adversarial training.
They are well suited for combination, and currently state-of-the-
art. At the moment of publication, the authors of [15] believed
distillationwould counter all attacks, mainly because it was believed
that the reason adversarial examples exist is due to “blind spots“ (as
Szegedy et al. [19] call them) in highly non-linear neural networks.
However, the CW attacks [3] showed that this is incorrect – they
can achieve a 100 % success rate also on distilled models.

Preprocessors. Spatial Smoothing is part of the approach called
Feature Squeezing by Xu et al. [23]. The core assumption is that the
input space in image recognition tasks are often very large, and thus
provide a lot of freedom to craft adversarial examples. The goal is to
limit this by “squeezing“ out unnecessary input features. After the
original input is preprocessed, both the original and preprocessed
inputs are given to the model to classify. If the predictions differ
significantly, the input is regarded as an adversarial example. Local
smoothing methods make use of the nearby pixels to smooth each
pixel, e.g. via median smoothing (or blur or filter), where the centre
pixel of a sliding window is replaced with the median value of is
neighbours. The size of thewindow can be defined from 1 pixel to up
to the image size, whereas the shape is square. Median smoothing
is particularly effective at removing sparsely occurring black and
white pixels in an image (known as "salt-and-pepper noise"), whilst
preserving edges of objects well. [23] empirically shows that it
performs especially well against attacks based on the 𝐿0 norm.

JPEG (re-)compression [6] is inspired by the fact that most image
classification datasets are JPG compressed. When a JPEG image is
transformed into an adversarial example, it may no longer be in
JPEG space – thus, re-compression might revert the perturbation.
This has been shown to be true for small perturbations, but not if the
adversarial perturbations are larger – a result not promising, as even
larger perturbations are still barely visible to humans. However,
this defence can be easily combined with others. We speculate that
such a combination may increase the strength of the defence.

Guo et al. [9] proposed Total Variance Minimisation (TVM), a
compressed sensing approach 1 that combines pixel dropout with
total variation minimisation [16]. The technique randomly selects a
small set of pixels and reconstructs an image that is consistent with
the selected pixels. As adversarial perturbations are usually small
and localised, the reconstructed image is not adversarial anymore.

Wang et al. [20] argue that a strong input-transformation de-
fence should be non-differentiable and randomised. TVM fulfils
both properties – it is difficult to differentiate because it involves a
complex minimisation of a function that is inherently random, and
it randomly selects the pixels used for reconstruction. Randomness
is important as it implies that the adversary has to find a pertur-
bation that changes the prediction for the entire dataset, which is
harder than attacking a single image as shown in [12].

The authors note that (i) TVM has an advantage over adversarial
training, as the latter are differentiable, and (ii) adversarial training
is based on the specific adversarial attack(s) selected, whereas TVM
generalises well across different adversarial attacks.

1A signal processing technique for efficiently acquiring and reconstructing a signal

Adversarial Training. This approach generates adversarial exam-
ples and includes them into the training set, so that the classifier
learns the adversarial patterns. One important aspect is the choice
of the attack; initially FGSM was preferred, mainly because of its
speed and the fact that many adversarial attacks are extensions and
generalisations of FGSM. However, Madry et al. [11] showed empiri-
cally that using FGSM does not increase robustness for large 𝜖 . They
assume this is due to the model easily overfitting the generated
adversarial examples, as the adversary produces a very restricted
set of these. Moreover, it does not exhibit any kind of robustness
against PGD – which they propose to use instead. This defence has
remained very robust since, but comes at a large computational
overhead, often by an order of magnitude, as adversarial examples
are generated in each training step and for all samples in the batch.

Using PGD for more complex architectures is thus prohibitive,
as training the network itself is already computational expensive.
Shafahi et al. [17] thus proposed recycling the gradient computed
when updating model parameters to eliminate the overhead of
generating adversarial examples. Their so-called "free" adversarial
training algorithm achieves robustness comparable to [11].

Wong et al. [22] showed empirically that adversarial training
using FGSM with random initialisation is as robust as using PGD.
Adversarial training with FGSM with random initialisation com-
bined with techniques for efficient training is significantly faster
than [17]; they thus call their method "fast is better than free".

Adversarial RobustnessMetrics. CLEVER [21] (CrossLipschitz
ExtremeValue for nEtworkRobustness) is a robustness metric that
is computationally feasible for large neural networks. CLEVER can
be seen as an attack-agnostic, efficient estimator of the lower bound
for the minimum distortion. The authors showed that the CLEVER
score corresponds to the practical robustness indication of several
state-of-the-art architectures, even when a defence mechanism is
deployed. The score requires the Lipschitz constant 𝐿𝑞 , which can
be computed through sampling a set of points in a ball around a
sample and taking the maximum value of the gradient. A signifi-
cant amount of samples might be needed to obtain a good estimate.
However, extreme value theory ensures that the maximum value
of random variables can only follow one of the three extreme value
distributions, which is useful to estimate the maximal gradient with
only a tractable number of samples.

3 EVALUATION SETUP
Based on the datasets used in related work on adversarial attacks
and defences, we have selected CIFAR-10 and ImageNet as two
datasets that are (i) commonly used and (ii) more complex.

CIFAR-10 2 consists of 6,000 examples for each of its 10 classes.
The images are split into 50,000 training and 10,000 test images. Each
image has dimensions of 32×32 pixels. To be comparable to current
state-of-the-art, we use the ”PreAct“ version of ResNet18 [22] (”PA-
ResNet18 “) and an adversarially trained version of it (”AdvTrn-PA-
ResNet18 “). We use “faster is better than free“ adversarial training
[17], which uses PGD to generate adversarial examples.

ImageNet3 is a large image dataset organised along the “syn-
onym set“ (“synset“) concepts of theWordNet hierarchy. We use the
2https://www.cs.toronto.edu/~kriz/cifar.html
3https://image-net.org/
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subset from the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), containing 1.28 million training images. We use three
state-of-the-art pre-trained CNN models: MobileNetV2, ResNet-50,
and InceptionV3. These models vary in complexity (24, 3.4, and 23
million learnable parameters) and effectiveness. They were selected
to evaluate how different architectures affect attacks and defences.

For both datasets, we randomly select 1,000 images from the test
set for generating adversarial examples and attacking the models.

Due to their diversity, strength, and importance, we use the
following adversarial attacks: Auto-PGD [5], Carlini and Wagner
𝐿2 and 𝐿∞ [3], FGSM [8], HopSkipJump [4], Shadow attack [7] and
Universal Perturbations [12].

We calculate the success of an attack by the percentage of the
successfully attacked inputs. An image is successfully attacked if (i)
in the targeted setting the classifier predicts the targeted class, or
(ii) in the untargeted setting if the classifier predicts any class other
than the original. In line with literature, we evaluate attacks only on
the portion of the test set that was correctly predicted by the model.
We also calculate the (dis)-similarities of original to adversarial
images, by measuring their 𝐿2 and 𝐿∞ pixel-wise distances.

As defences, we use the “fast is better than free“ adversarial
training [22], and three pre-processing defensive techniques: spatial
smoothing [23], JPEG compression [6], and Total Variance Min-
imisation [9]. These defence techniques are commonly used in the
research as benchmarks for how strong the adversarial attacks are,
as well as for evaluating other adversarial defences. We compute
the change in the success rates of the attacks on the classifiers that
use the defences, and the change in effectiveness of these model on
their initial (classification) task. Additionally, we combine defences
and evaluate if this improves the robustness of the classifier. We
exhaust all different combinations. We use the implementation of
attacks and defences from the Adversarial Robustness Toolbox [13].

4 EVALUATION
In terms of runtime, on CIFAR-10, all attacks needed approximately
1 second per image, except CW 𝐿2, which took 15 fold of that.
On Imagenet, again 1 second per image was needed, except for
HopSkipJump with 3, CW 𝐿∞ with 19, Universal Perturbations
with 134, and CW 𝐿2 with 234 seconds.

4.1 Baseline without pre-processing defence
CIFAR-10. PA-ResNet18 performs slightly better on the original

(clean) data, but is more affected by adversarial examples than
AdvTrn-PA-ResNet18 in all settings, as shown in Figure 1. This
is in line with [22] reporting a drop of ≈ 30% in attack success
when defending. The exceptions are Auto-PGD and CW 𝐿∞ in
the targeted settings, where the success rates increase against the
defended model; [22] does not evaluate these two attacks, but our
observation indicates that against them, this defence might not be
robust. These attacks require, however, a perturbation larger than
most other attacks to be succesful, thus the success comes at the
cost for the attacker; only ShadowAttack has a higher 𝐿2 distance.

In general, across all attacks and all settings, attacks had to
modify images much more for them to be adversarial against ad-
versarially re-trained than against the original model. As expected,
the untargeted setting is the easiest for most attacks.

(a) Targeted,
least-likely
class

(b) Targeted,
next class

(c) Untar-
geted

Figure 1: CIFAR 10: Attack success and 𝐿2 distances

CW 𝐿2 attack has very low success rates in both targeted settings
against AdvTrn-PA-ResNet18, while it has about 60 % success rate
against the original model. HopSkipJump has managed to bypass
the adversarial training defense in the untargeted settings, scoring
90.12% success rates, but with a high 𝐿2 distance.

Rgarding thet 𝐿2 (dis)-similarities, CW 𝐿2 and 𝐿∞ introduced
only small changes against the original model, but achieve almost
perfect success rates in all target settings. Auto-PGD modified the
images three times more just to achieve a similar success rate in
the target settings. On the other hand, the Shadow attack, despite
causing the highest modifications, achieved low success rates in
the targeted settings, even on the original model.

ImageNet. Figure 2 shows that in all settings, the evaluated
attacks exhibit (slightly) lower success against InceptionV3 than
against MobileNetV2 and ResNet-50. We speculate that this is due
to InceptionV3 being a more complex model with more parameters.
While this behavior is less apparent in the other two, it is quite
obvious in the targeted least likely class setting with CW attacks.
With relatively similar 𝐿2 distances between adversarial and origi-
nal images, both CW 𝐿2 and 𝐿∞ attacks have scored 80+ % success
rates against MobileNetV2 and ResNet-50, whereas InceptionV3 re-
mained fairly robust with very low success rates of 7.27% and 22.2%
respectively. Interestingly, the other attacks in the targeted least
likely class setting have been unsuccessful, which highlights the
strength of the CW attack.

Another obervation is that it is hard to successfully attack a
specific class such that the pertubations are minimal, which holds
also for the targeted next class setting (albeit with slighty higher
success rates than the leasty-likely class). We speculate that the
reason for this could be the fact that in the 1,000 classes in ImageNet,
some are semantically closer to each other, e.g. ”pan“ and ”wok pan“
– attacks that have a similar class as next class would be expected
to be easier targets than the likely more distant least likely class.

All untargeted attacks have high success against all models; in
particular, Auto-PGD, CW, HopSkipJump, and Universal Perturba-
tions score 80+ % success rates. The Shadow attack had to generated
much larger perturbations on InceptionV3 compared to the other



(a) Targeted,
least-likely
class

(b) Targeted,
next class

(c) Untar-
geted

Figure 2: ImageNet: Attack success and 𝐿2 distances

models, but still scored a much lower success rate (40% vs. >80%),
which indicates that InceptionV3 is more robust against this attack.

The 𝐿2 distances are low for CW, FGSM and Universal Pertur-
bations. The Shadow attack is the weakest, as it scored the lowest
success rates while generating the largest perturbation.

4.2 Pre-processing against targeted attacks
CIFAR-10. The trends and observations when targeting the next

class are very similar as for the least likely case, and we focus
on that setting thus. The perhaps most important observation is
that all defense scenarios reduce the success of all attacks, except
Auto-PGD on AdvTrn-PA-ResNet18 (cf. Figure 3). The reductions
are similar to adversarially training alone, except for Auto-PGD
and CW 𝐿∞; those successfully broke adversarial training, but the
pre-processing defenses have much better success. For example,
Auto-PGD and CW 𝐿∞ have scored only about 2% success rate
against PA-ResNet18 and Total Variance Minimization (TVM).

The combination of adversarial training and pre-processing has
reduced success rates of most attacks to single digits. Most inter-
estingly, CW 𝐿∞ was reduced significantly, from 87.7% to e.g. 3.7%
with all pre-processing defenses combined. For Auto-PGD, however,
only TVM managed to reduce the success, from 89.4% to 15.5%.

One can observe that when two or more pre-processing defenses
are combined (e.g. JPEG and TVM in Figure 3d), the 𝐿2 metric
differences became larger than when pre-processing with only one
defense. This, however does not translate to higher success rates of
the attacks; thus, the combinations are beneficial for the defender.
Overall, most combinations perform similar.

ImageNet. The Auto-PGD, FGSM, HopSkipJump, and Shadow
attacks had already almost no success, thus virtually no further
reduction was possible. The thus most interesting case for the least-
likely target class is CW, which had high success rates against
MobileNetV2 and ResNet-50 (cf. Figure 2). Pre-processing works
very well, and reduces the attack to almost zero success. Overall, all
defences are rather equal, and as example, we show Spatial Smooth-
ing (SS) in Figure 4. Only CW 𝐿∞ against JPEG Compression scored

(a) Spatial
Smooth-
ing

(b) TVM

(c) JPEG

(d) JPEG +
TVM

Figure 3: CIFAR-10, least-likely class against against de-
fences: Attack success and 𝐿2 distances

Figure 4: ImageNet, targeted least-likely class, Spatial
Smoothing defence: Attack success and 𝐿2 distances

Figure 5: CIFAR-10, untargeted, JPEG Compression defence:
Attack success and 𝐿2 distances,

marginally sucessful, with 16.6% on ResNet-50, 6.2% onMobileNetV2
and 2.22% on InceptionV3.

Pre-processing in the next-class setting is only slightly worse
than for the least-likely class setting. As above, we speculate that
this correlates with the similarities of some classes in ImageNet.

4.3 Pre-processing against untargeted attacks
CIFAR-10. As the untargeted setting allows for any misclassifica-

tion, higher success rates are achieved, as we saw also in Section 4.1.
Unlike the targeted setting, the combination of adversarial train-

ing and TVM fails in at least 20% of adversarial images. For example,
Auto-PGD has a success rate of 4.6% for targeted next class, but 74.2%
in the untargeted setting. However, compared to the baseline results,
we notice an overall great reduction in success on PA-ResNet18.



Figure 6: ImageNet, untargeted, Spatial Smoothing + JPEG
Compression defence: Attack success and 𝐿2 distances

Adversarial training, however, did not lead to a significant fur-
ther sucess reduction – in average only by 10-20%. FGSM, e.g., is
still successful with 30.8% against AdvTrn-PA-ResNet18 and TVM.
ShadowAttack remained strong against pre-processing. The highest
success rate against PA-ResNet18 is 79.3 %, whereas with the adver-
sarially trained model it is 23.1 %, both with JPEG Compression.
A noteworthy improvement of the defense was recorded with the
combination of Spatial Smoothing and JPEG Compression, which
managed to reduce the success rate of the ShadowAttack on the
AdvTrn-PA-ResNet18 model to 3.6 %.

ImageNet. Also here, the untargeted setting is the most difficult
to defend against. Spatial Smoothing has the most success against
CW attacks, HopSkipJump and Universal Perturbations. The adver-
sarial images generated with these attacks also have the lowest 𝐿2
distances, which indicates that the fewer modification the attack
introduces, the easier it is for a pre-processing defense to correct
the classification. On the other hand, Spatial Smoothing had less
success against FGSM, and almost no efect against Auto-PGD and
Shadow Attack. The adversarial images generated with the latter
two have the highest 𝐿2 distance, supporting our assumption.

JPEG Compression only managed to reduce the success rates on
average to 50 %, which means that still half of the attacks succeed.
Besides, the trends for which attacks were stronger or weaker
against this defense are similar as in the case of Spatial Smoothing.

Unlike SS, TVMwas able to reduce the success rate of Auto-PGD,
but was in turn less successful against HopSkipJump and Universal
Perturbations, and equally well against CW.

The combination of SS and TVM defendes less than the defenses
individually, though it increases the 𝐿2 distances significantly. This
is most pronounced for CW attacks, which in other scenarios had
very low 𝐿2 distances. Other combinations also notably increase the
𝐿2 distances, and are equal or even further reduce the attack success
than individual defences; a good example is the combination of SS
and JPEG Compression shown in Figure 6.

To summarise, pre-processing defenses indeed reduce the success
rates of most attacks significantly, however, they are less effective
against untargeted attacks. Further, attacks that generate more
distant adversarial images are more robust against pre-processing.

4.4 CLEVER scores
CIFAR-10. Table 1 shows the CLEVER scores against CW 𝐿2 as

a representative example. On the baseline case (no defences) and
the least-likely class setting, AdvTrn-PA-ResNet18 scored a higher
CLEVER score w.r.t 𝐿2 norm than PA-ResNet18, which is in line
with success rates of the CW 𝐿2 as discussed in Figure 2. However,
the score of (the undefendend) PA-ResNet18 is one of the highest
overall, which would indicate that the model would be more robust

Table 1: CLEVER scores on CIFAR-10 against C&W 𝐿2

CLEVER norm 𝐿2 CLEVER norm 𝐿∞

least likely next class untargeted least likely next class untargeted

PA
-R

es
N
et
18

No defences 0.11729 0.12792 0.11187 0.00252 0.00286 0.00295
SS 0.02599 0.02626 0.0236 0.00071 0.00072 0.00072

JPEG 0.04642 0.06952 0.04384 0.00149 0.00186 0.0012
TVM 0.00399 0.01235 0.01937 0.0000 0.00013 0

SS + JPEG 0.00558 0.00574 0.00609 0.0002 0.00018 0.00023
SS + TVM 0.00593 0.0219 0.00337 0.00027 0.00101 0.00013

SS + JPEG + TVM 0.0118 0.01104 0.00387 0.00043 0.00043 0.00015
JPEG + TVM 0.05579 0.04603 0.03179 0.00136 0.001 0.00135

A
dv

Tr
n-
PA

-R
es
N
et
18 No defences 0.15272 0.05773 0.00132 0.00338 0.00304 5e-05

SS 0.02314 0.00647 0.01898 0.00072 0.00017 0.00058
JPEG 0.04138 0.02351 0.0007 0.00306 0.0008 3e-05
TVM 0.01287 0.01305 0.01225 0.00012 0.00027 0.00042

SS + JPEG 0.00552 0.02028 0.0082 0.00021 0.0008 0.00032
SS + TVM 0.0267 0.01433 0.00719 0.00079 0.00078 0.00033

SS + JPEG + TVM 0.00338 0.00204 0.02905 9e-05 8e-05 0.00116
JPEG + TVM 0.05983 0.0345 0.02796 0.002 0.00178 0.00097

Table 2: CLEVER scores on ImageNet against FGSM

CLEVER norm 𝐿2 CLEVER norm 𝐿∞

least likely next class untargeted least likely next class untargeted

In
ce
pt
io
nV

3

No defences 0.16298 0.23112 2.0 0.00036 0.00791 0.00668
SS 0.24742 0.00494 2.0 0.00112 0.00136 0.00366

JPEG 0.68033 0.78041 2.0 0.002 0.00229 0.00629
TVM 0.03564 0.02002 0.03752 0.0001 0.00007 0.0001

SS + JPEG 0.79638 0.80107 1.86768 0.00144 0.00229 0.00235
SS + TVM 0.02222 0.01779 0.02942 0.0001 0.00014 8.00E-05

SS + JPEG + TVM 0.03715 0.04149 0.03496 0.00012 0.00011 0.0001
JPEG + TVM 0.0289 0.02801 0.02677 0.0001 0.00012 7e-05

M
ob
il
eN

et
V
2

No defences 0.18426 0.14277 1.01925 0.00061 0.00062 0.00331
SS 0.25983 0.26468 2.0 0.00118 0.00112 0.00272

JPEG 0.47149 0.58493 1.24635 0.0027 0.00263 0.00483
TVM 0.03391 0.00014 0.02647 0.0001 0.0001 0.0001

SS + JPEG 0.64274 0.33064 0.90888 0.00117 0.00128 0.00174
SS + TVM 0.04123 0.03478 0.03833 0.00014 0.0001 0.0002

JPEG + TVM 0.02359 0.01683 0.02974 7e-05 7e-05 0.00012

R
es
N
et
-5
0

No defences 2.0 0.65432 2.0 0.011 0.00336 0.04222
SS 2.0 0.38601 2.0 0.00449 0.00184 0.00917

JPEG 2.0 1.72062 2.0 0.00606 0.00336 0.02721
TVM 0.02947 0.02442 0.02637 0.00014 0.00015 0.00012

SS + JPEG 2.0 1.01856 2.0 0.00734 0.0032 0.01041
SS + TVM 0.03284 0.01449 0.02144 0.00013 6e-05 7e-05

SS + JPEG + TVM 0.01557 0.01153 0.00678 9e-05 3e-05 0.00011
JPEG + TVM 0.01015 0.00939 0.01425 8e-05 6e-05 7e-05

than most others. However, CW 𝐿2 has a high success rate (≈
60%) against PA-ResNet18. The same observations hold also for the
targeted least likely and untargeted setting.

With pre-processing defences, CW 𝐿2 attacks have very similar
success rates in all three settings, and thus their CLEVER scores
should be also similar. This is indeed true for several cases, e.g. TVM
for targeted next class has very similar scores for both models, as has
JPEG Compression combined with TVM in the targeted least-likely
class setting. However, this does not hold for several other cases,
such as JPEG Compression in the untargeted setting.

When we compare the CLEVER scores for the CW 𝐿2 attack
with CLEVER scores for other attacks, we observe similar trends.

ImageNet. As a representative example, we showCLEVER against
FGSM in Table 2; other attacks have very similar behaviour. We can
notice that some of the scores correlate positively and some rather
negatively with the actual success rates of the attacks. For example,
for most individual pre-processing defences there is an increase in
the CLEVER score. However, this is inverse for the combinations
of defences, with the exception of SS and JPEG compression. It is
also noteworthy that the untargeted setting yields higher CLEVER



scores, which is not expected, as the success rates have been far
better in that setting than in the targeted settings.

Concluding for both datasets, thismeans thatwhile some CLEVER
scores are in line with the success rates and observations made
in the previous sections, others are not. CLEVER scores can not
fully explain (predict) the effectiveness of adversarial attacks, and
CLEVER needs to be complemented by other scores to estimate
the effect of attacks and defences. Finally, with the pre-processing
defences, the models are empirically more robust, and one would
expect that the CLEVER scores would reflect that; however, our
experiments indicate the opposite: the scores are slightly worse
with pre-processing defences.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we evaluated several adversarial attacks and defences
on ImageNet and CIFAR-10 under three different target settings. We
additionally combined defences to potentially increase their success.
Further, we analysed the correlation of the CLEVER robustness
metric and the actual, measured attack success.

In the targeted setting, we observed that models on both datasets
are relatively robust against adversarial attacks. The only attacks
that managed to target specific classes with higher success rates
were CW on both datasets, and Auto-PGD on CIFAR-10. In the un-
targeted setting AdvTrn-PA-ResNet18 was vulnerable against Auto-
PGD, CW 𝐿∞, and HopSkipJump, however, it was stronger against
other attacks; all other models were vulnerable.

Pre-processing defences in the targeted setting have almost com-
pletely removed the success of the attacks. When comparing the
two targeted settings, we have to stress that the targeted least likely
and targeted next class settings showed very different success rates
on ImageNet, while they were very similar on CIFAR-10.

In the untargeted, we have noticed large reductions of success
rates with different pre-processing defences on both datasets, with
very similar trends. Only, Auto-PGD and Shadow attacks were
very strong against all pre-processors. We argue these defences
provide better protection against attacks that generate adversarial
images that are closer to the original images. An example is CW 𝐿2,
which has been most reduced by the pre-processors, albeit being
an otherwise very powerful attack.

Regarding specific architectures, we can see that InceptionV3 was
themost robust inmany settings without any defence. On ImageNet,
the success of pre-processors in the targeted next class compared to
the the least-likely settingmight correlate with semantic similarities
between the (randomly) chosen classes.

In general, adversarial training and pre-processors combine well,
and some of the combinations, like adversarial training, SS, and
JPEG Compression are noteworthy candidates to generalise well.

Future work will focus on extending these experiments to more
datasets, models, and robustness scores, and include further de-
fences for combination.
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